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Abstract 37 

 38 
Large area land cover products generated from remotely sensed data are difficult to 39 
validate in a timely and cost effective manner. As a result, pre-existing data are often 40 
used for validation. Temporal, spatial, and attribute differences between the land cover 41 
product and pre-existing validation data can result in inconclusive depictions of map 42 
accuracy. This approach may therefore misrepresent the true accuracy of the land cover 43 
product, as well as the accuracy of the validation data, which is not assumed to be 44 
without error. Hence, purpose-acquired validation data is preferred; however, logistical 45 
constraints often preclude its use - especially for large area land cover products. Airborne 46 
digital video provides a cost-effective tool for collecting purpose-acquired validation data 47 
over large areas. An operational trial was conducted, involving the collection of airborne 48 
video for the validation of a 31,000 square kilometre sub-sample of the Canadian large 49 
area Earth Observation for Sustainable Development of Forests (EOSD) land cover map 50 
(Vancouver Island, British Columbia, Canada). In this trial, one form of agreement 51 
between the EOSD product and the airborne video data was defined as a match between 52 
the mode land cover class of a 3 by 3 pixel neighbourhood surrounding the sample pixel 53 
and the primary or secondary choice of land cover for the interpreted video. This scenario 54 
produced the highest level of overall accuracy at 77% for level 4 of classification 55 
hierarchy (13 classes). The coniferous treed class, which represented 71% of Vancouver 56 
Island, had an estimated user's accuracy of 86%. Purpose acquired video was found to be 57 
a useful and cost-effective data source for validation of the EOSD land cover product. 58 
The impact of using multiple interpreters was also tested and documented. Improvements 59 
to the sampling and response designs that emerged from this trial will benefit a full-scale 60 
accuracy assessment of the EOSD product. 61 
 62 
 63 
1.0 0BINTRODUCTION 64 

The classification of land cover over large geographic areas with remotely sensed data is 65 
increasingly common; regions (Homer et al., 1997), nations (Loveland et al., 1991; Fuller 66 
et al., 1994; Cihlar and Beaubien, 1998), continents (Stone et al., 1994), and the globe 67 
(Loveland and Belward, 1997; Loveland et al., 2000; Hansen et al., 2000) have been 68 
mapped with a variety of satellite data types. This surge of interest in large area land 69 
cover mapping projects may be explained by an increase in image availability, a need for 70 
national- and global-scale land cover products for modelling and monitoring activities, 71 
and political obligations related to international treaties such as the Convention on 72 
Climate Change (Kyoto Protocol). Standard operational protocols for the validation of 73 
these products are emerging (Loveland et al., 1999; Justice et al., 2000; Strahler et al., 74 
2006; Wulder et al., 2006a), and a new initiative is addressing both the harmonization and 75 
validation of large area land cover products (Herold et al., 2006). 76 
 77 
A sufficient level of accuracy is assumed in order to rationalize the applied use of these 78 
large area land cover products for a wide variety of applications (Morisette et al., 2002; 79 
Stehman and Czaplewski, 2003). Accuracy assessment protocols require validation data 80 
that is independent from information used in map development; however, validation data 81 
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is expensive and logistically challenging to collect for large area land cover products 82 
(Cihlar, 2000). As a result, pre-existing data are often used for validation of large area 83 
land cover products generated from remotely sensed data. Unfortunately, temporal, 84 
spatial, and attribute differences between the land cover product and the pre-existing 85 
validation data can result in poor levels of apparent accuracy (Remmel et al., 2005). 86 
Furthermore, the use of pre-existing validation data may misrepresent the true accuracy 87 
of the land cover product, while at the same time, revealing problems inherent in the 88 
validation data. Aerial videography is one means of collecting purpose-acquired 89 
validation data for land cover products extending over large areas (Slaymaker, 2003). 90 
 91 
Airborne videography became known as a flexible and cost effective remote sensing tool 92 
in the early 1980s (Meisner, 1986; Mausel et al., 1992; King, 1995), and has 93 
demonstrated utility for a wide range of applications including species identification and 94 
vegetation mapping (Nixon et al., 1985; Bobbe et al., 1993; Frazier, 1998; Suzuki et al., 95 
2004), forest health and damage assessment (Jacobs and Eggen-McIntosh, 1993; Jacobs, 96 
2000); forest inventory update (Brownlie et al., 1996; Davis et al., 2002); and validation 97 
of vegetation maps generated from medium resolution remotely sensed data (Graham, 98 
1993; Marsh et al., 1994; Slaymaker et al., 1996; Hepinstall, 1999; Hess et al., 2002). 99 
Marsh et al. (1994) compared the use of systematically acquired aerial colour 100 
photography and airborne video for the validation of land cover products generated from 101 
Landsat TM imagery. The similarity between the accuracies measured by the 102 
photography and video sources was statistically significant (α = 0.01), suggesting that 103 
video could provide validation data of similar quality and utility to that of traditional 104 
aerial photography, with the advantage of collecting a larger volume of data with the 105 
same level of effort.  106 
 107 
Aerial videography gained additional momentum in the 1990s as a result of the GAP 108 
analysis programs implemented in the United States (Slaymaker, 2003). GAP programs 109 
operated at the state level and were initiated to assess the extent to which native animal 110 
and plant species were being protected. GAP land cover maps generated from Landsat 111 
TM data required a source of calibration data to facilitate the classification of the 112 
imagery, as well as a source of validation data to assess the accuracy of the output 113 
vegetation maps (Scott et al., 1993; Slaymaker, 2003). Aerial point sampling methods 114 
developed by Norton-Griffiths (1982) for aerial photography were adapted to aerial 115 
videography by Graham (1993) and implemented in the Arizona GAP program. The 116 
automatic labelling of video frames with Global Positioning System (GPS) coordinates 117 
was a major technological advancement, "providing a way to precisely and automatically 118 
match video-recorded GPS time with the position information in the GPS data file" 119 
(Graham, 1993: 29). Slaymaker et al. (1996) modified this approach for the GAP 120 
program in New England. Aerial video for calibration and validation of Landsat-based 121 
land cover maps was subsequently adopted by many other state-wide GAP programs 122 
(Schlagel, 1995; Driese et al., 1997; Hepinstall et al., 1999; Reiners et al., 2000), as well 123 
as for other land cover products (Skirvin et al., 2000; Hess et al., 2002; Maingi et al., 124 
2002; Skirvin et al., 2004). Technological advances in the 1990s led to the development 125 
of digital video cameras and powerful multi-media capabilities in desktop computers, 126 
further enhancing the quality and affordability of video options (Hess et al. 2002)  127 
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 128 
The advantages and disadvantages of airborne video for validation of land cover maps are 129 
summarized in Slaymaker (2003). One of the main advantages of video is data 130 
redundancy (Mausel et al. 1992), which facilitates the collection of large samples of 131 
validation (and calibration) points at specified intervals (of time or distance). In the early 132 
1990s, the inferior resolution of video (240 lines for colour, 300 lines for panchromatic) 133 
compared to that of 35 mm photo film (1500 lines) was an impediment to the widespread 134 
adoption of video for land cover applications (Slaymaker, 2003). Since this time, the 135 
quality of video has improved dramatically; with current consumer grade digital video 136 
cameras typically having more than 500 lines (colour) (Jack, 2005).  137 
  138 
The main goal of the Earth Observation for Sustainable Development of Forests (EOSD) 139 
program is the creation of a land cover map of the forested area of Canada, produced to 140 
represent year 2000 conditions, and on track for completion in 2006 (Wulder et al. 2003). 141 
There are many areas in the north of Canada being mapped for the EOSD project that are 142 
inaccessible, have no pre-existing detailed forest or vegetation inventories, and minimal 143 
or out-dated aerial photography. While a framework for validating the EOSD product has 144 
been developed (Wulder et al., 2006a), an alternative data source, along with a protocol 145 
for using this data source to validate the EOSD product, is required. The objective of this 146 
study was to develop a protocol and demonstrate the use of airborne video as a source of 147 
validation data for large area land cover products generated from remotely sensed data, 148 
specifically the EOSD land cover product. The rationale and approaches demonstrated 149 
here are intended to be portable to other large area mapping programs. 150 
 151 
To fully explore the potential of airborne video for validation of the EOSD product, an 152 
operational trial was conducted on Vancouver Island, British Columbia, Canada. Video 153 
data was used for validation and the accuracy estimates were compared to the estimates 154 
obtained using pre-existing forest inventory data for validation. Pre-existing data is often 155 
considered a viable source of validation data, despite fundamental differences that often 156 
exist between the pre-existing data and the product being validated. This communication 157 
details the protocol developed through this operational trial, the results of the accuracy 158 
assessment using the airborne video, the impact of multiple interpreters, and suggested 159 
improvements for future implementation of the video system for validation.  160 
 161 
 162 
2.0 1BSTUDY AREA 163 
 164 
Vancouver Island has a total land area of 31,284 square kilometres (Figure 1). Much of 165 
the island (85%) lies in the Coastal Western Hemlock biogeoclimatic zone (Klinka et al. 166 
1991). This zone is characterized as one of Canada's wettest climates and most productive 167 
forest areas, with cool summers and mild winters. The rugged physical features of 168 
Vancouver Island include long mountain-draped fjords on the west coast, coastal plains 169 
on the eastern coast, and a chain of glaciated mountains running along the north-south 170 
axis of the Island. Elevations range from 0 to 2200 metres. Forests cover 91% of 171 
Vancouver Island and forest species, in order of prevalence, include Hemlock (Tsuga 172 
spp.), Western red cedar (Thuja plicata Donn ex. Don), Western hemlock (Tsuga 173 
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heterophylla (Raf.) Sarg.), Yellow cedar (Chamaecyparis nootkatensis (D. Don) Spach.), 174 
and Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco). The existing forest inventory 175 
indicates that approximately 45% of the forest on the island is 250 years in age or older, 176 
with the remaining forest in managed second-growth stands. 177 
 178 
 179 

3.0 2BDATA 180 
 181 
3.1 8BEarth Observation for Sustainable Development of Forests (EOSD) 182 
 183 
In support of meeting national and international monitoring and reporting commitments, 184 
the Canadian Forest Service, in partnership with the Canadian Space Agency, is 185 
classifying Landsat data over the forested area of Canada. Over 400 Landsat scenes are 186 
being used to map the approximately 400 million hectares of treed land present in Canada 187 
(Wulder and Seemann 2001), with 20 different land cover classes (plus additional classes 188 
for no data, shadow, and cloud) (Wulder and Nelson, 2003) as listed in Table 1. Including 189 
image overlap into non-forest areas, over 60% of the country will be mapped by the 190 
EOSD project, with image classification undertaken by federal, provincial, and territorial 191 
agencies (Wulder et al. 2003). Source images cover acquisition dates ranging from 1999 192 
to 2002 and the EOSD product has a pixel size of 25 metres. 193 
 194 
The land cover classification system used for the EOSD product is based on the 195 
classification system originally developed for the National Forest Inventory (NFI) 196 
program. The six levels of the NFI classification hierarchy include vegetation cover, tree 197 
cover, landscape position, vegetation type, forest density, and species diversity (Figure 2; 198 
Gillis, 2001). The EOSD classification hierarchy is identical in principle, but is limited to 199 
a level of detail discernable in Landsat imagery (Wulder and Nelson, 2003; Wulder et al. 200 
2003). Thus, Levels 3 (landscape position) and 6 (species diversity) are not included. 201 
Using the NFI class structure as a base, level 4 (vegetation type), along with level 5 forest 202 
density descriptors, the closed legend in Figure 2 emerged. Building upon the existing 203 
NFI hierarchy enables classification and class generalization. The generalization or 204 
collapsing of classes can be useful for reporting validation results for different levels of 205 
classification detail, thereby accommodating a wider range of end-users. The EOSD-NFI 206 
legend has been cross-walked to a number of regional, national, and international land 207 
cover legends (Wulder and Nelson, 2003) augmenting the utility of the land cover 208 
products generated. 209 
 210 
3.2 9BForest inventory 211 
 212 
Existing provincial forest inventory data were available in digital format in a GIS 213 
database for approximately 26,000 square kilometres of Vancouver Island; inventory 214 
information was not available for areas not subject to inventory activities, including parks 215 
and private lands. The inventory is the primary source of information on the distribution 216 
and areal extent of forest stands, logging roads, and past natural and human disturbances 217 
in the study region. The inventory includes species composition (of up to six species, 218 
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with estimates of species prevalence to the nearest 10%), stand age in years, crown 219 
closure (to the nearest 5%), stand height in metres, diameter at breast height in 220 
centimetres, and stand area in hectares (Gillis and Leckie, 1993). Some stands were 221 
labelled non-productive forest. Much of the inventory information was projected to 222 
represent 1999 forest conditions; the original data collection reference years for 223 
individual stands ranged from 1954 to 1999. A method was developed for this study to 224 
generate EOSD-equivalent labels from attributes in the forest inventory using various 225 
combinations of species and species composition, age, crown closure, height, and non-226 
productive forest codes. As a result, each forest inventory polygon was assigned an 227 
EOSD land cover label. 228 
 229 
3.3 10BAirborne video 230 
 231 
The equipment used to collect the video data consisted of a Sony™ DCR-PC330 digital 232 
camcorder and a Red Hen A-VMS 300 device. The Red Hen (Red Hen Systems, Fort 233 
Collins, Colorado, USA) device included a Thales™ B12 GPS engine (a real-time 234 
differential GPS (DGPS) receiver), which is horizontally accurate to within 3 metres, and 235 
is used to encode/decode GPS positional information onto the audio track of the video 236 
recording. The Sony™ DCR-PC330 is a MiniDV format camcorder that is compact and 237 
lightweight, with 530 lines of resolution and a single Advanced HAD™ 1/3" CCD with 238 
3310K total pixels. The effective video resolution is 2048K pixels. The video camera and 239 
Red Hen device were mounted in a Cessna 206 aircraft, which had a 12-inch photo port 240 
on its underside. Due to the highly variable topography on Vancouver Island, and 241 
associated difficulties in maintaining a consistent flying height, the scale of the video 242 
ranged from 1:500 to 1:30000, with pixel sizes on the ground ranging from 1 cm to 60 cm 243 
and frame extents from 2.4 by 1.8 m to 144 by 108 m. Four flight lines, extending the full 244 
length of Vancouver Island, were flown over a two day period on August 10th and 11th 245 
2004, resulting in approximately 11 hours of continuous video (Figure 1), representing 246 
approximately 0.5% of the land area of Vancouver Island. The flight lines were designed 247 
to capture the greatest range of land cover classes possible. Ancillary data such as 248 
biogeoclimatic zones and base planimetric layers were compiled and referenced when the 249 
flight plan was being developed. The average flying height above the terrain, was 585 250 
metres; however, flying heights varied in areas of steep topography. Post-flight, the video 251 
and GPS information were integrated to create a completely digital and fully 252 
georeferenced record of the flight lines using the Red Hen MediaMapper® software. 253 
 254 
 255 

4.0 3BMETHODS 256 
 257 
4.1 11BSampling design 258 
 259 
A two-phase sampling design was used, with the first phase being the collection of the 260 
airborne video, followed by post-stratification of the video samples by the EOSD land 261 
cover strata. The sample frame for the study was the contiguous landmass of Vancouver 262 
Island (Figure 1). At the time the video acquisition was being planned, the EOSD product 263 
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for Vancouver Island was not complete, and the spatial distribution of the EOSD land 264 
cover classes was not known. Given limited resources for flying and video acquisition, a 265 
surrogate source of ecological mapping was used to ensure the flight lines were 266 
ecologically representative and that sufficient numbers of samples could be collected for 267 
all possible land cover classes. To achieve this, biogeoclimatic ecosystem zones and 268 
subzones, combined with a digital elevation model, were used to guide the placement of 269 
flight lines (Figure 3). Biogeoclimatic ecosystem subzones represent unique sequences of 270 
geographically related ecosystems, which are grouped into broader biogeoclimatic zones, 271 
of which there are four unique zones on Vancouver Island (Meidinger and Pojar, 1991). 272 
The table included in Figure 3 indicates that the flight lines characterized the spatial 273 
distribution of biogeoclimatic zone/subzone combinations. Although the flight lines were 274 
not selected via a probability sampling design, the resulting sample is assumed to be 275 
representative of the land cover distribution of Vancouver Island. Individual video frames 276 
were extracted at 15 second intervals, resulting in a total of 2651 possible frames, from 277 
all of the flight lines. Each video frame was assigned a unique identifier. Points 278 
representing the centroid locations of these video frames were overlaid with the EOSD 279 
product to derive the corresponding EOSD land cover class for the video frame in order 280 
to facilitate proportional allocation of the sample units to the EOSD land cover strata. The 281 
individual video frames were then pooled (i.e., no longer associated with their source 282 
transect) and sorted randomly.  283 
  284 
4.1.1 20BSample size 285 
 286 
The selection of sample size often involves tradeoffs between the requirements of 287 
statistical rigour and logistical realities. The objective of this study was to develop a 288 
protocol for the use of video for validation, and one of the key issues requiring 289 
exploration was the necessary number of interpreters to assign land cover attributes to the 290 
video frames. The assumption was that the greater the number of interpreters, the less 291 
subjective the interpretation was likely to be (since the mode of all seven interpreters 292 
would be compared to the EOSD product label). Seven interpreters familiar with EOSD 293 
and vegetation on Vancouver Island were selected. Sufficient resources were not 294 
available for the seven interpreters to label all 2651 video frames that were collected, and 295 
therefore a subset of video frames had to be selected. The sample had to be large enough 296 
to facilitate statistical testing and provide confidence in the overall accuracy estimate, 297 
while at the same time ensuring each land cover class had sufficient samples for reporting 298 
user's and producer's accuracies (Czaplewski and Patterson, 2003). 299 
  300 
An overall sample size of approximately 500 was determined by specifying a 90% 301 
confidence interval for p with a margin of error of 0.03, and an assumption of 80% true 302 
accuracy (Cochran, 1977): 303 
 304 

2

(1 )
z

n p p
m

       
   

                                                                                                  (1) 305 

 306 
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where z is the percentile of the standard normal (1.65 for 90% confidence interval), m is 307 
the margin of error (0.03), and p is the assumed population proportion (0.8). 308 
 309 
We allocated half of the 500 samples proportional to the area of the land cover stratum, 310 
and the remaining half were allocated to improve estimates for rare classes, as per 311 
Czaplewski (2003): 312 
 313 
ni = [ pi * (n/2) + (1/k) * (n/2)]                                                                                                       (2)                                  314 
 315 
Where: 316 
ni = sample size allocated to mapped stratum i 317 
pi = proportion of sample population mapped as i 318 
n = total sample size 319 
k = # of map categories 320 
 321 
Under a strictly proportional allocation scheme, several classes present in the EOSD 322 
product would have had no samples allocated to them. Recall that the video frames were 323 
previously tagged with their associated land cover strata, and the number of samples 324 
required for each land cover stratum, as listed in Table 1, was then selected at random 325 
from the 2651 available video frames.  326 

 327 
4.2 12BResponse design 328 
 329 
4.2.1 21BEvaluation potocol 330 
 331 
The evaluation protocol is the procedure used to collect the reference information 332 
(Stehman and Czaplewski, 1998). In defining the evaluation protocol, the spatial support 333 
region (SSR) is chosen. The SSR is defined as "the size, geometry, and orientation of the 334 
space on which an observation is defined" (Atkinson and Curran, 1995: 768). Given the 335 
variability in flying heights, the area of the instantaneous field of view of each video 336 
frame varied. Therefore, it was not practical to specify an SSR as a fixed areal unit. The 337 
centroid of the frame, whose location was captured by the GPS unit during flight, was 338 
selected as an easily understood reference point for all interpreters. The centre of the 339 
video frame, determined by the collected GPS UTM easting and northing, was assigned a 340 
land cover class by the interpreters.  341 
 342 
4.2.2 22BVideo atribution 343 

Interpreters were given a land cover class key which provided samples of the video for 344 
each of the EOSD land cover classes. The key was intended to improve consistency 345 
between interpreters, who manually assigned a land cover label to the centroid of the 346 
selected video samples. Interpreters were selected based on their familiarity with the 347 
EOSD product and the EOSD classification scheme, their understanding of forest 348 
inventory, and their experience in interpreting aerial photography. The interpreters had 349 
differing levels of field experience on Vancouver Island; including two of the interpreters 350 
who were involved in the acquisition of the video and therefore had some additional 351 
understanding of the spatial distribution and visual representation of the land cover 352 
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classes. Strand et al. (2002) demonstrated that direct field experience did not improve the 353 
accuracy with which photo interpreters could label land cover types; however, Drake 354 
(1996) demonstrated that even a minimum amount of training can improve the 355 
interpretation of vegetation classes from airborne video. 356 
 357 
The key points communicated to the interpreters included (Wulder et al., 2004): 358 
 Tall and low shrubs would be grouped into a single shrub class. 359 
 Density classes, particularly the distinction between dense and open classes, are 360 

known to be problematic. Interpreters were advised when not certain of the density 361 
class to select both a primary and secondary class label (e.g. primary label: dense 362 
conifer, secondary label: open conifer).  363 

 Guidelines for defining mixed wood stands were provided (i.e., when neither 364 
coniferous nor broadleaf species account for more than 75% of the total basal area 365 
in the stand). 366 

 Several examples of video frames were provided for each land cover class to 367 
promote consistent interpretations.  368 

 369 
4.2.3 23BLabelling protocol 370 
 371 
The interpreters were provided with a listing of the sample video frames. Recall that the 372 
sample video frames had been pooled and sorted randomly by their unique identifier. The 373 
interpreters did not know the geographic location of the video frame, or the flight line 374 
that the video frame originated from. The interpreters were also not privy to the EOSD 375 
land cover stratum from which the video frame was selected. Each interpreter 376 
independently determined an appropriate label for the land cover type existing at the 377 
centre of the video frame. As per Stehman et al. (2003), the interpreters selected the most 378 
likely class (primary choice) with an option to specify a second choice if necessary. The 379 
secondary choice captures the confusion between classes when the frame falls in the 380 
transition between two cover-type classes (Figure 4), thereby acknowledging thematic 381 
and non-thematic errors (Foody, 2002). 382 
 383 
4.2.4 24BDefining agreement 384 
 385 
Several scenarios for defining agreement between the EOSD product and the interpreted 386 
video frames were explored: 387 

1. If the land cover class of the EOSD product matched the primary land cover choice 388 
of the interpreted video. 389 

2. If the land cover class of the EOSD product matched either the primary or 390 
secondary land cover choice of the interpreted video. 391 

3. If the modal class of a 3 by 3 pixel SSR around the target EOSD pixel matched 392 
either the primary or secondary land cover choice of the interpreted video.  393 

 394 
The first scenario is a direct comparison between the interpreted video and the EOSD 395 
product, making no allowances for possible errors in attribution and/or positional 396 
accuracy. The second scenario listed above accommodates thematic ambiguity, while the 397 
third choice accommodates both thematic ambiguity and positional uncertainty (Stehman 398 
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et al., 2003). Under the third scenario, if more than one modal class existed, the sample 399 
was dropped. For the scenario where the pre-existing forest inventory data is used for 400 
validation, the land cover of the EOSD pixel is compared directly to the label of the 401 
inventory polygon within which the EOSD pixel falls (see Wulder et al. 2006b for 402 
details). 403 
 404 
 405 
4.3 13BAnalysis 406 
 407 
The EOSD land cover class had previously been extracted for each of the sample video 408 
frames, based on the GPS position of the video frame centroid. Similarly, the mode land 409 
cover class of a 3 by 3 pixel neighbourhood surrounding the centroid pixel was generated 410 
and extracted for the centroid of each video frame. The EOSD classifications for each of 411 
the samples were then compared to the interpreted video samples using a confusion 412 
matrix and measures of accuracy were estimated. Since post-stratification was used to 413 
allocate the total number of samples proportional to the area of each of the land cover 414 
stratum, estimation methods provided in Cochran (1977) and Czaplewski (2003) were 415 
used to calculate accuracy measures and associated confidence intervals. 416 
 417 
The hierarchical nature of the EOSD land cover classification system supports 418 
generalization to higher levels. Many applications do not require information on 419 
vegetation density, using only information on vegetation type. In this situation, reporting 420 
accuracy results, which may be negatively impacted due to confusion associated with the 421 
interpretation of density classes, does not provide a fair representation of the accuracy of 422 
the level 4 product. For the sake of transparency and comparison in this study, accuracy 423 
values are reported for both levels 4 and 5. 424 
 425 
 426 

5.0 4BRESULTS 427 
 428 
5.1 14BAccuracy assessment 429 
 430 
The first validation scenario defined agreement where the land cover class of the EOSD 431 
product matched the modal primary land cover choice of the interpreters (Table 2). 432 
Results are reported for level 5 and level 4, which is cover type only (Figure 2). Accuracy 433 
estimates were obtained by using the modal class of all seven interpreters. The level of 434 
overall accuracy for level 5 was 53%, with user accuracies for the three coniferous 435 
density classes ranging from 9% to 72%. At level 4 the overall accuracy was 71%, with 436 
the coniferous class at 84%. The second scenario defined agreement where the land cover 437 
class of the EOSD product matched either the modal primary or secondary land cover 438 
choice of the interpreted video. For this scenario, the overall accuracy was 61% (level 5) 439 
and 73% (level 4). User's accuracy for the three coniferous density classes ranged from 440 
23% to 76%, with user's accuracy for level 4 coniferous at 85% (Table 2). The third 441 
scenario defined agreement between the modal class in a 3 by 3 pixel window and either 442 
the modal primary or secondary land cover choice of the interpreted video (Table 2). The 443 
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overall accuracy for this scenario was 67% for level 5 and 76% for level 4. User's 444 
accuracies for the three coniferous density classes ranged from 15% to 82%, and the 445 
user's accuracy for the coniferous class was 86%. With pre-existing forest inventory data 446 
used as reference data the overall accuracy was 41% for level 5 and 68% for level 4. 447 
User's accuracies for the coniferous density classes ranged from 0% to 55% and the user's 448 
accuracy for the coniferous class was 74%. 449 
 450 
5.2 15BMultiple interpreters 451 
 452 
A summary of overall accuracy, as estimated by each interpreter for each scenario, is 453 
provided in Table 3. These results provide an indication of what the accuracy estimates 454 
would have been if only one interpreter had been used for the project. Overall accuracies 455 
varied by an average of 8% for level 5 and 11% for level 4. Pairwise comparisons for 456 
each scenario were made between interpreters, and between interpreters and the EOSD 457 
product, and the proportion of agreement is summarized in Table 4.  458 
 459 
 460 
6.0 5BDISCUSSION 461 

6.1 16BUse of purpose-acquired video for validation 462 
 463 
There are a number of issues to consider when determining the appropriateness of video 464 
data for an accuracy assessment. Video can cover large geographic areas efficiently, and 465 
areas that are identified in the flight plan as unique or rare can be sampled intensively. 466 
When compared to field surveys, video facilitates the collection of a large number of 467 
sampling locations, providing sufficient samples for both calibration and validation, and 468 
the data redundancy and ability to view transitions between land cover classes can be 469 
advantageous. Video also provides a permanent record of the survey and interpretation 470 
may be done by highly trained professionals, mobilized at minimal cost, who have 471 
extensive experience in identifying vegetation types and land cover from airborne 472 
imagery. Technology has created advances in digital video that have resulted in higher 473 
quality, compact cameras at increasingly affordable prices, and since there is little post-474 
processing required, the data can be available almost immediately after collection. 475 
Furthermore, sophisticated and readily available off-the-shelf software and hardware 476 
products can generate video that is fully georeferenced, facilitating sampling protocols. 477 
Digital photography has experienced similar advances in technology and reductions in 478 
cost. Video acquisition must be planned so that the video meets the level of detail 479 
required by the classification system, and flying height and speed must be set 480 
accordingly. The efficiency, simplicity, and cost effectiveness of video make it an 481 
attractive source of calibration and validation data for large area land cover products 482 
generated from remotely sensed data. 483 
 484 
The results of the accuracy assessment using the video frames for validation highlighted 485 
several issues. First, accommodating positional and thematic ambiguity can have an 486 
impact on the reported accuracy results (75% overall accuracy when these sources of 487 
ambiguity are addressed versus 53% when they are not). Second, density classes were a 488 
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major source of classification confusion and result in low accuracy measures at level 5 of 489 
the EOSD classification hierarchy. This may misrepresent the accuracy of the product to 490 
end users who do not require information on vegetation density. Therefore, separate 491 
accuracy estimates should be reported for both level 4 and level 5 land cover products, 492 
allowing an end user to make informed decisions about the application-specific relevance 493 
of each estimate. End users must also understand the limitations of the agreement 494 
scenarios, and of accuracies reported for a generalized product (e.g., the mode of 3 by 3 495 
pixel neighbourhood) (Czaplewski, 2003). Confusion between density classes also 496 
suggests that greater effort is required to calibrate interpreters. Crown closure has been 497 
identified as one of the more difficult forest inventory attributes to estimate or even 498 
measure accurately (on the ground, from the air, or from satellite imagery) (Congalton 499 
and Biging, 1992; Gill et al. 2000). The potential of extracting estimates of crown closure 500 
from Landsat imagery has been the subject of ongoing research (e.g., Franklin et al., 501 
2003; Xu et al., 2003; Pu et al., 2005; Joshi et al., 2006).  502 
 503 
6.2 17BPre-existing forest inventory 504 
 505 
The use of the pre-existing forest inventory as a source of validation data produced 506 
overall accuracy results that were lower than the results produced using the purpose 507 
acquired video for validation. For level 5, using the forest inventory data produced an 508 
estimate of overall accuracy that ranged from 12% to 26% lower than that produced using 509 
the video. Individual user's accuracies for the coniferous open class were similar, ranging 510 
from 17% to 27% lower than the estimates associated with the video. At level 4, the 511 
differences between the inventory and the video estimates of overall accuracy are not as 512 
disparate, with the inventory estimating overall accuracy ranging from 3% to 9% lower 513 
than the video estimates, and user's accuracies for the coniferous class that were 10% to 514 
12% lower than that estimated from the video. Wulder et al. (2006b) document the 515 
challenges of using pre-existing data (specifically forest inventory) to validate land cover 516 
products generated from remotely sensed data: geolocational mismatches, differences in 517 
features or classes mapped, disparity between the scale of polygon delineation and the 518 
spatial resolution of the image, and temporal discrepancies. However, the greatest 519 
challenge to using pre-existing data such as forest inventory for validation is that a forest 520 
inventory polygon is a generalization, designed to represent areas of relatively 521 
homogenous forest characteristics. In contrast, the raster based land cover product can 522 
contain much more detail and is, by its very nature, heterogeneous, with a minimum 523 
mapping unit (MMU) that often reflects the size of the image pixels (e.g., 0.06 ha) versus 524 
the 2 ha MMU of the forest inventory. 525 
 526 
6.3 18BMultiple interpreters 527 
 528 
All of the seven interpreters' primary labels agreed only 20% of the time and of these, 529 
36% were classed as not interpretable; 26% were open coniferous; and 22% were snow 530 
and ice. This low level of agreement amongst the interpreters' primary label suggests 531 
there was either ambiguity in the application of the classification legend or confusion 532 
regarding the sample unit (i.e., the dominant land cover class for the frame as a whole 533 
versus just the cover type located at the centroid of the chip). In 80% of the cases where 534 
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the interpreters' primary labels did not agree, 66% were attributed to disagreements over 535 
density classes. Reporting accuracy estimates for level 4 of the EOSD hierarchy 536 
eliminated this type of disagreement and increased interpreter agreement to 43% 537 
(compared to 20% at level 5).  538 
 539 
One of the drawbacks to using aerial photography or video for validation is the lack of 540 
direct physical contact with the target (Congalton and Biging, 1992), therefore the 541 
classification is still based on remote interpretation (albeit with a well established and 542 
rigorous process). As such, there is no "truth", as multiple interpreters are unlikely to 543 
agree 100% of the time. The absence of an absolute truth dataset makes it difficult to 544 
assess the performance of any one interpreter, and to determine the optimal number of 545 
interpreters required to provide an unbiased result. Powell et al., (2004) manufactured a 546 
truth standard by having all five interpreters assign pixels to land cover classes by 547 
consensus. The result was termed the "gold standard" and was used for the final accuracy 548 
assessment. Powell et al., (2004) attributed some of the disagreement between 549 
interpreters to human error (e.g., misinterpretation of the image printout, miscoding the 550 
sample), while other disagreements related more fundamentally to identification of the 551 
vegetation in the video. 552 
 553 
Table 3 summarizes the overall accuracies for each scenario, by interpreter. If any one of 554 
these interpreters had individually been selected to interpret the video, the overall 555 
estimates of accuracy would have varied by an average of 8% for level 5 and 11% for 556 
level 4. This result contrasts with that of Drake (1996) who concluded that individual 557 
interpreters could be used to produce similar accuracy estimates, with little effect. Table 4 558 
summarizes the overall proportion of agreement between interpreters and between 559 
interpreters and the EOSD product. The results indicate that there was more agreement 560 
amongst individual interpreters than there was between individual interpreters and the 561 
EOSD product. For level 5, agreement between primary labels of any two interpreters 562 
ranged by 20%, with an average overall agreement of 60%. If both the primary or 563 
secondary label are considered, agreement between any two interpreters ranged by 23%, 564 
with an average overall agreement of 77% and the highest agreement at 90%. 565 
Comparisons between individual interpreters and the EOSD output were markedly lower. 566 
If only the primary label of a single interpreter is considered, then overall agreement 567 
averaged 40% (range 8%). If both primary and secondary label are compared to the 568 
modal land cover class of a 3 by 3 pixel neighbourhood, overall agreement increased to 569 
45% (range 9%). For level 4, the patterns in accuracy estimates are similar. Agreement 570 
amongst interpreters was greater at more generalized levels of the EOSD hierarchy (70% 571 
at level 4 versus 60% at level 5), and if thematic ambiguity was accounted for (77% for 572 
both primary and secondary labels at level 5 versus 60% for primary label only at level 573 
5). 574 
 575 
These results suggest that the use of multiple interpreters can be important for reducing 576 
bias and improving consistency in class labeling. The number of interpreters required 577 
likely varies by application and depends on the complexity of the land cover classes. For 578 
the method whereby the modal class of interpreters is used, a minimum of three 579 
interpreters would be practical, and is recommended. An evaluation protocol that 580 
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incorporates independent classification by each interpreter, followed by cross calibration, 581 
and revisit of problematic classes would be the most effective way to use fewer 582 
interpreters (and fewer resources), while still taking advantage of the benefits of multiple 583 
interpreters. 584 
 585 
6.4 19BLessons learned 586 
 587 
The main objective of this study was to develop a protocol and demonstrate the use of 588 
airborne video as a source of validation data for large area land cover products, 589 
specifically the EOSD. Over the course of conducting this operational trial, several issues 590 
arose, providing opportunities to improve upon the methodology for future 591 
implementation. First, a fully probabilistic sample design is clearly more important than 592 
the representation of all potential classes – particularly since resources for the accuracy 593 
assessment are scarce and a key objective of the EOSD accuracy assessment is to 594 
generate robust estimates of overall accuracy and producer's and user's accuracies for the 595 
dominant forest classes. To that end, flight lines should be placed so that they traverse the 596 
study area at fixed intervals of distance in both north-south and east-west orientations. 597 
Samples should be allocated proportional to strata area, with no accounting for rare 598 
classes that have a very limited spatial extent. The video camera should be set to a fixed 599 
zoom, facilitating an increase in the consistency of the scale of video frames. In addition, 600 
the pilot should be instructed to try to maintain a consistent altitude above ground level 601 
(rather than focussing on maintaining a consistent altitude). An attitude and heading 602 
reference system device (digital gyroscope) is critical to ensure that the accurate GPS 603 
locations recorded by the Red Hen system can be used to their full potential. With a 604 
known pitch, roll, and heading, combined with the GPS position of the plane, it is 605 
relatively simple to calculate the coordinates of the center of the image on the ground. 606 
Finally, with over 60% of the disagreement between interpreters caused by differences in 607 
density estimates, greater effort must be made to calibrate interpreters and improve 608 
consistency in estimation of density classes. Drake (1996) demonstrated the utility of 609 
training in improving the interpretation accuracy of vegetation classes from airborne 610 
video. 611 
 612 
 613 
7.0 6BCONCLUSION 614 
 615 
This operational trial explored the use of purpose-acquired airborne video data for 616 
validation of an EOSD land cover product. Results indicate that airborne video is an 617 
efficient and cost-effective medium for validation of large area land cover products 618 
generated from remotely sensed data. The results also confirm that accuracy estimates 619 
generated using purpose-acquired data will be different from estimates generated using 620 
pre-existing forest inventory data as a reference source. In this study, the use of forest 621 
inventory for validation would have resulted in an underestimation of EOSD product 622 
accuracy. Furthermore, pre-existing data may not be the most appropriate data source for 623 
validation, and may be unavailable in remote or inaccessible areas. Airborne video 624 
provides a viable validation data source; the hardware, software, and expertise required to 625 
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acquire the video data, generate a fully geo-referenced data set, select a representative 626 
sample, and interpret land cover classes is widely available and affordable. 627 
  628 
A full implementation of the protocol developed here requires a carefully selected 629 
sampling strategy that successfully balances the requirements of statistical rigour while at 630 
the same time accommodating logistical realities and fulfilling the primary objectives of 631 
the accuracy assessment. Multiple interpreters were found to be an effective means to 632 
improve consistency and reduce bias in the assignment of land cover classes to the video 633 
samples, although a minimum of three interpreters would likely be sufficient. Substantial 634 
effort should be directed at calibrating interpreters and improving consistency in 635 
labelling. Finally, the importance of reporting accuracy estimates and the details of the 636 
sample design in a transparent manner, for both levels 4 and 5 of the EOSD classification 637 
hierarchy, will provide the end user with the information required to assess whether the 638 
product is sufficiently accurate for a specific application. The lessons learned from this 639 
trial will contribute to a robust assessment of EOSD product accuracy. 640 
 641 
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Table 1. Proportional allocation of first phase samples by EOSD stratum. Half of the samples were 875 
allocated proportional to the area of each stratum, while the other half of the samples were allocated 876 
to improve estimates for rare classes (see Czaplewski, 2003). 877 

 878 

EOSD class 
Proportion of sampled 

population mapped as x
Sample size 

of x 

water 0.0461 25 
snow/ice 0.0217 19 

rock/rubble 0.0000 14 
exposed land 0.0324 22 

shrub 0.0420 24 
wetland treed 0.0074 16 
wetland shrub 0.0016 14 
wetland herb 0.0013 14 

herb 0.0792 34 
coniferous dense 0.0705 32 
coniferous open 0.5391 149 

coniferous sparse 0.1015 39 
broadleaf dense 0.0185 19 
broadleaf open 0.0377 23 

broadleaf sparse 0.0007 14 
mixed wood dense 0.0000 14 
mixed wood open 0.0000 14 

mixed wood sparse 0.0002 14 

TOTAL 1.0000 500 

 879 

 880 
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Table 2. Summary of results for all agreement scenarios with accuracy estimates followed by 90% 881 
confidence intervals. 882 

 883 

 LEVEL 5 LEVEL 4 

Agreement 
Scenario 

Overall 
Accuracy 

User's 
Accuracy  

(for coniferous; variable 
density) 

Overall 
Accuracy 

User's 
Accuracy 

(for coniferous) 

EOSD and 
video primary 

53% 
(49% - 57%) 

coniferous dense 
9%  

(0.68% - 17%) 
coniferous open 

 72%  
(66% - 78%) 

coniferous sparse 
24%  

(13% - 35%) 

71% 
(68% - 74%) 

coniferous 
84% 

(80% - 88%) 

EOSD and 
video primary 
or secondary 

61% 
(57% - 65%) 

coniferous dense 
23%  

(11% - 35%) 
coniferous open 

76%  
(70% - 82%) 

coniferous sparse 
33% 

(21% - 45%) 

73% 
(70% - 76%) 

coniferous 
 85% 

(81% – 89%) 

EOSD 3x3 
mode and 

video primary 
or secondary 

67% 
(64% - 70%) 

coniferous dense 
15% 

(5% - 25%) 
coniferous open 

82% 
(77% - 87%) 

coniferous sparse 
38% 

(25% - 51%) 

77% 
(74% - 80%) 

coniferous 
86% 

(82% - 90%) 

EOSD and  
forest 

inventory  

41% 
(37% - 45%) 

coniferous dense 
18% 

(7% - 29%) 
coniferous open 

55% 
(48% - 62%) 

coniferous sparse 
0% 

(0% - 2.27%) 

68% 
(66% - 71%) 

coniferous 
74% 

(69% - 79%) 

 884 

 885 
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Table 3. Overall accuracies estimated by each interpreter for three different scenarios of agreement 886 
(for levels 4 and 5 of the EOSD classification hierarchy). 887 

 LEVEL 5 LEVEL 4 

interpreter # 
primary only 
to EOSD label 

primary or 
secondary 
to EOSD 

label 

primary or 
secondary to 

mode of a 3x3 
neighbourhood 

surrounding 
EOSD label 

primary only 
to EOSD label 

primary or 
secondary 
to EOSD 

label 

primary or 
secondary to 
mode of a 3x3 

neighbourhood 
surrounding 
EOSD label 

3 30.17% 36.85% 40.19% 43.97% 46.36% 47.63% 
7 30.27% 35.43% 39.90% 46.19% 48.84% 52.24% 
5 33.92% 42.57% 46.77% 47.45% 53.68% 54.77% 
6 35.55% 41.00% 44.92% 51.66% 52.74% 55.69% 
4 31.32% 39.49% 44.13% 50.39% 55.57% 57.39% 
1 33.88% 42.56% 48.56% 50.00% 57.36% 59.07% 
2 37.80% 42.82% 48.23% 53.83% 58.64% 59.81% 
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Table 4. Summary of overall interpreter agreement. 888 

 
 MINIMUM 

% 
MAXIMUM 

% 
MEAN 

% 

Level 5 51 71 60 Interpreter vs. interpreter 
(primary label only) Level 4 61 82 70 

Level 5 67 90 77 Interpreter vs. interpreter 
(primary or secondary label) Level 4 70 92 81 

Level 5 30 37 33 Interpreter vs. EOSD 
(primary label only) Level 4 44 54 49 

Level 5 40 49 45 Interpreter vs. EOSD 
(primary or secondary label compared to the mode 
of a 3x3 neighbourhood around EOSD target pixel) Level 4 48 60 55 

 889 
 890 
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 891 

 892 
 893 
Figure 1. Vancouver Island, British Columbia is located on Canada's western coast.  894 
Actual flight lines used for video collection are superimposed. 895 
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 896 
 897 
Figure 2. The five levels of the NFI classification hierarchy that correspond to the EOSD 898 
classes. The hierarchical nature of the classification scheme enables generalization and 899 
reporting at higher levels of the hierarchy. 900 
 901 
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 902 
 903 
Figure 3. The planned flight lines for video acquisition draped over biogeoclimatic 904 
zones/subzones and a digital elevation model. Actual flight lines are shown in Figure 1. 905 
 906 
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 907 
 908 
Figure 4. Examples of the need for using primary and secondary labels. 909 
 910 


