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Abstract

Epidemic populations of mountain pine beetle highlight the need to understand landscape-scale spatial
patterns of infestation. Observed infestation patterns were explored using a randomization procedure
conditioned on the probability of forest risk to beetle attack. Four randomization algorithms reflecting
different representations of the data and beetle processes were investigated. Local test statistics
computed from raster representations of surfaces of kernel density estimates of infestation intensity were
used to identify locations where infestation values were significantly higher than expected by chance (hot
spots). Investigation of landscape characteristics associated with hot spots suggests factors that may
contribute to high observed infestations.

Key words: Conditional spatial randomization, kernel density estimation, mountain pine beetle, local
statistics

Résumé

L’ampleur épidémique des populations de dendroctone du pin ponderosa souligne I'importance de
comprendre la répartition spatiale des infestations a I'échelle du paysage. La distribution observée des
infestations a été examinée en utilisant une méthode de randomisation conditionnée par la probabilité
que la forét soit attaquée par le dendroctone. On a étudié quatre algorithmes stochastiques reflétant
différentes représentations des données et des processus d’infestation par le dendroctone. Pour
déterminer les endroits ou les valeurs relatives a I'infestation étaient beaucoup plus élevées que celles
auxquelles on s’attendait par la méthode aléatoire (points sensibles), on a utilisé des statistiques d’essais
locaux. Ces derniéres ont été calculées a partir de représentations matricielles des superficies ou I'on
avait effectué des estimations de densité par la méthode du noyau en vue d’obtenir l'intensité de
linfestation. L’'examen des caractéristiques du paysage associées aux points sensibles propose des
facteurs qui pourraient contribuer aux fortes infestations observées.

Mots-clés: Randomisation spatiale conditionnelle, estimation de densité par la méthode du noyau,
dendroctone du pin ponderosa, statistiques locales
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1 Introduction

The mountain pine beetle (Dendroctonus ponderosae Hopkins) is a species native to western North
America and is important for maintaining healthy pine forests. By infesting and killing lodgepole pine
(Pinus contorta var. Latifolia), mountain pine beetles naturally disturb the forest and aid succession
(Safranyik et al. 1974; Parminter 1998). However periodic epidemics, resulting from warmer temperatures
and an abundance of mature pine, can have significant impacts on environment, economy and
communities. Currently, the largest recorded mountain pine beetle epidemic in British Columbia is
underway, with more than 7 million ha of lodgepole pine being affected (Westfall 2004). This situation
highlights need for a landscape-level understanding of spatial patterns in mountain pine beetle
infestations. Currently, despite considerable work at a stand scale (e.g., Mitchell and Preisler 1991;
Barclay et al. 1998), there is a lack of research relating to this topic. Thus, we propose that exploratory
analysis be undertaken as an appropriate initial step.

A common strategy for exploratory analysis of such spatial patterns is to evaluate characteristics of an
empirical pattern relative to those expected from the realization of a null/lhypothesized model (Getis and
Boots 1978; O’Sullivan and Unwin 2003). As the properties of the model are known, this procedure may
be used diagnostically to explore characteristics of an empirical pattern. More formally, one or more test
statistics may be computed from the empirical pattern and the probability of these occurring under the null
model may be evaluated. In exploratory spatial pattern analysis, the most frequently used null model is
that of complete spatial randomness (Boots and Getis 1988).

One means of evaluating a test statistic is to use a permutation test, in which the test statistic is
calculated for the original data and then the observed data are permuted and the test statistic computed
for each permutation (Edgington 1995; Conner and Simberloff 1986). Collectively, the empirical test
statistic and those generated from the permutations provide a reference distribution for evaluating the
empirical test statistic. The probability (or significance) of the empirical test statistic occurring under the
null model is equal to the proportion of permutations that have test statistic values greater than or equal to
the empirical test statistic. When the data are permuted randomly, we refer to this as a randomization test
(Fortin and Jacquez 2000).

For spatial data, the null model of complete spatial randomness is equivalent to complete randomization
in which the data values are assigned at random to locations within the study region. That is, the data
values are assumed to be located uniformly and independently over the entire study region. However,
there are situations in which complete randomization is inappropriate, as either or both of the
assumptions of uniformity and independence are likely to be violated (e.g., Legendre and Fortin 1989;
Stine and Hunsaker 2001). For example, the probability of events occurring is unlikely to be constant over
an environmentally inhomogeneous study area. This is the case for mountain pine beetle infestations,
reflecting variations in forest conditions across a landscape (Safranyik et al. 1974). In such
circumstances, using complete randomization would typically increase the number of Type | errors
associated with the test statistic (Legendre and Fortin 1989; Legendre et al. 2002). To overcome this,
complete randomization may be conditioned using a priori knowledge of the study region or the events
under investigation.

There are several ways to condition a spatial randomization. Of relevance here are those that use a priori
knowledge of spatial variation in the probability of the occurrence of the phenomenon being investigated.
This approach has been used most extensively in epidemiology, where randomizations are conditioned
on the population at risk (Besag and Newell 1991; Kulldorff et al. 2003). Similar examples are found also



in ecology, where the statistical significance of the spatial pattern of an animal is tested using
randomizations restricted by habitat (Davis et al. 2000).

For spatial patterns, the test statistic may be one that summarizes the entire data set (global) or one that
is computed for every data site (local; Fotheringham and Brunsdon 1999). Local statistics are particularly
useful for identifying differences—rather than similarities—in spatial data via mappable measures
(Fotheringham 1997; Boots 2002). Using local methods, we can undertake exploratory, diagnostic
investigations of spatial variation in probabilities of the empirical test statistic.

In this paper, our goal is to explore patterns of mountain pine beetle infestations using a conditional
randomization procedure that recognizes that the probability of infestation occurrence is not spatially
uniform. A stand-scale, mountain pine beetle model of forest risk (see Section 3) was used to derive the
probabilities. We represent both the empirical and the randomized data in the form of raster surfaces
generated using kernel density estimators. Our local test statistics are the observed intensity values for
each pixel in the raster surface. Thus, we can evaluate the likelihood of occurrence of the observed value
of the test statistic for each pixel relative to the values for the corresponding pixels in surfaces created
from the randomized data. In this way, we can identify pixels (locations) with empirical values that are
significantly smaller and larger than those expected by chance. However, in this paper, we consider only
the latter as these are of much more interest from a management perspective. We refer to such locations
as hot spots. By investigating characteristics of the landscape at these locations, we are able to suggest
factors that may contribute to high observed infestations.

2 Study area and data
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Figure 1. Location of the Morice Timber Supply Area showing sub-areas used in the study.



One area impacted by the current infestation in British Columbia is the Morice Timber Supply Area
(henceforward referred to as Morice; Figure 1). Covering an area of approximately 1.5 million ha, Morice
is dominated by lodgepole pine and spruces (Picea). In Morice, mountain pine beetle infestations have
been monitored since 1995 with point-based, global positioning system (GPS) helicopter aerial surveys.
These surveys use indicators of pine mortality—mainly changes in crown foliage colour—to monitor
mountain pine beetle activity. Once attacked, trees change from green to yellow, to red and, eventually, to
gray (Safranyik et al. 1974). In this way, clusters of visually infested trees are identified and estimates of
the number of infested trees they contain are made. Cluster centres are mapped as points using a GPS.
The maximum area represented by a point is 0.031 km squared, equivalent to a circle with a radius of 100
m. From 1995 to 2002, a total of 43,751 data points were identified during aerial surveys.

Onset of infestation is not contemporaneous throughout Morice. Whereas much of the northern part of
Morice was already infested in 1995, infestations did not occur in most of the southern part until 2000.
Anticipating that this might affect our analyses, we divided the district into three sub-areas on the basis of
initial infestation dates (See Figure 1). Unless the results of our analyses are consistent throughout
Morice, they are presented separately for the north, middle, and south sub-areas (see Section 5).

Two supplementary data sets were used in this study: inventory data from the British Columbia Ministry of
Forests, and a digital elevation model (DEM). Forest inventory data are primarily generated via aerial
photo (1:15,000) interpretation and were last updated in the mid-1990s. (For details of the forest inventory
procedure, see Leckie and Gillis 1995). Forest inventory attributes used for this study were: forest age,
diameter at breast height, and species percent. Diameter at breast height is the diameter of the tree trunk
at 1.3 m above ground.

Data for elevation and aspect were generated from a DEM provided by the Province of British Columbia.
The original elevation model had 25-m? grid cells and was created from 1:20,000-scale Terrain Research
Information Management data (British Columbia Ministry of Sustainable Resource Management 1996).
The data were interpolated using a linear process; the DEM is considered accurate within 10 m. Aspect
data was derived from the DEM using the down-slope direction of the maximum rate of change in value
from each cell to its neighbours. All data were represented using raster surfaces with a cell size of 200
m?. This cell size enabled comparison with surfaces created from kernel density estimators, which were
used to represent the empirical and randomized infestation intensities (see section 4.2). To generate 200-
m? cells, nearest neighbour re-sampling was undertaken.

3 Forest Risk Model

In order to implement a spatial randomization procedure that recognizes that the probability of infestation
varies over a landscape, we need a means of determining the spatial distribution of forest risk (Bentz et
al. 1993; Shore et al. 2000). We used the Shore and Safranyik (1992) risk model which incorporates most
of the current knowledge on the biological behaviour of mountain pine beetles and is also the primary
model used for forest management in British Columbia. This model (referred in this paper as the risk
model) calculates the short-term expectation, or probability, of tree mortality in a stand as a result of
infestations (Shore and Safranyik 1992), quantified by loss in stand volume (rather than individual trees).

3.1 Stand Susceptibility

Forest risk is considered to be a function of two components, stand susceptibility and beetle pressure.
Stand susceptibility reflects the inherent characteristics of a stand that affect the probability of attack and



damage (Shore and Safranyik 1992). In this context, a stand is defined as a homogenous aggregate of
trees. Stand susceptibility (S) ranges from zero to 100, and is calculated as

S =PADL eql

where P is the percentage of susceptible pine basal area, A is a pine age factor, D is stand density, and L
is a location factor. Each variable used in the calculation of stand susceptibility incorporates a factor
important for mountain pine beetle host selection. Originally, susceptibility attributes were determined
from look-up tables with discreet categories; however, the model has been updated to allow continuous
representation of attributes (Shore and Safranyik 1992; Wulder et al. 2004).

The percentage of susceptible pine basal area (P) is designed to consider tree diameter at breast height
and stand composition. P is calculated as

(average basalarea/ha of pine>15cm dbh)

P= 100 eq. 2

(average basal area/ha of allspecies > 7.5cm dbh)

In Equation 2, the 15-cm diameter at breast height threshold reflects mountain pine beetle preference for
mature trees (Hopping and Beal 1948). Under epidemic conditions, smaller trees may be attacked, but
fewer beetles will emerge than were required to attack the tree (Safranyik et al. 1974). The lower 7.5-cm
threshold is a practical limitation, as smaller trees are not typically included in forest inventories.

Forest age relates directly to a pine tree’s ability to resist an attack by mountain pine beetles. Older trees,
which are less able to resist attack, are more susceptible to mountain pine beetles. Equations used to
calculate the continuous forest-age factor, which ranges from zero to one, are shown in Table 1 (Wulder
et al. 2004; Riel, pers. comm.).

Table 1. Age factors used in the Shore and Safranyik forest risk model (1992).

Average pine age (years) Age factor calculation
< 40 0
>40to < 80 0.1 + (0.1((age — 40) / 10) "°%)
>80to< 120 1
>120to < 520 1 —(0.05(age — 120) / 20)
> 520 0

The relationship between tree mortality and stand density reflects factors such as tree vigour and
microclimate (wind, light and temperature). Highest pine mortality occurs when stand density is between
250 and 2500 stems per hectare. A density factor ranging from zero to one can be generated using
equations found in Table 2 (Wulder et al. 2004; Riel, pers. comm.).



Table 2. Stand density factors used in the Shore and Safranyik forest risk model (1992).

Stand density (stems per ha of
trees = 7.5-cm diameter at breast

height) Stand density calculation
< 650 0.0824(density / 250)2
> 650 to < 750 1—(0.7(3 — (density / 250))5
> 750 to < 1500 1
> 1500 1/(0.9 + (0.1exp (0.4796((density / 250) —6))))

The location factor is an indicator of climate, and is based on latitude, longitude and elevation in British
Columbia. It represents the relationships between beetles and climate, whereby higher mortality rates are
linked with colder climates. In locations where latitude, longitude, and elevation would suggest that the
temperatures are cooler, the value of L is low; locations associated with warmer climates have higher
values of L. To determine L, a parameter (Y) is calculated using

Y = (24.4 Longitude)- (121.9 Latitude)- (Elevation (m))+(4545.11) eq. 3

and then the location factor is calculated as shown in Table 3.

Table 3. Location factors used in the Shore and Safranyik forest risk model (1992).

Y  Location factor calculation
> 1
< 1/(0.9 + (0.1exp (— 0.8(Y / 250))))

0
0

As with many locations in western Canada, the primary data source available for Morice is the provincial
forest inventory data, which does not include basal area or density information. This necessitates
modification of the input parameters used to model forest susceptibility. To operationalize the forest risk
model, diameter at breast height is often used as a surrogate for density, and basal area is replaced by
percentage of pine in a stand (Wulder et al. 2004). We computed susceptibility using the percent of pine
in each stand, diameter at breast height (converted to a diameter at breast height factor, see Table 4),
and the location and age factors previously outlined.

Table 4. Diameter at breast height (dbh) factors used in the Shore and Safranyik forest risk model (1992).

dbh (cm) dbh factor
< 20 0.1
>20and < 22.5 0.6
>225and < 25 0.8
> 25 1

3.2 Beetle Pressure

The second component of forest risk, beetle pressure (B), is related to both the number and proximity of
infested trees. Originally, beetle pressure was calculated for forest stands. Because we represent the
forest in raster form here, the version presented has been modified for use with grid cells 200 m?in size
(Shore, pers. comm.). Beetle pressure is calculated using a two-step procedure. First, the size of the
infestation is determined based on the number of attacked trees within a pixel and the number of trees



within 3 km of the pixel (Table 5). Then, based on the infestation size and the proximity of the nearest
infestation, beetle pressure is calculated using the equation in Table 6.

Table 5. Grid-based mountain pine beetle infestation size for use in the Shore and Safranyik forest risk model (1992).

Number of infested Number of infested trees inside the pixel
trees outside pixels and
within 3 km
<25 2.51t025 >25
<900 Small Medium Large
900 to 9,000 Medium Medium Large
> 9,000 Large Large Large

Table 6. Beetle pressure calculations for the Shore and Safranyik forest risk model (1992).

BP category Beetle Pressure Calculation
None 0
Small 0.582 — (0.123(nnd/1000))
Intermediate 0.803 — (0.163(nnd/1000))
Large 1.003 — (0.209(nnd/1000))

nnd = nearest neighbour distance; bp = beetle pressure

3.3 Forest Risk

Although susceptibility is a probabilistic measure of forest loss, without information on the beetle
population, it provides only a long-term representation of infestation likelihood. Beetle pressure, which
represents the state of the current mountain pine beetle population, is necessary for characterizing short-
term conditions. Forest risk ranges from zero to one, and is calculated as

Risk =2.74(8'72.7187°977"5 ) (B*72,71827%"% ). eq. 4

We used the probabilistic representation of risk to condition the spatial randomizations. When data are
available for multiple consecutive years, as in this study, risk generated using data in time t can be used
to conditionally randomize data in t+1.

4 Identifying and exploring hot spots

An overview of how the randomization procedures were used to identify locations with significantly high
infestation intensities is provided in Figure 2. To implement the randomization, observed attribute data
and forest risk surfaces were used as input and a randomization algorithm (see Section 4.1) were
chosen. Each set of randomized values was then used to generate an infestation intensity surface for the
study area using a kernel density estimator (see Section 4.2). This procedure was repeated 99 times. An



intensity surface was also generated in the same fashion for the observed data. All intensity surfaces
were represented as raster grids of the same size. For every pixel within the grids, a reference distribution
was generated from the values of the test statistics computed for 99 randomizations of the observed data
plus the value for the observed data. Statistical significance of the test statistic for the empirical data was
determined through comparison with the reference distribution. We labelled statistically significant pixels

as hot spots.

Figure 2. An overview of the procedure for identifying statistically significant cells (hot spots).
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4.1 Randomization Algorithms

We considered four algorithms for implementing conditional randomizations (Table 7). These algorithms
reflect different ways of conceptualizing the data and mountain pine beetle processes. They can be
categorized into theoretical approaches based on whether the randomizations involve individually infested
trees or whether they involve infestation clusters. Using an individual tree approach to randomization, we
conceptualize the infestation data as single trees on the landscape; using the cluster approach, we
consider points to represent groups of infested trees.

In the first algorithm, which uses the individual tree approach, we determine the total number of infested
trees from the observed data, and randomly assign individual trees to the landscape using the condition
of forest risk. It is possible for more than one tree to be allocated to each pixel; the allocation of each tree
is independent of other tree locations. In other words, infested trees are located by an inhomogeneous
planar Poisson process, in which the intensity of infested trees is proportional to risk. The difficulty with
this algorithm is that it ignores known aggregative processes associated with mountain pine beetles.
Mountain pine beetles do not independently select trees to infest; processes of aggregation and
dispersion are required to allow successful infestation, with trees near current infestations having a
greater likelihood of attack.

Table 7. Overview of conditional spatial randomization algorithms used in the study.

Algorithm Approach Allocation Characteristics Advantages Disadvantages
1 Individual Inhomogenous planar Poisson Considers infestation Unrealistic in terms of
Tree process in which the intensity of clusters as individual mountain pine beetle
infested trees is proportional to risk trees processes; frequency

distribution of observed data is
not reproduced

2 Individual Inhomogenous planar Poisson Considers infestation Frequency distributions of
Tree and process in which the presence of  occurrence and size observed data is not
Cluster infestation clusters is proportional proportional to risk reproduced; does not
to risk and infestation size grows adequately reflect mountain
proportional to risk pine beetle processes
3 Cluster Inhomogenous planar Poisson Retains frequency Cluster size is not considered

process in which the presence of  distribution of observed
infestation clusters is proportional data

to risk

4 Cluster Inhomogenous planar Poisson Retains frequency
process in which the presence and distribution of observed
size of infestation clusters is data; more realistic in
proportional to risk terms of beetle

behaviour

The second algorithm combines the individual tree and cluster approaches by first randomly locating the
observed number of clusters. Each cluster is given an initial size of one infested tree. Then the remaining
observed trees (total numbers of trees — number of clusters) are randomly assigned to cluster sites. For
both clusters and trees, the assignment process is random conditioned by forest risk. This algorithm is
consistent with mountain pine beetles first selecting locations according to an inhomogenous planar
Poisson process, in which the occurrence of an infestation cluster is proportional to risk, and then growing
the infestation to a size that is also proportional to risk. If this algorithm is appropriate, it should result in a



distribution of cluster sizes that is similar to that of the observed data. Although several variations of this
algorithm were tested, none were able to replicate the observed cluster size distribution.

The third and fourth algorithms are based on clusters and retain the observed frequency distribution of
cluster sizes. The third algorithm randomly assigns clusters to locations conditioned on forest risk, without
considering the size of the cluster. This is equivalent to an inhomogenous planar Poisson process in
which the cluster occurrence is proportional to risk while the cluster size is independent of risk. However,
this scenario is inappropriate because risk should reflect the likelihood of loss in stand volume,
emphasizing both the presence and magnitude of mountain pine beetle infestations.

The fourth algorithm assigns clusters to locations based on an inhomogenous planar Poisson process in
which both cluster occurrence and size are proportional to risk. To achieve this, the clusters are divided
into n ordered groups (g1, ..., gi, ..., gn) on the basis of size. Similarly, the locations are divided into n
ordered groups (r4, ..., fi, ..., rn) on the basis of magnitude of risk. Then the clusters in group gi are
randomly assigned to locations in the corresponding group, ri. Although this algorithm has a stochastic
component, it generally forces the largest clusters to be in the highest risk locations. The greater the
number of groups, the less the stochastic component is the assignment process. When there is only one
group, this algorithm is equivalent to Algorithm 3. In this study, n was set equal to three based on natural
breaks in the mountain pine beetle-attribute data. Algorithm 4 reflects biological theory on the mountain
pine beetle, which suggests that higher risk areas are likely to have more and larger clusters than are
areas with less risk. Additionally, it has the benefit of retaining the empirical distribution of cluster sizes.
Therefore, we selected Algorithm 4 for operationalizing the conditional randomizations.

4.2 Test Statistic

The test statistic is the estimated value of the intensity of mountain pine beetle infestation at a given
location for the empirical data. These values are obtained using a non-parametric kernel density estimator
(Silverman 1986; Bailey and Gatrell 1995) that enables the observed, aerial point data to be converted to
a raster surface format in which the pixel values represent the number of infested trees per unit area. The
intensity A(z) at a particular location z in a study area A can be estimated by

A.(z)= 1 {Zn:%k(wjyl}zeA eq. 5
p. @)

where 1 is the radius of a disk centered on z, k() is the kernel or a probability density function that is
symmetric around about the origin; zi (i = 1, ..., n) is the location of n observed events; and vyi is the

attribute value at zi. The term p_(z) = L k[(z — u)/ t]du is an edge correction equivalent to the volume

under the scaled kernel centred on z, which lies inside of A (Diggle 1985).

There are three issues that are commonly considered when working with kernel estimators: the type of
kernel k( ), the size of disk radius t, and edge effects. The kernel determines how events within the disk
will be weighted. Here we use a kernel with a quartic distribution function given by

2\2

A 1 3 h
A@=——> 2 1-% | ylzea 6
T(Z) pr(z) h,-Srﬂ.Tz( Tz] yl ‘s eq

where hi is the distance between the point z and the observed event location zi. Although kernel type may
be theoretically important, it does not have a large impact on kernel output.



Kernel estimators are much more sensitive to t, which controls data smoothing. As t increases, so does
the amount of data smoothing (Kelsall and Diggle 1995); if t is too large, data variability will be lost,
whereas if it is too small, trends in data will not be visible. If the study area is a unit square, a good
starting point for determining an appropriate value for t is 0.7n™2. However, kernels often need to be
calculated for several values of t and kernel outputs need to be compared. In this study, we compared
several different kernel sizes, and chose to use a 2-km disc radius, optimizing tradeoffs between detail
and representations of infestation trends.

Kernel estimators may also be affected by edge effects. In this study, edge effects do not have a large
impact, as the area we are studying is large relative to t, and so the edge correction term in equation 5
was not implemented. An additional issue that arises in representing kernel estimator values in a raster
format is the definition of surface cell size. We used a 200-m? grid cell, as the data points represented
circular areas with a maximum diameter of 200 m.

The empirical data was randomized 99 times; each time, the associated intensity surface was computed
using the kernel density estimator. The test statistic, which is the value for a given pixel in the intensity
surface generated from the empirical data, is evaluated by examining its position within the reference
distribution of intensity values composed of its value plus the 99 values for the corresponding pixel in the
surfaces generated using the randomized data. Thus, the smallest significance level that can be used for
statistical testing is 0.01. If the observed value exceeded all 99 values from the randomizations, the
observed value was considered significantly different from chance at the 0.01 significance level and the
pixel was labelled a hot spot.

This procedure was repeated for each annual set of observed data, from 1996 to 2002. The local nature
of the test statistic allows the spatial variation in hot spots to be mapped and visualized.

4.3 Exploring hot spots
1995

Risk
>0

Figure 3. The probability of forest risk calculated for the Morice Timber Supply Area for 1995 and 2001.
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Selective landscape characteristics underlying hot spots were compared with those for the entire study
area. For each sub-area of Morice (north, middle, and south), the relative frequency distributions for pine
age, percent pine, elevation, and aspect underlying hot spots were compared to those for all pine cells
(i.e., all cells that could host infestations). Owing to the large number of possible comparisons, only
selected results representative of the general trends that were observed are presented in the following
section.

5 Results and discussion

5.1 Conditional Randomization

The forest risk surfaces calculated for 1995 and 2001, which were used to condition the randomizations
of the 1996 and 2002 empirical data, respectively, are shown in Figure 3. The probability of forest risk
ranges from zero to 100. For risk to equal zero, susceptibility must also be zero. Because temporal
changes to susceptibility are subtle, annual variations in risk are primarily the result of changes in beetle
location.

Table 8. The percentage of pixels with risk greater than 0 that were hot spots in Morice and its sub-areas, from 1996
to 2002.

1996 1997 1998 1999 2000 2001 2002

Sub-area North 26.95 2291 8.17 19.02 17.89 25.16 6.32
Middle 418 1266 843 732 6.84 1335 3.30
South 0.00 0.00 269 6.13 11.16 9.67 45.08

Total Morice 1043 13.26 717 10.72 11.18 16.28 12.81

Between 1996 and 2002, on average, 11.69% of the locations at risk of infestation in the study area had
intensity values that were significantly greater than those expected by chance (see Table 8). Although the
annual extent of infestation is relatively stable for the entire study area—ranging from 7.17% to 16.28%—
there is more variability in the sub-areas. From the locations of hot spots for 1996 and 2002 shown in
Figure 4, it is apparent that hot spots cluster spatially. Collectively, these results indicate that hot spots
occur most often where the infestation is most active. For example, in 1996 the most extensive incidence
of hot spots was in the north, but by 2002 the maijority of them were found in the south. This reflects
trends in the intensity of mountain pine beetle activity in Morice. High-magnitude infestations initially
occurred in the north and middle sub-areas, but by 2002 the mountain pine beetle population was largest
in the south.
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Figure 4. Number of conditional randomizations less than observed value. Black indicates statistically significant
(a=0.01) locations (hot spots)

5.2 Comparisons with landscape characteristics

Frequency distribution of pine age associated with hot spots in a sub-area becomes more similar to age-
frequency distribution of all pine as infestations progress through time (Figure 5). Most commonly, the
age of forests at hot spot locations are 180 years in the north sub-area, 140 years in the middle sub-area,
and older than 180 years in the south sub-area. Why the middle sub-area is different is unclear, but may
be related to the area’s lower proportion of trees that are 180 years old.

The percentage of pine associated with hot spots varies markedly for each sub-area (Figure 6). In the
north sub-area, hot spots tend to be associated with low percentage pine (30%); in the middle sub-area,
they are more associated with high percentage pine (60% to 70%); in the south sub-area, moderate
percentage pine (30% to 50%) is dominant. In the middle and south sub-areas, as the infestation persists,
the percent pine frequency distributions of hot spots become more similar to the general percent pine
frequency distributions.

When hot spots are compared in terms of elevation, a larger proportion of cells is associated with lower
elevations than for all locations (Figure 7). In the north sub-area, there is no dominant elevation
consistently related to hot spots. In the middle sub-area, hot spots are consistently strongly associated
with elevations of 800 m, whereas in the south sub-area, elevations of 800 to 900 m prevail. There also
seems to be a trend whereby hot spots are associated with lower elevations as latitudes become more
northerly. Although additional data on climate is necessary to investigate further elevation trends, it
appears that as latitudes increase, temperatures warm enough to support large mountain pine beetle
populations occur at lower elevations.

Hot spots show meaningful relationships with aspect only for the south sub-area (Figure 8). In general,
south- and southeast-facing slopes are more related to hot spots, and through time, the frequency
distribution associated with hot spots becomes more similar to the aspect frequency distribution for all
pine locations.
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Figure 5. Distribution of forest age by sub-area in Morice Timber Supply Area
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6 Conclusions

Because little is currently known about the factors that influence spatial patterns of mountain pine beetle
infestations, we used a randomization procedure to undertake an exploratory analysis of observed
patterns to evaluate if the patterns could have arisen by chance in the study area. As landscape
conditions vary over our study area, we felt it was inappropriate to consider chance conditions in terms of
complete spatial randomness; instead, we used an existing model of forest risk—which incorporates both
forest conditions and beetle occurrence—to determine the probability of infestation occurring at a given
location. By representing infestation in terms of intensity surfaces represented in raster format, we were
able to evaluate each location (pixel) in our study area.

Our analysis revealed that, for the years between 1996 and 2002, the percentage of locations in the
Morice study area that could be considered to have infestation values significantly greater than were
expected by chance (a = 0.01) ranged from 7.17% to 16.28%, although more extensive coverage was
apparent when the results were stratified by sub-area. Trends in hot-spot locations and extent reflected
those in the intensity of mountain pine beetle activity in Morice, with the most extensive incidence of hot
spots occurring when and where infestation was most active. This suggests that, although there is a
random component to mountain pine beetle activity, this component becomes less as infestation levels
increase. The presence of a systematic influence on the patterns is also indicated by our finding that hot
spots cluster spatially in all years. In order to explore this further, we examined whether selected forest
and topographic conditions associated with hot spots were distinctive in some way.

In terms of forest conditions, we found that hot spots were distinctive in terms of both age of pine and
percentage pine. In particular, hot spots were associated most often with low values of the latter. This
suggests that further research on the roles these factors play in mountain pine beetle biology is
warranted. However, the distinctive features we observed were neither consistent across the three sub-
areas of our study area nor across the time period examined. This suggests that the presence of
additional local influences, as well as possible differences in the way factors considered interact over
space and time.

In terms of topography, although we found that likelihood of hot spots increased more than was expected
at low elevations in all sub-areas, this tendency increases as latitudes become more northerly. Such
elevations are associated with warmer temperatures that would result in greater susceptibility to mountain
pine beetle infestation. However, aspect was found to be influential only in the south sub-area, where hot
spots are associated with south-facing and southeast-facing slopes, particularly during the initial phase of
infestation. This finding is important because aspect is not often considered as an influence on mountain
beetle infestations. Taken together, the results relating to topography point to the influence of climatic
factors, especially temperature. Clearly, there is need for further investigation of how patterns of
infestations relate to spatial variability in climate over the study area.

In aggregate, there is a general tendency in all sub-areas for hot spots to become less distinctive in terms
of both forest and topographic features over the duration of the infestation. This implies that the impacts
of the features examined become increasingly location specific, that other, as yet unidentified, factors
become important, or that both possibilities may occur.
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It is important to acknowledge that our results depend on several implicit assumptions being satisfied.
The first of these is that the empirical data are reliable. Because of the nature of aerial GPS surveys, we
recognize that there will be some degree of error involving both the locations and sizes of the clusters.
However, such error is ameliorated by representing the data as intensity surfaces generated by kernel
density estimators that have the effect of smoothing the data. Similarly, we recognize that both the forest
inventory data and the digital elevation model are also subject to error. We also assume that the forest
risk model (Shore and Safranyik 1992) used to condition our randomizations is accurate. Although there
is no way of testing this directly, it is the most suitable model currently available for this work. Finally, as
we show, there is more than one way of randomizing the data even when forest risk is known. Clearly,
further work is necessary to determine the sensitivity of our results to all of these influences.
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