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18.1. INTRODUCTION

Process-based models designed to simulate the dynamics of carbon (C) and
nitrogen (N) cycles in northern forest ecosystems are increasingly being used in
concert with other tools to predict the effects of environmental factors on forest
productivity (Mickler et al., 2002; Peng et al., 2002; Sands and Landsberg, 2002;
Almeida et al., 2004; Shaw et al., 2006) and forest-based C and N pools (Seely et al.,
2002; Kurz and Apps, 1999; Karjalainen, 1996). Among the environmental factors,
we include everything from intensive management practices to climate change, from
local to global and from hours to centuries, respectively. Policy makers, including
the general public, expect that reliable, well-calibrated and -documented process-
based models will be at the centre of rational and sustainable forest management
policies and planning as well as prioritisation of research efforts, especially those
addressing issues of global change. In this context, it is important for policy mak-
ers to understand the validity of the model results and uncertainty associated with
them (Chapters 2, 5 and 6). The term uncertainty refers simply to being unsure
of something. In the case of a C and N model users are unsure about the model
results. Regardless of a model’s pedigree, there will always be some uncertainty asso-
ciated with its output. The true values in this case can rarely if ever be determined
and users need to assume the aberration between the model results and the true
values as a result of uncertainties in the input factors as well as the process repre-
sentation in the model. If it is also assumed that the model results are evaluated
against measurements for which the true values are unknown because of measure-
ment uncertainties, it is important to at least know the probability spaces for both
measurements and model results in order to interpret the results correctly. All these
uncertainties are ultimately related to a lack of knowledge about the system under
study and measurement errors of their properties. It is necessary to communicate
the process of uncertainty propagation from measurements to final output in order
to make model results meaningful for decision support. Pizer (1999) explains that
including uncertainty as opposed to ignoring it leads to significantly different con-
clusions in policy making and encourages more stringent policy, which may result
in welfare gains.

18.2. UNCERTAINTY

Different sources of uncertainty are generally recognised in models of C and N
cycles in forest ecosystems, and in biological and environmental models in general
(O'Neill and Rust, 1979; Medlyn et al., 2005; Chapters 4—6):
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Figure 18.1 Concept of uncertainty: the measurement uncertainty of type A and/or B are
propagated through the model and leads to baseline uncertainty (type C) and scenario uncer-
tainty (type D), where the propagation process is determined by the conceptual uncertainty
(type E). (Adapted from Wattenbach et al., 2006.)

e data uncertainty associated with measurement errors, spatial or temporal scales or
errors in estimates;

e model structure, and lack of understanding of the biological processes;

e the plasticity that is associated with estimating model parameters, due to the
general interdependence of model variables and parameters; related to this is the
search to determine the least set of independent variables required to span the
most important system states and responses from one extreme to another, e.g.
from frozen to non-frozen, dry to wet, hot to cold, calm to stormy;

e the range of variation associated with each biological system under study.

18.2.1 Uncertainty in measurements

The most comprehensive definition of uncertainty is given by the “Guide to ex-
press Uncertainties in Measurements — GUM” (ISO, 1995): “parameter, associated
with the result of a measurement, that characterises the dispersion of the values
that could reasonably be attributed to the measurand.” The term parameter may
be, for example, a standard deviation (or a given multiple of it), or the half-width
of an interval having a stated level of confidence. In this case, uncertainty may be
evaluated using a series of measurements and their associated variance (type A, Fig-
ure 18.1) or can be expressed as standard deviation based on expert knowledge or
by using all available sources (type B, Figure 18.1). With respect to measurements,
the GUM refers to the difference between error and uncertainty. Error refers to the
imperfection of a measurement due to systematic or random effects in the process
of measurement. The random component is caused by variance and can be reduced
by an increased number of measurements. Similarly, the systematic component can
also be reduced if it occurs from a recognisable process. The uncertainty in the re-
sult of a measurement on the other hand arises from the remaining variance in the
random component and the uncertainties connected to the correction for system-
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atic effects (ISO, 1995). If we speak about uncertainty in models it is very important
to recognise this concept.

18.2.2 Model uncertainty

The definition of uncertainty in model results can be directly associated with the
uncertainty of measurements. However, there are modelling-specific components
we need to consider. First all models are by definition a simplification of the nat-
ural system. Thus uncertainty arises just from the way the model is conceptualised,
which is defined as structural uncertainty. C and N models also use parameters in
their equations. These internal parameters are associated with model uncertaincy
and they can have different sources, such as long term experiments (e.g. decom-
position constants for soil carbon pools) or laboratory experiments (temperature
sensitivity of decomposition), defined as parameter uncertainty. Both uncertinties
refer to the design of the model and can be summarised as conceptual uncertainty
(type E, Figure 18.1) Models are highly dependent on input variables and para-
meters. Variables are changing over the runtime of a model whereas parameters
are typically constant, describing the initialisation of the system. As both variables
and parameters are model inputs, they are often called input factors in order to
distinguish them from internal variables and parameters (Wattenbach et al., 2006).

If the data for input factors are determined by replicative measurements, they
can be labelled according to the GUM as type A uncertainty. In many cases the set
of type A uncertainty can be influenced by expert judgement (type B uncertainty),
which results in the intersection of both sets (e.g. the gapfilling process of flux data
is as such a type B uncertainty that influences type A uncertainty in measurements).
A subset of type B uncertainty are scenarios. Scenarios (see Chapters 4 and 11) are
assumptions of future developments based on expert judgement and incorporate
the high uncertain element of future developments that cannot be predicted. If we
use scenarios in our models, we need to consider them as a separate instance of un-
certainty (type D, Figure 18.1) because they incorporate all elements of uncertainty
(Wattenbach et al., 20006).

Many methodologies have been used to better quantify the uncertainty of model
parameters. Traditionally, these methodologies include simple trial-and-error cali-
brations, fitting model calculations with known field data using linear or non-linear
regression techniques and assigning pre-determined parameter values, generated
empirically through various means in the laboratory, the greenhouse or the field.
For example, Wang et al. (2001) used non-linear inversion techniques to investigate
the number of model parameters that can be resolved from measurements. Braswell
et al. (2005) and Knorr and Kattge (2005) used a stochastic inversion technique to
derive the probability density functions for the parameters of an ecosystem model
from eddy covariance measurements of atmospheric C. Williams et al. (2005) used
a time series analysis to reduce parameter uncertainty for the derivation of a simple
C transformation model from repeated measurements of C pools and fluxes in a
young ponderosa pine stand, and Dufréne et al. (2005) used the Monte Carlo tech-
nique to estimate uncertainty in net ecosystem exchange by randomly varying key
parameters following a normal distribution.
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Erroneous parameter assignments can lead to gross over- or under-predictions
of forest-based C and N pools. For example, Laitho and Prescott (2004) pointed
out that Zimmerman et al. (1995), using an incorrect C/N ratio (of 30) for
coarse woody debris in the CENTURY (http://www.nrel.colostate.edu/projects/
century/nrel.htm) model, greatly overestimated the capability of a forest system to
retain N. Prescott et al. (2004) also suggested that models that do not parameterise
litter chemistry in great detail may represent long-term rates of leaf litter decay
better than those models which do.

The success or failure of a model depends to a large extent on determining
whether or not expected model outputs depend on particular values used for model
compartment initialisation. Models that are structured to be conservative, by strictly
following the rules of mass, energy and electrical charge conservation, and by de-
scribing transfer processes within the ecosystem by way of simple linear differential
or difference equations, lead to an eventual steady-state solution within a constant
input—output environment, regardless of the choice of initial conditions. The partic-
ular parameter values assigned to such models determine the rate at which the steady
state is approached. One important way to test the proper functioning of model pa-
rameterisation and initialisation is to start the model calculations at steady state, and
then impose a disturbance pulse, or a series of disturbance pulses (harvesting, fire
events, spaced regularly or randomly). This is to see whether the ensuing model cal-
culations will correspond to known system recovery responses, and whether these
calculations will eventually return to the initial steady state. The empirical process
formulation is crucial, in that each calculation step must feasibly remain within the
physically defined solution space. For example, in the hydro-thermal context of C
and nutrient cycling, this means that special attention needs to be given to how
variations of “independent” variables, such as soil organic matter, texture, coarse
fragment content, phase change (water to ice), soil density and wettability, combine
deterministically and stochastically to affect subsequent variations in heat and soil
moisture flow and retention (Balland and Arp, 2005).

18.2.2.1 Structural uncertainty

Process-based forest models vary from simple to complex, simulating many different
process and feedback mechanisms by integrating ecosystem-based process informa-
tion on the underlying processes in trees, soil and the atmosphere. Simple models
often suffer from being too simplistic, but can nevertheless be illustrative and edu-
cational in terms of ecosystem thinking. They generally aim at quickly estimating
the order of magnitude of C and N quantities associated with particular ecosystem
processes, such as C and N uptake and stand-internal C and N allocations. Complex
models can, in principle, reproduce the complex dynamics of forest ecosystems in
detail. However, their complexity makes their use and evaluation difficult. There
is a need to quantify output uncertainty and identify key parameters and variables.
The uncertainties are linked: uncertain parameters imply uncertain predictions and
uncertainty about the real world implies uncertainty about model structure and
parameterisation. Because of these linkages, model parameterisation, uncertainty
analysis, sensitivity analysis, prediction, testing and comparison with other models
need to be based on a consistent quantification of uncertainty.
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Process-based C and N models are generally referred to as being deterministic
or stochastic. These models may be formulated for the steady state (for which inputs
equal outputs), or the dynamic situation, where model outcomes depend on time,
in relation to time-dependent variations of the model input, and in relation to
state-dependent component responses. Models are either based on empirical or
theoretical derivations, or a combination of both (semi-empirical considerations).
Process-based modelling is cognisant of the importance of model structure: the
number and type of model components are carefully chosen to mimic reality and
to minimise the introduction of modelling uncertainties.

Many problems are generated by model structure alone. Two issues can be
related to model structure: (1) mathematical representation of the processes and
(2) description of state variables. For example, several types of models can be used to
represent the effect of temperature variation on processes, including the Q,, model,
the Arrhenius function or other exponential relationships. The degree of uncer-
tainty in the predictions of a model can increase significantly if the relationship
representing the effect of temperature on processes is not based on accurate theo-
retical description (see Kitterer et al., 1998; Thornley and Cannell, 2001; Davidson
and Janssens, 2006; Hill et al., 2006). Most C and N models contain a relatively
simple representation of the processes governing soil C and N dynamics, includ-
ing simplistic parameterisation of the partitioning of litter decomposition products
between soil organic C and the atmosphere. For example, the description of the
mineralisation (chemical, physical, and biological turnover) of C and N in forest
ecosystems generally addresses three major steps: (1) splitting of the soil organic
matter into different fractions, which decompose at different rates, (2) evaluating
the robustness of the mineralisation coefficients of the adopted fractions, and (3)
initialising the model in relation to the fractions (Wander, 2004).

Table 18.1 gives a cross-section of a number of recent models (or sub-
components of models) used to determine litter decomposition rates. The entries in
this table illustrate how the complexity of the C and N modelling approach varies,
even in describing a basic process such as forest litter decomposition. The num-
ber of C and N components in each model ranged from 5 to 10. The number of
processes considered varied from 5 to 32 and the number of C and N parameters
ranged from 7 to 54. The number of additional parameters used for describing the
N mineralisation process, once the organic matter decomposition process is defined,
is particularly interesting; it ranged from 1 to 27.

Most soil C models use three state variables to represent different types of soil or-
ganic matter (SOM), the active, slow and passive pools. Even though it is assumed
that each pool contains C compound types with about the same turnover rate,
this approach remains nevertheless conceptual and merely represents an abstraction
of reality, which may lead to uncertainty in the predictions (type E, Figure 18.1)
(Davidson and Janssens, 2006). Also, these conceptual pools do not directly cor-
respond to measurable pools. In reality, SOM contains many types of complex
compounds with very different turnover rates and amplitude of reaction to change
in temperature (Davidson and Janssens, 2006). There have been many attempts to
find relations between model structure and the real world either by measuring dif-
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Figure 18.2 Carbon content in stems, coarse roots and branches (large wood) predicted by
CENTURY (a) and FOREST-BGC (b) under different scenarios of climate change based on
CO3 increase from 350 to 700 ppm (C) and a gradual increase in temperature by 6.1°C (T).
The control includes the simulation results when the actual conditions remained unchanged.
(Adapted from Luckai and Larocque, 2002, with kind permission of Springer Science and
Business Media.)

terent decomposition rates of different soil fractions (Zimmermann et al., 2007) or
by restructuring the model pools (e.g. Fang et al., 2005).

Complex models have, in theory, the challenge of being more precise and/or ac-
curate than simple models. This being so, data requirements for the initialisation and
calibration of complex models need to be tightly controlled, and need to stay within
the range of current field experimentation and exploration. The degree of model
complexity also needs to be controlled, because this affects the overall model trans-
parency and communicability, as well as affordability and practicality. Also, making
models more complex can increase their structural uncertainty simply by increas-
ing the number of parameters that are uncertain or affecting the correctness of the
description of the processes involved.

This can be illustrated by a study conducted by Luckai and Larocque (2002),
who compared two complex process-based models, CENTURY and FOREST-
BGC, to predict the effect of climate change on C pools in a black spruce (Picea
mariana [Mill.] B.S.P) forest ecosystem in northwestern Ontario (Figures 18.2
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Figure 18.3 Soil carbon content predicted by CENTURY (a) and FOREST-BGC (b) under
different scenarios of climate change based on a CO3 increase from 350 to 700 ppm (C) and
a gradual increase in temperature by 6.1°C (T). The control includes the simulation results
when the actual conditions remained unchanged. (Adapted from Luckai and Larocque, 2002,
with kind permission of Springer Science and Business Media.)

and 18.3). For the prediction of the long-term change in C content in the large
wood and soil pools, both models predicted relatively close carbon content under
scenarios of actual climatic conditions and a gradual increase in temperature, even
though the pattern of change differed slightly. Substantial differences in C content
were obtained when two scenarios of CO, increase were simulated. For the effect
of gradual CO; increase (actual temperature conditions remained unchanged), both
models predicted increases in C content relative to actual temperature conditions.
However, the increase in large wood C content predicted by FOREST-BGC was
far larger than the increase predicted by CENTURY. The scenario that consisted
of a gradual increase in both CO, and temperature resulted in widely different
patterns. While CENTURY predicted a relatively small decrease in large wood
and soil C content, FOREST-BGC predicted an increase. The discrepancies in the
results can be explained by differences in the structure of both models. Both mod-
els include a description of the above- and below-ground C dynamics. However,
CENTURY focuses on the dynamics of litter and soil carbon mineralisation and
nutrient cycling and FOREST-BGC is based on relatively detailed descriptions of
ecophysiological processes, including photosynthesis and respiration. For instance,
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CENTURY considers several soil carbon pools (active, slow and passive) with spe-
cific decomposition rates, while FOREST-BGC considers one carbon pool. Both
models also differ in input data. For instance, while CENTURY requires monthly
climatic data, FOREST-BGC uses daily climatic data.

Modellers must carefully consider the tradeoff between the potential uncertainty
that may result from adding additional variables and parameters and the gain in
accuracy or precision by doing so. It may be argued as well that existing models
of the C cycle are still in their infancy. It is not evident that modellers involved in
the development of process-based models have considered all the tools, including
mathematical development, systems analysis and programming, to deal with this
complexity.

18.2.2.2 Input data uncertainties and natural variation
Data uncertainties are linked to:

e The high spatial and temporal variations associated with forest soil organic matter
and the corresponding dynamics of above- and below-ground C and N pools.
For example, Johnson et al. (2002) noted that soil C measurements from a con-
trolled multi-site harvesting study were highly variable within sites following
harvest, but that there was little lasting eftect of this variability after 1516 years.

e Determining the parameters needed to define pools and fluxes (e.g. forest and
vegetation type, climate, soil, productivity, and allocation transfers), and knowing
whether these parameters are truly time and/or state-independent. Calibration
parameters are, as a rule, fixed within models. They are usually obtained from
other models, derived from theoretical considerations or estimated from the
product of combinatorial exercises.

e Data definitions, sampling procedures, especially those that are vague and open to
interpretation, and measurement errors. For example, Gijsman et al. (2002) dis-
cussed an existing metadata confusion about determining soil moisture retention
in relation to soil bulk density.

e Inadequate sampling strategies, in the context of capturing existing micro- and
macro-scale C and N pool variations within forest stands, and across the land-
scape, at different times of the year. On a regional scale, failure to account for
the spatial variation across the landscape, and the vertical variation with horizon
depth (due to microrelief, animal activity, windthrow, litter and coarse woody de-
bris input, human activity and the effect of individual plants on soil microclimate
and precipitation chemistry), may lead to uncertainty.

e Knowing how errors propagate through the model calculations. For example,
soil C and N estimates of individual pedons are generally determined by the
combination of measurements of C and N concentrations, soil bulk density, soil
depth, and rock content (Homann et al., 1995); errors in any one of these add to
the overall estimation uncertainties.

By definition, process-based models should be capable of reflecting the range
of variation that exists in ecosystems of interest. This is an important issue in for-
est management. In boreal forest ecosystems, quantifying the range of variation
has become a practical goal because forest managers must provide evidence that
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justifies their proposed use of silviculture (e.g. harvesting, planting, tending) as a
stand replacing agent. The range of variation has been defined by Landres et al.
(1999) as “the ecological conditions, and the spatial and temporal variation in these
conditions, that are relatively unaffected by people within a period of time and
geographical area to an expressed goal” Assuming that reasonable boundaries of
time period, geography and anthropogenic influence can be identified, the man-
ager or scientist must then decide which metrics will be used to quantify the range
of variation. Common metrics include mean, median, standard deviation, skew-
ness, frequency, spatial arrangement and size and shape distributions (Landres et
al., 1999). The adoption of the range of variation as a guiding principal of for-
est resource management is well-suited to boreal systems because (1) large, stand
replacement natural disturbances continue to dominate in much of the boreal
forest and (2) such disturbances may be reasonably emulated by forest harvesting
(Haeussler and Kneeshaw, 2003).

The boreal forest is a region where climate change is predicted to significantly
affect the survival and growth of native species. Consequently, policies and social
pressures (e.g. Kyoto Protocol, Certification) may intensify efforts to improve forest
C sequestration by reducing “low-value” wood harvesting. However, high prices
for crude oil and loss of traditional pulp and paper wood markets may do the op-
posite by identifying “low-value” forest biomass as a readily available and profitable
energy source. Quantifying the range of variation therefore becomes practical as
companies and communities responsible for forest management have the obligation
to provide evidence to justify proposed choices and use of harvesting/silviculture as
stand-replacing procedures. However, including variables that account for the range
of variation increases the number and costs of required model calibrations, even for
simple C and N models.

Structurally, process-based models often include a choice for the user — “sto-
chastic or mean values.” Stochastic runs usually require an estimate of the variation
in some aspect of the system of interest. For example, CENTURY has a series of
parameters that describe the standard deviation and skewness values for monthly
precipitation as main drivers of ecosystem process calculations. This allows the
model to vary precipitation, but not air temperature. Another option in CEN-
TURY allows the user to write weather files that provide monthly values for
temperature and precipitation. However, neither of these options allows for sto-
chasticity in stand replacing events that subsequently affect drivers, such as moisture
or temperature, and processes, such as decomposition or photosynthesis.

From a philosophical point of view, it makes sense to build the range of variation
into model function. Boreal systems are highly stochastic, the evidence of which
can be found in the high level of beta and gamma diversity often reported. From
a logistic point of view, however, including variables that account for the range of
variation increases the number of required calibration values and subsequently the
cost of calibrating even a simple model. Data describing the range of variation is
itself hard to come by. An operational definition of the range of variation is therefore
needed, but has not been widely adopted (Ride, 2004).
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18.2.3 Scenario uncertainty and scaling

Models are used at very different temporal and spatial scales, e.g. from daily to
monthly to annual, and from stand- to catchment- to landscape-levels (Wu et al.,
2005). The change in scales in model and input data introduces different levels
of uncertainty. Natural variation is scale-dependent. For example, at the landscape
level, it may be possible to: (1) estimate the range of stand compositions and ages,
and therefore of structures; (2) determine a reasonable range of climatic conditions
(mainly minimum and maximum temperatures and precipitation) for timeframes as
long as a few rotations (i.e. several hundred years); and (3) identify the successional
pathways that reflect the interaction of (1) and (2). This information could then
be used to provide a framework of stand and weather descriptions within which
functional characteristics, such as SOM turnover, growth, and nutrient cycling,
could be modelled. Assuming that we have reasonable mathematical descriptions
of key biological, chemical, and physical processes — such as photosynthesis and
decomposition, weathering and complexation, soil moisture, and compaction — we
could then “nest” our models one inside of another. This approach assumes that
the range of variation in the pools and fluxes normally included in process-based
models is externally driven (i.e. by weather or disturbance) rather than by internal
dynamics.

One example of such a model dealing with the range of variation in scaling is-
sues is the General Ensemble Biogeochemical Modelling System (GEMS), which is
used to upscale C and N dynamics from sites to large areas, with associated uncer-
tainty measures (Reiners et al.,, 2002; Liu et al., 2004a, 2004b; Tan et al., 2005;
Liu et al., 2006). GEMS consists of three major components: one or multiple
encapsulated ecosystem biogeochemical models, an automated model parameterisa-
tion system, and an input/output processor. Plot-scale models such as CENTURY
(Parton et al., 1987) and EDCM (Liu et al., 2003) can be encapsulated in GEMS.
GEMS uses an ensemble stochastic modelling approach to incorporate the uncer-
tainty and variation in the input databases. Input values for each model run are
sampled from their corresponding range of variation spaces, usually described by
their statistical information (e.g. moments, distribution). This ensemble approach
enables GEMS to quantify the propagation and transformation of uncertainties from
inputs to outputs. The expectation and standard error of the model output are given
as:

1 w
E[p(X] = D p(Xy), (18.1)
j=1

. LS (p(Xi;) - E[p(X)])?
5, = /V[p‘;/X,)]z o 3 P H,]) [p( )])’ 18.2)

where W is the number of ensemble model runs, and X;; is the vector of EDCM
model input values for the jth simulation of the spatial stratum i in the study
area, p is a model operator (e.g. CENTURY or EDCM), and E, V, and S are
the expectation, variance, and standard error of model ensemble simulations for
stratum i, respectively.
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18.3. MODEL.VALIDATION

Model validation is an additional source of uncertainty as, among other mech-
anisms, it compares model results with measurements, which are again associated
with uncertainties. Thus the choice of the validation data base determines the
accuracy of the model in further ad hoc applications. However, model valida-
tion remains a subject of debate and is often used interchangeably with verifi-
cation (Rykiel, 1996). Rykiel (1996) differentiated both terms by defining ver-
ification as the process of demonstrating the consistency of the logical structure
of a model and validation as the process of examining the degree to which a
model is accurate relative to the goals desired with respect to its usefulness. Val-
idation therefore does not necessarily consist of demonstrating the logical con-
sistency of causal relationships underlying a model (Oreskes et al., 1994). Other
authors have argued that validation can never be fully achieved. This is because
models, like scientific hypotheses, can only be falsified, not proven, and so the
more neutral term “evaluation” has been promoted for the process of testing
the accuracy of a model’s predictions (Smith et al., 1997; Chapter 2). Although
model validation can take many forms or include many steps (e.g. Rykiel, 1996;
Jakeman et al., 2006), the method that is most commonly used involves comparing
predictions with statistically independent observations. Using both types of data,
statistical tests can be performed or indices can be computed. Smith et al. (1997)
and Van Gadow and Hui (1999) provide a summary of the indices most commonly
used:

mean residual = (Z(y,- - j‘z,-)/n), (18.3)
OOt mean square error = (‘/Z(y,- —-3)?/mn-1-p ), (18.4)
model efficiency = (Z(y,- —50% Y i - y,.)2), (18.5)
variance ratio = Z(ff,- —5,-)2/ Z(yf ~F (18.6)

Several examples of the comparison of predictions with observations or field deter-
minations exist in the literature (Smith et al., 1997; Morales et al., 2005). However,
these mostly involve traditional empirical growth models in forestry as part of the
procedures used to determine the annual allowable cut within specific forest man-
agement units (e.g. Canavan and Ramm, 2000; Smith-Mateja and Ramm, 2002;
Lacerte et al., 2004). In contrast, reports on a systematic validation of C and N cy-
cle models are rare (e.g. De Vries et al., 1995; Smith et al., 1997) and needed. The
validation of C and N cycle models based on the comparison of predictions and
observations has been more problematic than the validation of traditional empirical
growth and yield models. Long-term growth and yield data are available for the
latter because forest inventories, including permanent sample plots with repeated
measurements, have been conducted by government forest agencies or private in-
dustry for many decades. Therefore, process-based model testing has been largely
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based on growth variables, such as annual volume increment (Medlyn et al., 2005).
Although volumetric data can be converted to biomass and C, direct measurements
of C and N pools and flows in forest ecosystems have been collected mainly for
research purposes and historical datasets are relatively rare. Therefore, it is often dif-
ficult to conduct a validation exercise of C and N models based on the comparison
of predictions with statistically independent observations.

So, what options exist for the validation of forest-based C and N cycle mod-
els? The most logical avenue is the establishment and maintenance of long-term
ecological research programs and site installations to generate the data needed for
both model formulation and validation. However, these remain extremely costly
and do not receive much political favour in this day and age. One alternative con-
sists in using short-term physiological process measurements (e.g. Davi et al., 2005;
Medlyn et al., 2005; Yuste et al., 2005), although careful scrutiny should be given
to the long-term behaviour of the models in predicting C stocks in vegetation and
soils (e.g. Braswell et al., 2005). Recent technological advances in micrometeoro-
logical and physiological instrumentation have been significant, such that it is now
possible to collect and analyse hourly, daily, weekly or seasonal data under a variety
of forest cover types, experimental scenarios and environmental conditions at rela-
tively low cost. The data from flux tower studies are just now becoming extensive
enough to capture the broad spectrum of climatic and biophysical factors that con-
trol the C, water and energy cycles of forest ecosystems. The fundamental value of
these measurements derives from their ability to provide multi-annual time series
at 30-minute intervals of: the net exchanges of CO», water, and energy between a
given ecosystem and the atmosphere at a spatial scale that typically ranges between
0.5 and 1 km?®. The two major component processes of the net flux (i.e. ecosys-
tem photosynthesis and respiration) are being collected. Since different ecosystem
components can respond differently to climate, multi-annual time series combined
with ecosystem component measurements are carried out to separate the responses
to inter-annual climate variability. These data are essential for development and
validation of process-based models that could be a key part of an integrated C
monitoring and prediction system. For example, Medlyn et al. (2005) validated a
model of CO, exchange using eddy covariance data. Davi et al. (2005) also used
data from eddy covariance measurements for the validation of their C and water
model, and closely monitored branch and leaf photosynthesis, soil respiration, and
sap flow measurement throughout the growing season for additional validation pur-
poses. The age factor, the effect of which takes so long to study, can be integrated
by using a chrono-sequence approach (using stands of different ages on similar sites
as a surrogate for time), which deals with validating C and N models by comparing
model output with C and N levels and processes in differently aged forest stands of
the same general site conditions. There is also the need to develop new method-
ologies that are able to integrate the above approaches to allow for model validation
at fine and coarse time resolution.
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Figure 18.4 Sensitivity of simulated stem biomass to N content in needles after abscission.
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Sensitivity analysis consists in analysing differences in model response to
changes in input factors or parameter values (see Chapter 5). This exercise is rela-
tively easy when the model contains a few parameters, but can become cumbersome
for complex, process-based models. It is beyond the scope of this paper to review
all the different methods that have been used, but one of the best examples of sen-
sitivity analysis for process-based models may be found in Komarov et al. (2003),
who carried out the sensitivity analyses for EFIMOD 2. These authors showed
that the tree sub-model is highly sensitive to changes in the reallocation of the
biomass increment and tree mortality functions while the soil sub-model is sensi-
tive to the proportion and mineralisation rate of stable humus in the mineral soil.
The model is very sensitive to all N compartments, including the N required for
tree growth, N withdrawal from senescent needles, and soil N and N deposition
from the atmosphere. For example, the prediction of stem biomass is sensitive to
the N concentration in needles after abscission (Figure 18.4), reflecting the degree
to which the plant (tree) controls growth by retention and internal N reallocation
(Nambiar and Fife, 1991). However, although uncertainty surrounds initial stand
density (often unknown), modelled soil C and N and tree stem C (major source
of carbon input to the soil sub-model) are not very sensitive to initial stand density
(Figure 18.5).

This type of uncertainty associated with sensitivity analysis could be addressed
more thoroughly in the future by including Monte Carlo simulations and their
variants. Very few examples of this type of integration for carbon cycle models exist
(e.g. Roxburgh and Davies, 2006). One of the likely reasons is the computer time
required. However, the evolution in computer technology is such that this might
not be a major issue in a few years.

> 18.5. CONCLUSIONS
Many approaches have been developed and used to calibrate and validate
process-based models. Models of the C and N cycles are generally based on sound
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Figure 18.5 Sensitivity of simulated (a) tree biomass carbon, (b) total soil carbon and (¢) total
soil nitrogen by EFIMOD 2 to initial stand density.

mathematical representations of the processes involved. However, as previously
mentioned, the majority of these models are deterministic. As a consequence, they
do not represent adequately the error that may arise from different sources of vari-
ation. This is important, as both the C and N cycles (and models thereof) contain
many sources of variation. Much can be gained by improving and standardising the
use of calibration and validation methodologies both for scientists involved in the
modelling of these cycles and forest managers who utilise the results.

Upscaling C dynamics from sites to regions is complex and challenging. It re-
quires the characterisation of the heterogeneities of critical variables in space and
time at scales that are appropriate to the ecosystem models, and the incorporation
of these heterogeneities into field measurements or ecosystem models to estimate
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the spatial and temporal change of C stocks and fluxes. The success of upscaling de-
pends on a wide range of factors, including the robustness of the ecosystem models
across the heterogeneities, necessary supporting spatial databases or relationships
that define the frequency and joint frequency distributions of critical variables, and
the right techniques that incorporate these heterogeneities into upscaling processes.
Natural and human disturbances of landscape processes (e.g. fires, diseases, droughts
and deforestation), climate change, as well as management practices, will play an
increasing role in defining carbon dynamics at local to global scales. Therefore,
methods must be developed to characterise how these processes change in time and
space.
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