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Background
Satellite remotely sensed 
data may be used to detect 
and map mountain pine 
beetle (Dendroctonus 
ponderosae) red attack 
damage at a variety of 
spatial scales. The accuracy 
of the output red attack 
damage maps should be 
assessed and reported in a 
transparent manner to allow the end user to both apply 
the data appropriately and to compare outputs generated 
using different methods and data sources.

Strategic Importance
An accuracy assessment is the comparison of a generated 
map product to another source of data that represents 
actual conditions on the ground (i.e., ground truth 
or validation data). In the context of mountain pine 
beetle red attack damage, an output map produced from 
the analysis of satellite remotely sensed data may be 
compared to a sample of field survey data (that identifies 
known locations of red attack damage on the ground). 
One of the advantages of using remotely sensed data to 
map red attack damage is the economies of scale that are 
achieved from mapping very large areas; it is expensive 
and often logistically impossible to map such large 
areas using ground surveys. The objective of an accuracy 
assessment is therefore to compare the output map of 
red attack damage generated from the remotely sensed 
data to a small sample of very accurate ground data, to 
determine how reliable the map product is. An accuracy 
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assessment not only indicates to the map user the 
reliability of the map for planning, geospatial analysis, 
and modelling, but also provides the map producer with 
a measure of success for their methods and/or data 
choices. An error matrix is a useful tool for summarizing 
this comparison between the ground truth data and 
the remotely sensed map output. In addition, an error 
matrix facilitates the calculation of accuracy measures, 
enabling a quantitative assessment of the map produced. 
An example of a simple error matrix with two classes (not 
attacked and red attack) is provided in Table 1 and we 
review the contents of the error matrix and the concept 
of accuracy assessment in the next section.

Table 1. Sample error matrix with equal sample sizes per class.

Output Map Generated from  
Satellite Remotely Sensed Data

Classes Not 
attacked

Red 
Attack Sum Producer’s 

Accuracy
Omission 

Error

Ground 
Truth 
Data

Not 
attacked 140 10 150 93% 7%

Red Attack 60 90 150
60%  

95% CI: 
52%-67%

40%

Sum 200 100 300
User’s 
Accuracy 70% 90% Overall Accuracy: 77% 

95% Confidence Interval: 
72% - 81%Commission 

Error 30% 10%

Understanding the Concept  
of Accuracy Assessment
In the example error matrix in Table 1, 300 samples 
were collected during a field survey (distributed equally 
amongst the not attacked and red attack classes). At 
each of these sample locations, one or more not attacked 
or red attack trees were identified by the field crew 
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On the other hand, the user’s accuracy and commission 
error for the red attack class tell us that where we 
are identifying red attack on the map, we are indeed 
identifying red attack on the ground and not confusing it 
with the not attacked class. There may be two practical 
ways for us to interpret this information. Firstly, we know 
that there is opportunity for us to improve our detection 
of red attack damage, and therefore we may want to look 
at altering our methods or trying a different remotely 
sensed data source to increase the amount of damage 
we can detect and map. For example, some of the 
methods used to map red attack damage from remotely 
sensed data rely on the establishment of a threshold, 
which distinguishes the red attack damage from other 
disturbance types. The accuracy assessment may indicate 
that the selected threshold is inappropriate and requires 
adjustment. We may also want to examine the quality of 
the validation data we have selected. Secondly, from an 
operational perspective, a high commission error can be 
very expensive, since deploying ground crews to areas 
that the map says are red attack, but that are not really 
red attack on the ground, is costly. We therefore not only 
want to reduce our omission error, but also want to try 
and maintain a low commission error as well. 

The example above indicates the value of the information 
contained in an error matrix. Reporting only the overall 
accuracy does not provide the full context to the end 
user, particularly in a situation where there are only two 
classes being mapped. We therefore recommend that 
the full error matrix be reported. Table 2 demonstrates 
why this is the case; the producer’s accuracies are 
identical to those reported in Table 1, but in this case, 
we are assuming that the ground truth samples were 
not evenly distributed amongst the classes (two-thirds 
of the ground samples were collected from the not 
attacked class). In this example, we see that although 
our ability to detect red attack damage has not changed 
(our producer’s accuracy is still only 60%), our overall 
accuracy has increased to 82%. Also note that our ability 
to detect the not attacked class has not necessarily 
improved either, but because we have more samples in 
the not attacked class, and since our mapping method 
does a good job of detecting not attacked, our overall 
accuracy result has increased.

Table 2. Sample error matrix with unequal samples sizes per class.

Output Map Generated from  
Satellite Remotely Sensed Data

Classes Not 
attacked

Red 
Attack Sum Producer’s 

Accuracy
Omission 

Error
Not attacked 186 14 200 93% 7%

Red Attack 40 60 100
60%  

95% CI: 
50%-69%

40%

Sum 226 74 300
User’s 
Accuracy 82% 81% Overall Accuracy: 77% 

95% Confidence Interval:  
77% - 86%Commission 

Error 18% 19%

and the position of the tree(s) recorded with a Global 
Positioning System (GPS). The error matrix is arranged 
with the predicted class from the remotely sensed data 
along the top, and the actual class (as indicated by 
the ground truth data) along the left side of the table. 
There are three primary measures of accuracy calculated 
from an error matrix: producer’s, user’s, and overall 
accuracy. Producer’s accuracy tells us what proportion 
of the ground truth samples were correctly labelled 
on the map. In the example in Table 1, 140 of the not 
attacked ground samples were labelled not attacked on 
the output map, resulting in a producer’s accuracy of 
93%. Conversely, only 90 of the 150 red attack ground 
samples were labelled correctly on the map, resulting 
in a producer’s accuracy of 60% for the red attack class. 
The omission error is the corollary measure to producer’s 
accuracy, and tells us what proportion of ground samples 
of a particular class were misclassified on the output 
map product (e.g., 40% of the red attack ground samples 
in Table 1 were not classified as red attack).

User’s accuracy tells us what proportion of the samples 
that are labelled a particular class on the map, are actually 
that class on the ground. In other words, if we were to go 
out in the field with the map and visit every site identified 
as a particular class on the map, what proportion of the 
sites we visited would actually be the class labelled on 
the map? In Table 1, we see that of the 200 samples that 
were mapped as not attacked on the output map, only 140 
were actually not attacked on the ground, resulting in a 
user’s accuracy of 70% for the not attacked class. Similarly, 
90 of the 100 samples mapped as red attack were actually 
red attack on the ground, resulting in a user’s accuracy of 
90%. Commission error is the corollary of user’s accuracy 
and tells us what proportion of the samples assigned to a 
particular class on the output map were actually a different 
class on the ground. In Table 1 we see that only 10% 
of the samples identified as red attack on the map were 
actually not red attack on the ground.

The overall accuracy is a measure of the total proportion 
of samples that were classified correctly by the map, 
regardless of the class. This measure is calculated by 
summing along the diagonal of the error matrix (shaded 
gray in Table 1). In this example, we see that 230 
samples (140 for not attacked and 90 for red attack) 
were mapped correctly, resulting in an overall accuracy of 
77%. The overall accuracy provides a general indication 
of the accuracy of the map if all classes are of equal 
importance. If all classes are not of equal importance, 
the overall accuracy may misrepresent the accuracy 
of the map. In this example, we are more interested 
in how well our map identified areas of red attack 
damage. If we just reported the overall accuracy, we may 
misrepresent our results, since our success at mapping 
the not attacked class has bolstered our measure of 
overall accuracy. The producer’s accuracy provides a 
better indication of how well our approach is working. 
From this we can conclude that our methods are missing 
a substantial amount of the red attack damage (40%). 
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Methods

Selecting Ground Truth Data
The selection of ground truth data is critical to any 
accuracy assessment. Data collected on the ground 
by survey crews are often the most desirable data for 
accuracy assessment; however, since ground data are also 
the most expensive data to collect, they are not always 
the most practical choice. Another consideration is the 
timing of the survey. Ideally, any data used for validation 
would be acquired at the same time as the remotely 
sensed data used to generate the output map, which 
can prove challenging if archived images are used. All 
of these factors invariably lead to some compromise in 
data selection. However, there are viable alternatives to 
ground surveys of red attack damage, and these include 
aerial photography (White et al., 2005) and helicopter 
GPS surveys (Nelson et al., 2006).

Regardless of the data used for validation, several other 
factors must be considered when selecting validation 
samples, the most important of which is sample size. 
We have already demonstrated the importance of using 
equal sample sizes for each class (but acknowledge 
that unequal sample sizes may be preferable for other 
applications). The sample size will affect the confidence 
interval constructed for the accuracy estimates. The 
remote sensing literature suggests a minimum of 50 
samples per class, while we would suggest collecting 
between 50 and 100 samples per class. The more samples 
acquired, the greater confidence the end user will have 
that the accuracy results reported are representative 
of the map product. Therefore, we recommend that the 
confidence intervals are calculated and reported for both 
overall accuracy and the producer’s accuracy for the red 
attack class. Validation samples should also be selected 
to be spatially representative of the study area and must 
be independent of any samples used for calibration of 
the algorithm to classify the remotely sensed data.

A Note on Confidence Intervals
A confidence interval provides an estimated range, 
calculated from the sample data, which is likely to include 
the accuracy estimate. The width of the confidence 
interval provides information on how confident we are in 
our accuracy estimate; the wider the confidence interval, 
the less confidence we have in the accuracy estimate. 
Several confidence interval calculators for proportions 
(i.e., binomial distribution) are available on the internet 
and provide useful approximations for reporting1. In the 
examples presented in Tables 1 and 2, we can see that the 
confidence intervals associated with the overall accuracy 
are the same width, as the overall sample size is the same. 
However, due to the smaller sample size for red attack in 

the Table 2 example, the confidence interval associated 
with the producer’s accuracy for the red attack class is 
wider than in Table 1 – indicating lower confidence in this 
estimate. Therefore, although the producer’s accuracies are 
the same for these two examples, we would have greater 
confidence in the red attack map associated with Table 1. 
Table 3 demonstrates how confidence intervals vary with 
sample size; as the sample size increases, the confidence 
interval narrows. Based on this relationship between 
sample size and confidence interval, map producers can 
judiciously choose how many samples are required to 
provide the desired level of confidence associated with 
their accuracy estimates, given the resources they have 
available for acquiring the samples.

Table 3. The impact of sample size on the width of the  
confidence interval, assuming the same level of accuracy.

Producer’s Accuracy = 85% 
95% Confidence Interval

Sample Size Lower Confidence 
Limit

Upper Confidence 
Limit

500 0.82 0.87
250 0.80 0.89
100 0.77 0.91
75 0.76 0.92
50 0.74 0.93
25 0.63 0.95

Undertaking an Accuracy Assessment
The mechanics of undertaking an accuracy assessment 
are straightforward with modern and widely available GIS 
technology. The simplest approach is to have the ground 
truth data as a point data set, and then overlay these 
points with the map of not attacked/red attack generated 
from processing the remotely sensed data. The result will 
be a collection of points having attributes indicating 
what class the points were assigned from the ground data, 
and what class the points were assigned by the remotely 
sensed output. This information can then be used to 
construct the error matrix. In some cases, the possibility 
of positional error in either the truth data or the output 
map may necessitate the use of buffers or some other 
mechanism to account for spatial error2. Table 4 provides 
a summary of how each of the accuracy measures is 
calculated. Although the terminology we have used 
throughout this communication (e.g., producer’s accuracy) 
is fairly standard in the remote sensing literature, the 
reader may come across different terminology in other 
disciplines and we have provided a summary of these  
(in the context of mountain pine beetle red attack) in 
Table 5. Equipped with these tools, and with the examples 
presented earlier, the reader should be able to critically 
review the results of accuracy assessments associated with 
mountain pine beetle red attack damage detection and 
mapping, and/or conduct an accuracy assessment using 
their own ground truth and map products.

1For an example see: http://faculty.vassar.edu/lowry/prop1.html 2For more detailed discussion on the use of buffers to account 
for positional error see White et al. (2005).



Table 4. Calculating the estimates in an error matrix.

Output Map Generated from  
Satellite Remotely Sensed Data

Classes Not 
attacked

Red 
Attack Sum Producer’s 

Accuracy
Omission 

Error

Ground 
Truth 
Data

Not 
attacked A B A+B A/(A+B) B/(A+B)

Red Attack C D C+D D/(C+D) C/(C+D)
Sum A+C 74 A+D
User’s 
Accuracy A/(A+C) D/(B+D) Overall Accuracy:  

(A+D)/(A+B+C+D)Commission 
Error C/(A+C) B/(B+D)

Table 5. A crosswalk for terminology  
commonly used in accuracy assessment reporting

Alternative Term Which Class? Common Term
True Positive Rate Red Attack Producer’s Accuracy
False Positive Rate Not Attacked Ommission Error
True Negative Rate Not Attacked Producer’s Accuracy
False Negative Rate Red Attack Ommission Error

Precision Red Attack User’s Accuracy
Accuracy Both Overall Accuracy

Summary
An accuracy assessment is considered the best way to 
demonstrate the effectiveness with which different data 
sources and methods may be used to map mountain 
pine beetle red attack damage from remotely sensed 
data. Simply reporting overall accuracy, however, does 
not provide sufficient context to evaluate the map 
product and may misconstrue the accuracy with which 
red attack damage is detected and mapped. Accuracy 
assessments are not difficult to undertake, nor should 
they be difficult to interpret. We have made several 
recommendations regarding accuracy assessment in  
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the context of mountain pine beetle red attack detection 
and mapping and they can be summarized as follows:

• Ground surveys provide the best source of validation 
data for not attacked and red attack; however, 
air photos and helicopter GPS surveys are viable 
alternatives.

• Select validation samples that are spatially 
representative and that are independent from any 
calibration data used for the classification.

• Select at least 50 to 100 samples per class for 
validation. The more samples used, the greater the 
confidence in the accuracy estimates reported.

• Use equal sample sizes for both not attacked and red 
attack classes.

• Report the contents of the full error matrix, not just 
overall accuracy.

• Report 95% confidence intervals for both overall 
accuracy and the producer’s accuracy for red attack.
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