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Abstract: Coregistration and classification errors can seriously compromise direct unit-level (pixel) estimation of land-
cover change from remotely sensed data. A more robust alternative to a pixel-based estimation of change is warranted. In
a proposed method, spatially adjacent pixels are grouped into 3 � 3 clusters, and the change matrix is obtained from cluster-
specific and land cover specific pixel counts at two points in time. The diagonal of a change matrix is estimated by combin-
ing an estimate of the temporal correlation of cover type specific, cluster-level counts with an estimate of the odds ratio
of no change. Off-diagonal elements are least-squares solutions to a set of linear constraints or obtained by iterative
proportional fitting under a model of quasi-independence. In a study with data from five sites, the proposed method
produced less biased estimates on three sites if the mean coregistration error was in excess of 0.3–0.7 pixels and on
four sites if classification accuracy dropped below 0.9.

Résumé : Les erreurs de correspondance géométrique et de classification peuvent compromettre sérieusement l’estimation
du changement des surfaces par une analyse des pixels de l’image obtenue par télédétection. Une alternative plus robuste
à l’estimation du changement pixel-à-pixel est nécessaire. La méthode proposée dans cette étude utilise les pixels voisins
rassemblés par groupes de 3 � 3 pixels pour produire une matrice de changement des histogrammes associés aux groupe-
ments de pixels et aux surfaces pour un point, à deux moments dans le temps. La diagonale de la matrice de changement
est calculée en combinant la corrélation temporelle du dénombrement de pixels par type de surface avec une estimation
des probabilités qu’il n’y ait pas de changement. Les valeurs hors-diagonale sont des solutions par la méthode des moin-
dres carrés d’un ensemble de contraintes linéaires ou sont obtenues par un ajustement proportionnel itératif fait selon un
modèle de quasi indépendance. Dans une étude avec les données de cinq sites, la méthode proposée a produit des estima-
tions moins biaisées sur trois sites si l’erreur moyenne de correction géométrique était supérieure à 0,3–0,7 pixels et sur
quatre sites si l’exactitude de la classification était inférieure à 0,9.

[Traduit par la Rédaction]

Introduction

Estimation of changes in land cover, land use, and land
status is a primary objective in most natural large area natu-
ral resource monitoring activities (Rosenfield et al. 1982;
Smith and Annoni 1999; Anderson 2002; Brown 2002;
Coomes et al. 2002; Corona et al. 2002; Parr et al. 2002).
For a closed population composed of N ultimate units la-
beled to one of K distinct categorical classes at two points
in time, a K � K change matrix n with elements nkk0 ; k; k

0 ¼
1; 2; :::; K provides a succinct and sufficient summary of the
changes that have taken place; nkk0 is the number of units
that changed from k to k0 during the period in question. The
composition of the population at the beginning of the time
period (t1) is given by the row sums of this matrix
ðnk�; i ¼ 1; 2; . . . ; KÞ, where a centre dot in a subscript
stands for a summation over the subscript it replaces. Con-
versely, the composition at the end of the period (t2) is ob-
tained by its column sums ðn�k; k ¼ 1; 2; . . . ; KÞ. With unit-
by-unit observations at each point in time, a direct estima-
tion of the change matrix would follow from a simple count-

ing of units in the K2 change classes. In a sampling context,
the direct estimation would be by a design-consistent
method (Czaplewski and Catts 1992; Green et al. 1992;
Reams and Van Deusen 1999; Magnussen and Köhl 2005).

However, land cover change estimation from remotely
sensed data is riddled by a unique set of problems due to
registration errors when two images are coregistered
(Coppin and Bauer 1996; Townsend et al. 2000; Coppin et
al. 2004), point-spread functions that ‘‘smear’’ information
from one image unit (pixel) across neighbouring units (Col-
lins and Woodcock 1999), image resampling of lost or miss-
ing units (Garcia-Gigorro and Saura 2005), different
atmospheric conditions (Song et al. 1999; Schroeder et al.
2006), topography, differences in viewing and sun angles
(Lunetta and Lyon 2004), and possible classification errors
(Congalton 2001; Pontius and Lippitt 2006). Therefore, a
registered change in a unit can misrepresent the actual
change event. Robust procedures for change estimation
when unit-level data is error prone are warranted. Although
techniques for reducing the bias due to classification errors
are readily available (Stehman and Czaplewski 1998; Cza-
plewski 2003; for example, Van Deusen 1994; Biging et al.
1999), their efficiency depends critically on an accurate esti-
mate of a K2 � K2 confusion matrix, which is rarely avail-
able in practical applications. A locally adaptive threshold
for accepting an apparent change event as ‘‘real’’ has been
proposed for mittigating coregistration errors, but the
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method requires a good estimation of the coregistration error
process to be efficient (Bruzzone and Cossu 2003).

This study proposes a new method for estimating a
change matrix from clustered (pooled) data units as opposed
to a direct unit-by-unit observation of change. It is assumed
that change estimates derived from clusters of spatially ad-
joining units are less sensitive to the above-mentioned prob-
lems than estimates derived from direct unit-level
observations of change. Only cluster-specific counts of the
number of units in each cover type at t1 and t2 would be
used during estimation of a change matrix. Of course, the
loss of information on unit-level change increases dramati-
cally with cluster size. Hence, the clusters must necessarily
be small yet large enough to mitigate the negative impact
of the aforementioned problems. In this study, a cluster size
of 3 � 3 units was chosen as a compromise between in-
trinsically conflicting goals.

In the proposed method, estimates of the elements along
the diagonal in a change matrix ðn̂kkÞ are obtained via a com-
bination of an estimate of the temporal correlation of cluster-
level, cover type specific unit counts and an estimate of the
odds ratio of no change (Magnussen 2004). Off-diagonal ele-
ments are either least-squares solutions to a derived set of

linear constraints on row and column sums or estimated by
iterative proportional fitting (IPF) under a model of quasi-
independence of row and columns (Agresti 1992; Booth et
al. 2005).

The performance of the proposed method is assessed for a
4 � 4 change matrix with data from five sites, but it extends
naturally to a K � K change matrix, albeit with a nontrivial
increase in computational costs. Stochastic coregistration er-
rors in t2 data with means ranging from 0 to 1.1 unit (pixel)
in steps of 0.1 are simulated and their impact on bias is as-
sessed. The impact of multinomially distributed classifica-
tion errors at both times of observation is also assessed in
simulations with the classification accuracy dropping from
1.0 to 0.5 in steps of 0.1.

Methods
An estimate of the change between two points in time (t1

and t2) in a population composed of N discrete units labelled
to one of K distinct land-cover classes is desired. A K � K
change matrix n provides this estimate. A change matrix for
K = 4 is given in Table 1. Unit-level observation of change
events is considered error prone due to either imperfect cor-
egistration, classification errors, or both. For this reason, a
direct estimation based on unit-level counts by change class
may be seriously biased.

Estimation of the change matrix by the proposed method
begins with a complete tesselation of the population into M
size 9 clusters with units in each cluster arranged in a regu-
lar 3 � 3 array. The observed frequencies of unit-level class
change between time t1 and t2 in the ith cluster ðnikk0 Þ are
conveniently arranged in a K � K matrix ni. Because unit-
level observations are considered to be error prone, only
cluster-level counts of the number of units in each class at
t1 and t2 will be used for the estimation of the desired
change matrix. Specifically, the t1 data were
nðiÞ1 ¼ fnðiÞ1� ; . . . ; nðiÞK� g; i ¼ 1; . . . ; M, where nðiÞk� ¼

X
k0
nðiÞkk0 ,

i.e., the kth row sum of ni, is the number of class k units in
the ith cluster at time t1. For the given cluster size, we haveXK

k¼1
nðiÞk� ¼ 9. Time t2 data are nðiÞ2 ¼ fnðiÞ�1 ; nðiÞ�2 ; . . . ; nðiÞ�Kg;

i = 1, 2, . . ., M, where nðiÞk� ¼
X

k0
nðiÞk0k, i.e., the kth column

sum of ni. Sufficient statistics for the state of the population
at t1 and t2 are the vectors of total counts by class
n1 ¼ fn1�; n2�; . . . nK�g, and n2 ¼ fn�1; n�2; . . . n�Kg. The total
sum of observed counts at both t1 and t2 isX

k
n
k�
¼

X
k
n�k ¼ n��. In a census, n�� ¼ N. In a sampling

context, the data would arise from a sampling of m of the
M clusters according to some sampling protocol.

Estimation of diagonal elements
Estimation of the elements along the diagonal in the

change matrix (i.e., nkk ; k ¼ 1; 2; . . . ; K) has been detailed
by Magnussen (2004). Only a brief outline is provided here.
First, Pearson’s correlation coefficient ð�kkÞ of cluster-level
cover type specific counts at t1 and t2�
fnðiÞk� ; nðiÞ�k g ; i ¼ 1; 2; . . . ; M; k ¼ 1; 2; . . . ; K

�
is com-

puted. From these coefficients, a preliminary estimate ~nkk is
obtained by solving the following equation for the unknown
nkk (Murtaugh and Phillips 1998):

Table 1. Change matrix for four land cover classes (1–
4). nkk’ number of units that changed from class k to
class k’ between time t1 and time t2.

Class 1 2 3 4 t1

1 n11 n12 n13 n14 n1�
2 n21 n22 n23 n24 n2�
3 n31 n32 n33 n34 n3�
4 n41 n42 n43 n44 n4�

t2 n�1 n�2 n�3 n�4 n��

Note: nk�, number of units in class k at t1 and n�k, the
number of units in class k at t2; n��, total number of
units (= N in a census).

Table 2. Constraints on change matrix counts nkk’={1,2,3,4} and
k=k’.

Constraint Equation

1 n12 þ n13 þ n14 ¼ n1� � n̂11
2 n21 þ n23 þ n24 ¼ n2� � n̂22
3 n31 þ n32 þ n34 ¼ n3� � n̂33
4 n41 þ n42 þ n43 ¼ n4� � n̂44
5 n21 þ n31 þ n41 ¼ n�1 � n̂11
6 n12 þ n32 þ n42 ¼ n�2 � n̂22
7 n13 þ n23 þ n43 ¼ n�3 � n̂33
8 n14 þ n24 þ n34 ¼ n�4 � n̂44
9 n13 þ n23 þ n14 þ n24 ¼ nð1þ2Þ� � n̂ð1þ2Þð1þ2Þ

10 n12 þ n32 þ n14 þ n34 ¼ nð1þ3Þ� � n̂ð1þ3Þð1þ3Þ
11 n12 þ n42 þ n13 þ n43 ¼ nð1þ4Þ� � n̂ð1þ4Þð1þ4Þ
12 n21 þ n31 þ n24 þ n34 ¼ nð2þ3Þ� � n̂ð2þ3Þð2þ3Þ
13 n21 þ n23 þ n41 þ n43 ¼ nð2þ4Þ� � n̂ð2þ4Þð2þ4Þ
14 n31 þ n32 þ n41 þ n42 ¼ nð3þ4Þ� � n̂ð3þ4Þð3þ4Þ

Note: Constraints 1–8 apply to the original 4 � 4 change matrix. Con-
straints 9–14 are obtained from the six possible 3 � 3 matrices that can be
formed from a 4 � 4 change matrix by joining two of the four classes. Sub-
script (k + k’) indicate that class k and class k’ have been joined.
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½1� �̂
�
nðiÞk� ; n

ðiÞ
�k

�
� nkkn�� � nk�n�k � n�1

��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nk�ðn�� � nk�Þn�kðn�� � n�kÞ

p ;

k ¼ 1; 2; :::; K

A second preliminary estimate �nkk is obtained by finding
an odds ratio of no change for class k

�
�k � nkk

X
k 6¼k0

nk0k0�ðnk00 � � nk0k0 Þ�1ðn�k0 � nk0k0 Þ�1
�

(Fleiss

1981, Ch. 5.3) that maximizes the likelihood of the observed
counts nðiÞt ; i ¼ 1; 2; :::; M; t ¼ 1; 2. The likelihood of max-
imization is detailed elsewhere (Magnussen 2004, eq. 11,
p. 1707). The second prelimary estimate is then

½2� �nkk �
n�� � nk� � n�k þ �̂ kðnk� þ n�kÞ � �̂ k

2ð�̂ k � 1Þ and �̂ k �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2�� þ ð1� 2�̂ k þ �̂ k

2Þn2k� þ 2ð�̂ k � 1Þn�kn�� þ ð1� 2�̂ k þ �̂ k
2Þn2�k

þ2
�
�̂ k � 1þ ð1� �̂ k

2Þn�kn�1
��

�
nk�n��

vuut

where the solution is the one that satisfies
nk�n�k � minðnk�; n�kÞ. Empirical evidence suggests taking
n̂kk as 2

3
~nkk þ 1

3
�nkk (Magnussen 2004, p. 1707).

Estimation of off-diagonal elements
The estimation of the KðK � 1Þ off-diagonal elements

nkk0 jk 6¼k0 k; k
0 ¼ f1; . . . ; Kg proceeds in one of two ways: (i)

a fast IPF of an initial proposal change matrix that has the
above diagonal elements and positive real integers in the
off-diagonal positions that are chosen in such a way that ei-
ther the row sums of the proposed matrix matches those of
n1 or the column sums matches those of n2 (Bishop et al.
1975; Magnussen and Köhl 2005), or (ii) a computationally
expensive least-squares solution (CLS) to a set of derived
constraints on the off-diagonal elements of the K � K
change matrix.

IPF estimation of off-diagonal elements
The IPF approach yields the following estimates:

�nkk0 ¼ ĉk � ĉk0 � ðnk� � n̂kkÞ � ðn�k � n̂kkÞ; k 6¼ k0 where ĉk
and ĉk0 are constants to be estimated by IPF. IPF estimates
satisfy

X
k 6¼k0

�nkk0 � nk� � n̂kk and
X

k 6¼k0
�nkk0 � nk� � n̂kk

with approximation errors (here) less than 0.3%. A change
matrix estimated by IPF is denoted as n̂IPF. Note that IPF

assumes conditional row and column independence for the
off-diagonal element with conditioning on the observed row
and column sums and the estimated diagonal elements. That
is a model of quasi-independence (Agresti and Caffo 2000,
Ch. 8; Booth et al. 2005).

CLS estimation of off-diagonal elements
The fact that diagonal elements of any change matrix can

be estimated quite well is exploited in the computationally
expensive CLS approach to derive an expanded set of linear
constraints on the off-diagonal elements in the change ma-
trix and then finding a least-squares solution to these con-
straints. Given the marginal counts ðnk�; n�kÞ and the above
estimates n̂kk; k ¼ 1; :::; K, we can formulate a trivial set of
2K constraints on the row and column sums of the elements
in the change matrix. For K = 4, the constraints (1–8) are
listed in Table 2. However, they are not very useful for the
estimation of the K2 – K off-diagonal elements, because
their rank is only 2K – 1. For a reasonable estimation, we
would need to increase the number of nonredundant con-
straints. It turns out that we can construct an expanded set
of constraints with a rank higher than 2K – 1. How this is
done is described next and detailed for K = 4.

If we were to estimate a 3 � 3 change matrix, we could

Table 3. Change matrix for Prince George, British Columbia (BC), population (N = 121 104).

Class 1 2 3 4 All (t1)

1 15 047.(12.4) 10 660.(8.8) 1 879.(1.6) 666.(0.5) 28 252.(23.3)
2 5 846.(4.8) 33 255.(27.5) 5 040.(4.2) 3216.(2.7) 47 357.(39.1)
3 3 257.(2.7) 5 468.(4.5) 7 961.(6.6) 1964.(1.6) 18 650.(15.4)
4 3 181.(2.6) 10 977.(9.1) 8 604.(7.1) 4083.(3.4) 26 845.(22.2)
All (t2) 27 331.(22.6) 60 360.(49.8) 23 484.(19.4) 9929.(8.2) 121 104.(100.0)

Note: See Table 1 for a format specification. Percentages of total are given in parentheses. Percentages may not add to
100 due to rounding.

Table 4. Change matrix for Hinton, Alberta (HI), population (N = 129 600).

Class 1 2 3 4 All (t1)

1 69 850.(53.9) 7 117..(5.5) 1885.(1.5) 5 169.(4.0) 84 021.(64.8)
2 64.(<0.1) 1 923.(1.5) 1367.(1.1) 809.(0.6) 4 163.(3.2)
3 8 481.(6.5) 1 549.(1.2) 4373.(3.4) 5 136.(4.0) 19 539.(15.1)
4 8 313.(6.4) 1 010.(0.8) 2066.(1.6) 10 488.(8.1) 21 877.(16.9)
All (t2) 86 708.(66.9) 11 599.(9.0) 9691.(7.5) 21 602.(16.7) 129 600.(100.0)

Note: See Table 1 for a format specification. Percentages of total are given in parentheses. Percentages may not
add to 100 due to rounding.
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obtain a rank five set of constraints for the six unknown off-
diagonal elements after having obtained the above estimates
for the diagonal. The ratio of unknowns (six) to the rank of
the linear constraints (five) is the maximum possible for the
estimation problem at hand. Hence, if we could break the
estimation problem down to a size 3 � 3 problem, our
least-squares solution would be the best possible. Because
any K � K change matrix can be transformed into a 3 � 3
change matrix by keeping the identity and the observed
counts for two of the original K classes and joining the
counts for the remaining K – 2 classes into one aggregate
third class, we could obtain the best possible least-squares
solution for this 3 � 3 change matrix. Only the two off-
diagonal estimates for the two original classes in this ma-
trix would be of interest, of course. A repeat of this proce-

dure for all
K

2

� �
possible 3 � 3 change matrices would

provide the desired estimates for the off-diagonal elements.
The six possible 3 � 3 change matrices that can be formed
this way from a single 4 � 4 change matrix are as fol-
lows:

n33 n34 n3ð1þ2Þ
n43 n44 n4ð1þ2Þ

nð1þ2Þ3 nð1þ2Þ4 nð1þ2Þð1þ2Þ

2
4

3
5

n22 n24 n2ð1þ3Þ
n42 n44 n4ð1þ3Þ

nð1þ3Þ2 nð1þ3Þ4 nð1þ3Þð1þ3Þ

2
4

3
5

n22 n23 n2ð1þ4Þ
n32 n33 n3ð1þ4Þ

nð1þ4Þ2 nð1þ4Þ3 nð1þ4Þð1þ4Þ

2
4

3
5

n11 n14 n1ð2þ3Þ
n41 n44 n4ð2þ3Þ

nð2þ3Þ1 nð2þ3Þ4 nð2þ3Þð2þ3Þ

2
4

3
5

n11 n13 n1ð2þ4Þ
n31 n33 n3ð2þ4Þ

nð2þ4Þ1 nð2þ4Þ3 nð2þ4Þð2þ4Þ

2
4

3
5

n11 n12 n1ð3þ4Þ
n21 n22 n2ð3þ4Þ

nð3þ4Þ1 nð3þ4Þ2 nð3þ4Þð3þ4Þ

2
4

3
5

Counts for joined classes have subscripts ðk þ k0Þ to indicate
that classes k and k0 have been joined (k; k0 ¼ 1; 2; 3; 4).
Joined classes been placed in the third column and third
row of each matrix.

However, estimates obtained in this sequential fashion
would not be simultaneously the best possible in a least-
squares sense. The rank of all constraints considered at
once remains below the number of variables, so we must
find a smaller set of constraints with a maximum rank
(Searle 1982, p 190). Table 2 lists (for K = 4) a set of 14
linear constraints on the off-diagonal elements with the max-
imum possible rank of nine. Many other equivalent rank-
nine sets of constraints can easily be found by simple matrix
operations on the design matrix of the entire set of con-
straints. However, least-squares solutions would be identical.
A change matrix estimated by CLS is denoted as n̂CLS. All
CLS estimates reported here also satisfy some additional
contraints:

n̂CLSkk0 	 0 ;
X

k;k0
n̂
CLS

kk0
¼ n::; and nkk0


 Integer ; k; k0 ¼ f1; 2; . . . ; K ¼ 4g

The latter was achieved by rounding of estimates for the di-

Table 5. Change matrix for Latium, Italy (IT), population (N = 208 675).

Class 1 2 3 4 All (t1)

1 30 771.(14.7) 89.(<0.1) 5117.(2.5) 4 262.(2.0) 40 239.(19.3)
2 2.(<0.1) 1455.(0.7) 80.(<0.1) 12.(<0.1) 1 549.(0.7)
3 3 582.(1.7) 3321.(1.6) 64 977.(31.1) 1 876.(0.9) 73 756.(35.3)
4 630.(0.3) 30.(<0.1) 364.(0.2) 92 107.(44.1) 93 131.(44.6)
All (t2) 34 985.(16.8) 4895.(2.4) 70 538.(33.8) 98 257.(47.1) 208 675.(100.0)

Note: See Table 1 for a format specification. Percentages of total are given in parentheses. Percentages may not add
to 100 due to rounding.

Table 6. Change matrix for Sussex, New Brunswick (NB), population (N = 181 068).

Class 1 2 3 4 All (t1)

1 25 528.(14.1) 765.(0.4) 78.(<0.1) 2 387.(1.3) 28 758.(15.9)
2 668.(0.4) 56 414.(31.2) 4 931.(2.7) 7 343.(4.1) 69 356.(38.3)
3 120.(0.1) 497.(0.3) 21 696.(12.0) 1 636.(0.9) 23 949.(13.2)
4 336.(0.2) 376.(0.2) 251.(0.1) 58 042.(32.1) 59 005.(32.6)
All( t2) 26 652.(14.7) 58 052.(32.1) 26 956.(14.9) 69 408.(38.7) 181 068.(100.0)

Note: See Table 1 for a format specification. Percentages of total are given in parentheses. Percentages may not add to 100
due to rounding.
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agonal and by integer least squares solutions for off-diagonal
elements.

CLS-fitted off-diagonal elements in rows viz. columns
with large values of nðtÞk � n̂kk; t ¼ f1; 2g; k = {1, 2, . . ., K}
will have the smallest relative error. Hence, the relative er-
ror of an element in a row viz. a column with a small value

of nðtÞi � n̂ii could be large. A weighted least-squares solu-
tion with weights inversely proportional to, for example,
nðtÞi � n̂ii would address this error-allocation problem. Only
the unweighted option is pursued here.

Performance assessment
In five case studies with unit-level land cover change data

in four land-cover classes (K = 4), the best (least biased) of
the proposed estimators n̂IPF and n̂CLS are compared with
an estimate n̂ obtained by a direct counting of unit-level

change events
�
nðiÞkk0 ; k; k

0 ¼ 1; 2; 3; 4; i ¼ 1; 2; :::; m
�

. The

hypothesis that n̂CLS provides a better fit to n̂ than n̂IPF was
tested with partial w2 test statistics
�̂2ðn̂ IPF � n̂Þ��2ðn̂CLS � n̂Þ with 2 degrees of freedom and
adjusted for the effect of clustering (Brier 1980; Magnussen
and Köhl 2006). The hypotheses that both n̂IPF and n̂CLS

provide a better fit to n̂ than an estimate n̂0 obtained under
the null model of row and column independence ði:e:; n̂0 ¼
n̂1 � n̂2Þ were also tested with partial w2 tests.

To illustrate the performance of the proposed estimator(s)
and to facilitate Monte Carlo simulations of unit-level errors
of coregistration and classification (see next section), the as-
sessment is carried out with data from 200 replications of
simple random sampling of m = 200 3 � 3 clusters of unit-
level change data from five sets of two coregistered cover-
type maps. Linear regressions of n̂kk0 on nCLSkk0 ðor nIPFkk0 Þ are
used to illustrate bias and lack of fit in individual replications.

Error-prone unit-level data motivated the proposed estima-
tor(s). Because n̂IPF and, in particular, n̂CLS adds nontrivial
computational costs, they must be justified by expected bene-
fits. With this objective, the performance of the better of the
two estimators is demonstrated in applications when unit-
level data are corrupted by simulated coregistration errors
viz. classification errors. The data used are (i) the original
data, (ii) the original data subject to simulated coregistration
errors at time two, and (iii) the original data subject to inde-
pendently simulated classification errors at time t1 and t2. For
the second and third data sets, various levels of mean core-
gistration errors and classification errors are simulated.

Monte Carlo simulation of coregistration and
classification errors

Coregistration errors in t2 data arise when the t2 image of
the remotely sensed population units is coregistered to the t1
image. Eleven levels of the mean coregistration error for t2
data were simulated as random events at the cluster level.
With a probability of P0, the ‘‘true’’ t2 data in a 3 � 3 clus-
ter had no coregistration error ðP0 ¼ 0; 0:1; :::; 0:9; 1:0Þ.
With a probability of P1 ¼ 2

3
ð1� P0Þ, the t2 location of a

Table 7. Change matrix for Selangor, Indonesia (SE), population (N = 166 464).

Class 1 2 3 4 All (t1)

1 15 922.(9.6) 3 742.(2.2) 12 813.(7.7) 6 311.(3.8) 38 788.(23.3)
2 3 472.(2.1) 9 626.(5.8) 10 323.(6.2) 1 0398.(6.2) 33 819.(20.3)
3 2 770.(1.7) 5 298.(3.2) 38 709.(23.3) 22 423.(13.5) 69 200.(41.6)
4 1 095.(0.7) 1 566.(0.9) 6 881.(4.1) 15 115.(13.5) 24 657.(14.8)
All (t2) 23 259.(14.0) 20 232.(12.2) 68 726.(41.3) 54 247.(32.6) 166 464.(100.0)

Note: See Table 1 for a format specification. Percentages of total are given in parentheses. Percentages may not add to
100 due to rounding.

Table 8. Absolute bias of estimated change matrices.

Site Abolute bias ðn̂CLSÞ Absolute bias ðn̂IPFÞ
BC

1:5 0:8 0:5 �0:2
1:4 3:2 1:5 0:3

0:6 0:3 2:0 1:0

0:4 2:1 0:0 1:6

2
664

3
775

� � � 3:2 1:2 0:5
1:6 � � � 0:5 1:2

0:9 0:2 � � � 0:9

1:1 0:1 2:7 � � �

2
664

3
775

HI

0:7 0:2 0:4 0:5

0:8 0:2 0:5 0:1

0:2 0:4 1:1 1:3
1:3 0:5 0:1 2:0

2
664

3
775

� � � 1:5 0:6 0:1

1:2 � � � 0:8 0:2

0:2 0:9 � � � 1:8
1:9 0:7 0:8 � � �

2
664

3
775

IT

1:2 0:3 1:5 0:7
0:0 0:1 0:0 0:2

1:6 1:1 1:2 0:6

0:4 0:9 0:3 0:2

2
664

3
775

� � � 1:5 0:7 1:1
0:1 � � � 0:0 0:0

1:1 1:4 � � � 1:4

0:1 0:1 0:2 � � �

2
664

3
775

NB

2:1 1:6 0:4 0:1

0:8 1:9 1:4 0:3

0:9 0:4 1:8 0:5
0:4 0:2 0:1 0:3

2
664

3
775

� � � 0:9 1:1 0:2

1:6 � � � 0:6 0:3

0:5 0:9 � � � 0:5
0:0 0:1 0:2 � � �

2
664

3
775

SE

0:3 0:9 1:0 0:5
1:0 1:1 0:3 0:2

1:2 1:5 1:2 0:9

0:1 0:5 0:1 0:2

2
664

3
775

� � � 0:7 1:1 2:2
0:8 � � � 0:1 0:4

1:0 0:3 � � � 2:0

0:1 0:0 0:3 � � �

2
664

3
775

Note: The bias is ðn̂M � n̂Þ=ðm� 9Þ � 100% where n̂ and
n̂M are the means in 200 replications of m = 200 samples of
3 � 3 clusters, M = {CLS, IPF}. Bias of diagonal elements
are identical in the two models and only shown for n̂CLS.
Sites are as follows: BC, Prince George, British Columbia;
HI, Hinton, Alberta; IT, Latium, Italy; NB, Sussex, New
Brunswick; SE, Selangor, Indonesia.
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3 � 3 cluster was shifted one column to the left (right) or
one row up (down) from its true position. The four direc-
tions of the shift were equally probable. With a probability
of P2 ¼ 1

3
ð1� P0Þ, the location of a cluster was shifted one

column to the left (right) and one row up (down) relative
to its true location. Again, the four possible shifts were
equally probable. Accordingly, the mean coregistration er-
ror was varied from 0 to approximately 1.14 units in steps
of &0.11. Note that, for a 3 � 3 cluster, the proportion of
units that change cluster membership because of a registra-
tion error ranges from 0 ðP0 ¼ 1:0Þ to � 0:41ðP0 ¼ 0Þ.
The assumed robustness of the proposed estimator(s) rests
on these lower rates of units in error. For each level of P0

and each of 200 replicates, the estimate based on a direct
unit-level counts of change events ðn̂Þ and the estimate
from the proposed estimator n̂CLSðn̂IPFÞ were compared
with the true ‘‘error-free’’ estimate in terms of mean abso-
lute bias (MAD). Registration errors in each of the 200
replications of a random sample of 200 clusters were dis-
tributed at random across clusters.

Classification errors were assumed to be equal at both
times of observation and to be independent both temporally
and spatially. Given the true class k (k = 1, 2, 3, 4) of a unit,
the probability that the classifier would classify the unit to
class k0ðk0 ¼ 1; 2; 3; 4Þ is PðClassif: ¼ k0jTrue ¼ kÞ ¼ pk0 jk.
The following symmetric 4 � 4 confusion matrix P was used:

Fig. 1. Scatterplot of n̂CLSkk0 versus n̂kk0 in 200 replicated samples of size m = 200 in Prince George, British Columbia (BC).

Fig. 2. Scatterplot of n̂CLSkk0 versus n̂kk0 in 200 replicated samples of size m = 200 in Hinton, Alberta (HI).
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½3� P ¼

True ¼ 1 True ¼ 2 True ¼ 3 True ¼ 4

Classif: ¼ 1 pkjk
17

24
1� pkjk
� � 5

24
1� pkjk
� � 2

24
1� pkjk
� �

Classif: ¼ 2
17

24
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� �
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24
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24
1� pkjk
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Fig. 3. Scatterplot of n̂CLSkk0 versus n̂kk0 in 200 replicated samples of size m = 200 in Lambia, Italy (IT).

Fig. 4. Scatterplot of n̂CLSkk0 versus n̂kk0 in 200 replicated samples of size m = 200 in Sussex, New Brunswick (NB).
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The value of pkjk is the classification accuracy (Congalton
2001), and it was varied from 0.5, 0.6,. . ., 0.9 with the value
fixed during one simulation of 200 replications of 200 ran-
domly sampled clusters. For each unit in a cluster, the clas-
sified class given the true class was determined by a random
draw from a multinomial distribution with the conditional
probabilities as in eq. 3 for a given value of pkjk. Compen-
sating errors (errors in opposite direction) are the main fac-
tors contributing towards the presumed robustness of the
proposed estimator.

Five examples
Remotely sensed data from five large forested areas repre-

senting different regional landscapes with contrasting cover-
type composition and rates of presumed change are used for
demonstrating the performance of the proposed alternative
estimator(s) of a change matrix when data are potentially er-
ror prone. The sites are near Prince George, British Colum-
bia (BC); Hinton, Alberta (HI); Latium, Italy (IT); Sussex,
New Brunswick (NB); and Selangor, Indonesia (SE). The
data domains vary in size from 109 km2 (BC) to 188 km2

(IT). Cover-type classified Landsat-7 ETM+ images at two
time-points 5–10 years apart (BC, HI, and SE) or a combi-
nation of a classified Landsat-7 ETM+ and a contemporary
tessellated forest inventory cover-type map (IT and NB) fur-
nished the change data. Although the changes in the latter
two cases are dominated by disagreement between two clas-
sification processes, they were nevertheless deemed to
mimic land-cover changes over an unspecified period of
time. Further details on the data can be found in Magnussen
(2004) or Magnussen et al. (2000). The original cover-type
classes were reduced to a K = 4 class system by merging
the most similar classes. Population sizes in ultimate units
(a Landsat pixel of approximately 30 m � 30 m) were
121 104 (BC), 129 600 (HI), 208 675 (IT), 181 068 (NB),
and 166 464 (SE). Population change matrices n as derived
by counting of unit-level change events are given in Ta-
bles 3–7. The proportion of units in a change class varied

from a low of <0.1% to a high of 54% (HI class 1 � 1).
Overall, between 14% (NB) and 52.3% (SE) of the popula-
tion units changed class between the two (implied) points in
time.

Results

Comparing bias of n̂CLS and n̂IPF

Estimation of off-diagonal elements by IPF under the
model of quasi-independence is orders of magnitude faster
than with CLS. However, in two of the five examples (BC
and HI), the mean absolute bias of off-diagonal elements in
n̂IPF was about 1.5 times larger than in n̂CLS (Table 8). In
the three remaining cases (IT, NB, and SE), the average per-
formance was about equal (estimates were within 5% of
each other). On two of these three sites (IT and NB), both
estimators performed poorly (relative bias > 20%). Partial
w2 test of the difference in goodness of fit confirmed that
the IPF fit was significantly poorer than the CLS fit in BC
and HI (P values under the hypothesis of equal goodness of
fit were 0.002 and <0.001, respectively). No significant dif-
ference emerged on sites IT (P̂ ¼ 0:26), NB (P̂ ¼ 0:55), and
SE (P̂ ¼ 0:18). Unless prior knowledge exists to justify a
quasi-independence model, it appears that the cumbersome
CLS model provides a better fit than IPF when the off-diagonal
elements are subject to nontrivial row by column interactions.
Both n̂IPF and n̂CLS were significantly closer to the actual
change matrix than an estimate based on a model of indendent
rows and columns (no interaction). P values of partial w2 statis-
tics were consistently 0.002 under the hypothesis of equal
goodness-of-fit (Lloyd 1999).

Detailing the performance of n̂CLS

The bias of n̂CLS estimates was in most cases nontrivial
(Table 8). Diagonal elements were generally estimated with
less bias than off-diagonal elements, a trend that is espe-
cially clear on a relative scale where the bias of diagonal el-
ements, with the exception of BC, was 2–10 times lower

Fig. 5. Scatterplot of n̂CLSkk0 versus n̂kk0 in 200 replicated samples of size m = 200 in Selangor, Indonesia (SE).
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than for the off-diagonal change events. Relative bias of es-
timated diagonal elements was in the range of 5% to 10%.

Scatterplots in Figs. 1–5 of paired elements of n̂CLS and n̂
across 200 replications of the 200 randomly sampled clus-
ters give additional insight to the performance of CLS.
There are four plots per site: one for the diagonal element
closest to the mean of the four diagonal elements and three
for the off-diagonal elements with the highest true counts
ðnkk0 Þ. In general, the ability to predict an off-diagonal ele-
ment improves as nkk0 increases. For the diagonal elements,

the relationship was typically linear with R̂
2

adj = 0.91–0.97
yet with a persistent bias. For the off-diagonal elements, the
scatterplots suggest at linear relationship with a correlation

that varied from poor (R̂
2

adj < 0.3) to fairly strong (R̂
2

adj =
0.7–0.9) and, in most cases, a persistent bias.

Performance of n̂CLS when data is error prone
Coregistration errors in data from t2 make the direct esti-

mate (n̂) biased and also increased the bias of n̂CLS. The
bias of direct estimates increased with the magnitude of the
mean coregistration error at a rate that was three to four
times higher than seen in n̂CLS (Fig. 6). In other words,
n̂CLS is less sensitive to coregistration errors, as expected.
As a result, coregistration errors could increase to a point
where the mean (absolute) bias in n̂ would be larger than in
n̂CLS. In BC, this happended for the off-diagonal elements at

Fig. 6. Mean absolute bias (MAD) of elements of n̂CLS and n̂ (direct) plotted against mean coregistration error (unit: pixel of 30 m �
30 m). See Table 8 for site abbreviations.
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a mean coregistration error of 0.94 units (pixels), whereas
the trend for the diagonal elements suggests that the cross-
over point might be at an unusual high coregistration error
of 1.6 units (estimate obtained by linear extrapolation). For
HI, the break-even point was at 0.5 for the diagonal ele-
ments and at 0.7 for the off-diagonal elements. Correspond-
ing points for IT, NB, and SE were estimated at 0.3 and 0.4,

0.5 and 0.4, and 0.7 and 2.99 (by linear extrapolation), re-
spectively. Coregistration errors beyond 1.1 should be rare
in practice.

A less than perfect classification accuracy generates a
serious bias in both the direct estimates (n̂) and in n̂CLS

(Fig. 7). Bias of the diagonal elements increased at a rate
that was three to six times higher than in off-diagonal ele-

Fig. 7. Mean absolute bias (MAD) of elements of n̂CLS and n̂ (direct estimate) plotted against classification accuracy (%). See Table 8 for
site abbreviations.
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ments. This was expected due to the high proportion of units
(pixels) with no change on all five sites (from 0.5 in BC and
SE to 0.8 and 0.9 in IT and NB, respectively). A classifica-
tion error in these units generates a change event where
none occurred. The rate at which bias increased as classifi-
cation accuracy decreased was about 1.5 times higher in n̂
than in n̂CLS. A critical accuracy level around 0.9, below
which n̂CLS would be less biased than n̂, emerged in four of
the sites (HI, IT, NB, and SE) but not in BC. On three sites
(HI, IT, and NB), the differential in favor of n̂CLS appears
important at accuracies <0.80.

Discussion and conclusions

A model-based estimation of a change matrix from
cluster-level counts of units per class at two points in time
is, of course, less accurate and less efficient than a direct es-
timation from observed unit-level change events. It is clear
that pooling of unit-level information of change comes at a
considerable price in terms of bias in estimates and a large
increase in computationally costs of estimation. The pro-
posed ‘‘robust’’ method of estimation is clearly only an op-
tion when unit-level change is seriously compromised by
errors. To minimize the loss of change information, the
formed data clusters should be small. The choice of a 3 � 3
cluster was a compromise between conflicting goals. A
larger cluster would be more robust against errors of the
kind studied here but also exponentially increases the num-
ber of possible change matrices with row and column sums
identical to those observed for a single cluster, an increase
that adversely affects the estimates. A smaller (e.g., 2 � 2)
cluster would be less robust against registration and classifi-
cation errors without offering any significant computational
advantages.

Although the IPF approach to estimation of off-diagonal
elements under the quasi-independence model for the
change matrix (Booth et al. 2005) reduces the computational
burden significantly — without seriously compromising the
results — the computation remains an issue. When diagonal
elements can be assumed to account for the majority of the
row � column interactions in a change matrix (Von Eye and
Spiel 1996), the IPF procedure is preferable. The proposed
estimation procedure performed poorly for rare change
events, as expected. Few events to ‘‘model’’ invariably pro-
duce poor estimates (Venette et al. 2002; Christman 2000;
Thompson 1992). One might consider collapsing cells with
low counts, as is often done in analysis of contingency ta-
bles, and then recover the estimates for these cells by some
form of postcalibration (Kateri and Iliopoulos 2003; Agresti
1992).

The Monte Carlo simulations confirmed the sensitivity of
unit-level change estimates derived directly from remotely
sensed data to errors of coregistration and classification (Lu-
netta and Elvidge 1999; Bruzzone and Cossu 2003). Mean
coregistration errors in the range of 0.3–1.1 units (pixels)
are not uncommon even after concerted efforts have been
invested in the coregistration process (Coulter et al. 2003;
Bruzzone and Cossu 2003; Toutin 2004; Armston et al.
2002). Classification accuracies of 0.7–0.9 are commonly re-
ported for Landsat ETM+ derived forest cover type maps
(Foody 2002; Holmgren and Thureson 1998). Errors of this

magnitude generate a serious bias in change estimates, and
every effort must be made to mittigate their negative effects.
This may include bias reduction by calibration with a known
confusion matrix or adopting advanced image-analytical
procedures to reduce the mean coregistration error (Coulter
et al. 2003; Bruzzone and Cossu 2003). In practice the two
types of errors would co-occur and interact in a complex
way. The examples illustrate that the impact is site specific,
depending on the distribution of land cover patch sizes and
the distribution of change events.

The proposed ‘‘robust’’ procedure was, as expected, less
sensitive to coregistration and classification errors. It pro-
duced less biased results on three (four) of five sites when
the mean coregistration error exceeds 0.3–0.5 or the classifi-
cation accuracy dropped below 0.9. Because the perform-
ance improves as the error level increases, a point may be
reached where, despite the computational costs, the pro-
posed method does become an option to be considered.
Change estimation from two independently produced vec-
tor-formatted land-cover maps (Stehman 2005; Kleinn et al.
2002; Biging et al. 1999) is probably the application domain
that would qualify the most.

Improvements of the proposed estimation procedure are
needed to reduce the bias in the estimates. A reliable estima-
tor of the variance of an estimate is also needed. Although a
bootstrap estimate of error can be obtained by fairly conven-
tional means (Shao 1996), the computational burden is an is-
sue

The amount of computational work needed to increase, by
only 2, the rank of the linear constraints on the elements of
the change matrix seems excessive. An empirical Bayes’ ap-
proach with a Dirichlet prior (Bishop et al. 1975; Congalton
2001) on the change matrix and pseudodata in the form of
all possible cluster-specific change matrices consistent with
the observed counts nðiÞ1 and nðiÞ2 ; i ¼ 1; 2; :::; m deserves
an investigation. Adopting a Bayesian framework would
also make an estimate of the variance of estimates straight-
forward.
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