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Abstract: Forest inventory data often provide the required base data to enable the large 
area mapping of biomass over a range of scales. However, spatially explicit estimates of  
above-ground biomass (AGB) over large areas may be limited by the spatial extent of the 
forest inventory relative to the area of interest (i.e., inventories not spatially exhaustive), or 
by the omission of inventory attributes required for biomass estimation. These spatial and 
attributional gaps in the forest inventory may result in an underestimation of large area 
AGB. The continuous nature and synoptic coverage of remotely sensed data have led to 
their increased application for AGB estimation over large areas, although the use of these 
data remains challenging in complex forest environments. In this paper, we present an 
approach to generating spatially explicit estimates of large area AGB by integrating AGB 
estimates from multiple data sources; 1. using a lookup table of conversion factors applied 
to a non-spatially exhaustive forest inventory dataset  (R2 = 0.64; RMSE = 16.95 t/ha), 2. 
applying a lookup table to unique combinations of land cover and vegetation density 
outputs derived from remotely sensed data (R2 = 0.52; RMSE = 19.97 t/ha), and 3. hybrid 
mapping by augmenting forest inventory AGB estimates with remotely sensed AGB 
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estimates where there are spatial or attributional gaps in the forest inventory data. Over our 
714,852 ha study area in central Saskatchewan, Canada, the AGB estimate generated from 
the forest inventory was approximately 40 Mega tonnes (Mt); however, the inventory 
estimate represents only 51% of the total study area. The AGB estimate generated from the 
remotely sensed outputs that overlap those made from the forest inventory based approach 
differ by only 2 %; however in total, the remotely sensed estimate is 30 % greater (58 Mt) 
than the estimate generated from the forest inventory when the entire study area is 
accounted for. Finally, using the hybrid approach, whereby the remotely sensed inputs 
were used to fill spatial gaps in the forest inventory, the total AGB for the study area was 
estimated at 62 Mt. In the example presented, data integration facilitates comprehensive 
and spatially explicit estimation of AGB for the entire study area.  

Keywords: above-ground biomass, forest, remote sensing, GIS, Landsat 
 

1. Introduction  

Forest biomass is defined by [1] as the above-ground portion of live trees per unit area. In addition 
to widespread use in carbon budget models [2, 3, 4, 5, 6], biomass estimates are important for a broad 
range of applications, including: characterizing forest conditions and processes [7, 8, 9, 10]; estimating 
forest productivity [11, 12, 13, 14]; modeling impacts of fire and other disturbances [15, 16, 17, 18]; 
and, for modeling the environmental and economic consequences of energy production from biomass  
[19, 20, 21, 22]. Monitoring changes to biomass over time has also emerged as an important activity 
for many of these aforementioned applications [23, 24, 25]. 

Biomass estimates may range from local to global scales, and for some regions, particularly tropical 
forest regions, there are large variations in the estimates reported in the literature [5, 26, 27, 28, 29].  
Global and national estimates of forest above-ground biomass (AGB) are often aspatial estimates, 
compiled through the tabular generalization of national level forest inventory data  
[1, 30, 31, 32, 33, 34, 35, 6]. Methods and data sources for generating spatially explicit large-area 
AGB estimates have been the subject of extensive research [8, 25, 28, 36, 37, 38, 39].  

1.1 Biomass Estimation Methods 

A variety of approaches and data sources have been used to estimate forest above ground biomass 
(AGB). A comprehensive review of remote sensing-based estimates of AGB has been completed, 
categorized by data source: (i) field measurement; (ii) remotely sensed data; or (iii) ancillary data used 
in GIS-based modeling [40]. Estimation from field measurements may entail destructive sampling [21, 
41] or direct measurement [42] and the application of allometric equations [43, 44, 45]. Allometric 
equations estimate biomass by regressing a measured sample of biomass against tree variables that are 
easy to measure in the field (e.g., diameter at breast height, height). 607 different equations have been 
identified in the literature for estimating AGB for tree species growing in Europe [46]. Although 
equations may be species- or site-specific, they are often generalized to represent mixed forest 
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conditions or large spatial areas [11, 47].  Biomass is commonly estimated by applying conversion 
factors (biomass expansion factors) to tree volume (either derived from field plot measures or forest 
inventory data) [1, 2, 11, 30, 32, 48]. Relationships between biomass and other inventory attributes 
(e.g., basal area) [49] have also been reported. The use of existing forest inventory data to map large 
area tree AGB has been explored [8]; conversion tables were developed to estimate biomass from 
attributes contained in provincial forest inventory data, including species composition, crown density, 
and dominant tree height. Guidance on the selection, development, and application of appropriate 
biomass factors and allometric equations for large-scale biomass estimation was provided [29]. 

Remotely sensed data have become an important data source for biomass estimation. The remotely 
sensed data types and approaches used for biomass estimation have been summarized  [40, 50]. 
Generally, biomass is either estimated via a direct relationship between spectral response and biomass 
using multiple regression analysis [51], k-nearest neighbor [52], neural networks [53], or through 
indirect relationships, whereby attributes estimated from the remotely sensed data, such as leaf area 
index (LAI), structure (crown closure and height) or shadow fraction are used in equations to estimate 
biomass [12, 36, 38, 54, 55, 56]. Four different remotely sensed methods for AGB estimation were 
compared for a test area in western Newfoundland and the relative advantages of the different 
approaches were assessed, concluding that the choice of method depends on the required level of 
precision and the availability of plot data [57]. Some methods, such as k-nearest neighbor require 
representative image-specific plot data, whereas other methods are more appropriate when scene-
specific plot data are limited [36]. 

A variety of remotely sensed data sources continue to be employed for biomass mapping including 
coarse spatial resolution data such as SPOT-VEGETATION and AVHRR [25, 58] and MODIS [12, 
47, 59, 60, 61]. To facilitate the linkage of detailed ground measurements to coarse spatial resolution 
remotely sensed data (e.g., MODIS, AVHRR, IRS-WiFS), several studies have integrated multi-scale 
imagery into their biomass estimation methodology and incorporated moderate spatial resolution 
imagery  
(e.g., Landsat, ASTER) as an intermediary data source between the field data and coarser imagery [52, 
60, 62, 63]. Research has demonstrated that it is more effective to generate relationships between field 
measures and moderate spatial resolution remotely sensed data (e.g., Landsat), and then extrapolate 
these relationships over larger areas using comparable spectral properties from coarser spatial 
resolution imagery (e.g., MODIS). Following this approach alleviates the difficulty in linking field 
measures directly to coarse spatial resolution data [40]. 

Landsat TM and ETM+ data are the most widely used sources of remotely sensed imagery for 
forest biomass estimation [36, 37, 38, 53, 57, 58, 63,], but data from other moderate spatial resolution 
sensors have also been used, including ASTER [60] and Hyperion data [64]. Similarly, high spatial 
resolution data such as QuickBird [56] and IKONOS [65] have been used for forest biomass 
estimation. Numerous studies have generated stand attributes from LIDAR data, and then used these 
attributes as input for allometric biomass equations [66, 67, 68, 69, 70]. Other studies have explored 
the integration of LIDAR and RADAR data for biomass estimation [71, 72, 73]. 

GIS-based modeling using ancillary data exclusively, such as climate normals, precipitation data, 
topography, and vegetation zones is another approach to biomass estimation [74, 75]. Some studies 
have also used geostatistical approaches (i.e., kriging) to generate spatially explicit maps of AGB from 
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field plots [24, 28], or to improve upon existing biomass estimation [76]. More commonly, GIS is used 
as the mechanism for integrating multiple data sources for biomass estimation (e.g., forest inventory 
and remotely sensed data) [9, 37, 77, 78]. MODIS, JERS-1, QuickSCAT, SRTM, climate and 
vegetation data have been combined to model forest AGB in the Amazon Basin [27]. Similarly, a 
combination of MODIS and ancillary data (precipitation, temperature, and elevation) has been used to 
model AGB over large areas [59].  

The advantage of approaches that incorporate some form of remotely sensed data, is through 
provision of a synoptic view of the area of interest, thereby capturing the spatial variability in the 
attributes of interest (e.g., height, crown closure) [63]. The spatial coverage of large area biomass 
estimates that are constrained by the limited spatial extent of forest inventories may be expanded 
through the use of remotely sensed data [8]. Similarly, remotely sensed data can be used to fill spatial, 
attributional, and temporal gaps in forest inventory data, thereby augmenting and enhancing estimates 
of forest biomass and carbon stocks derived from forest inventory data [79]. Such a hybrid approach is 
particularly relevant for non-merchantable forests where basic inventory data required for biomass 
estimation are lacking. 

1.2 Biomass: The Canadian Context 

As discussed previously, some methods for biomass estimation, such as the k-nearest neighbor rely 
on the link between ground plots and satellite imagery [80, 81, 82, 83, 84]. Methods such as these are 
routinely applied in countries where an extensive regional network of field plots is exploited. One of 
the limitations to using this approach in Canada is the scarcity of ground-based inventory plots. The 
lack of sufficient and high-quality sample plots has been identified as a major barrier to the 
development of robust AGB estimates, and to the subsequent validation of these estimates [40]. The 
total area of forest and other wooded land in Canada covers an estimated 402.1 Mha [85]. 
Management of these forests is largely under provincial and territorial government jurisdiction, 
resulting in differences in forest inventory strategies and methods [86]. A new National Forest 
Inventory program will provide a framework for the provincial and federal governments to harmonize 
inventory data collection for national reporting purposes [87, 88]. In the interim, since some provinces 
have limited or outdated plot information, there are merits to developing a method for estimating 
biomass that does not rely on an extensive network of ground plots. The ability to generate a forest 
stand map from interpreted aerial photography (the typical inventory scenario in Canada) provides an 
important source of information for estimating and mapping biomass [89]. Furthermore, data 
collection over large areas is facilitated by the synoptic coverage of satellite images [90, 91, 92] and 
may be used as input for models or for mapping forest biophysical attributes [93].  

Estimates of forest AGB are required input for Canada's national forest Carbon Monitoring, 
Accounting and Reporting system [2, 94, 95], designed to fulfill Canada's reporting requirements 
under the 1997 Kyoto Protocol [23]. The first national-level forest biomass estimate for Canada was 
compiled from forest inventory data [1] and subsequently updated [32]. Forest AGB is an important 
attribute in Canada's new National Forest Inventory [87, 88], and national tree AGB biomass equations 
have been developed [96] and applied [97] to generate regional and national estimates of forest 
biomass [89].  
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In Canada, stand level forest inventory data are collected (at the provincial level) to aid foresters 
with management decisions, the latter of which are largely a function of forest stand volume, by 
species. Consequently, forest inventory data are structured to provide volume (by species) exclusively 
for merchantable stands [98]. Merchantable timber is defined as "a tree or stand that has attained 
sufficient size, quality and/or volume to make it suitable for harvesting" [99]. Only a limited suite of 
attributes are typically collected (through air photo interpretation) for stands considered non-
merchantable or non-productive, and typically, no structural or volume attributes are recorded. As a 
result, inventory-to-biomass conversion equations cannot be applied to these stands, resulting in 
spatial gaps in biomass estimates relying on specific attributes in the forest inventory data [8, 32, 89]. 
In the most recent national estimation of biomass, attributional gaps in forest inventory data (i.e., 
records with no volume data) were circumvented by either (i) generating missing volumes for 
merchantable stands using lookup tables of average volume per hectare; and, using lookup tables of 
average biomass per ha, (ii) driven by ecozone and predominant genus (for treed, non-merchantable 
stands); or (iii) driven by land cover type (for vegetated, non-treed records). For (ii) and (iii), lookup 
tables were generated using permanent or temporary sample plot data and published information [97].  

1.3 Objective 

Given the advantages of using remotely sensed data for AGB estimation, the integration of multi-
source data (which includes remotely sensed data) within a GIS is one possible approach to generating 
spatially explicit estimates of AGB over large areas [40]. The objective of this investigation was to 
demonstrate how data integration can facilitate spatially explicit AGB estimation over a large area 
where forest inventory exists but is not spatially exhaustive, and where only a sparse set of field data 
are available. To achieve this objective, three different approaches to AGB estimation are 
implemented and reported upon. First, spatially explicit AGB is estimated using forest inventory data 
that is not spatially or attributionally comprehensive for the study area.  Second, spatially explicit 
AGB for the entire study area is estimated using land cover and vegetation density outputs generated 
from moderate resolution remotely sensed imagery. Finally, a hybrid approach is followed whereby 
AGB estimates generated from the forest inventory are augmented with estimates of AGB generated 
from the remotely sensed data in areas where the forest inventory data has attributional or spatial gaps. 
The intent is to demonstrate how spatially explicit estimates of biomass may be generated by using the 
forest inventory data where available, and by filling gaps in these estimates with other data sources in 
order to provide a complete and spatially explicit representation of biomass resources.  

2. Study Area and Data 

2.1. Study Area 

The study area, located in central Saskatchewan, Canada, encompasses approximately 714,852 ha 
and was selected to represent a variety of boreal forest conditions and species types (Figure 1). 
Located near the Southern Study Area established as a component of the BOReal Ecosystem 
Atmosphere Study (BOREAS) [100, 101], the study area is found largely within the boreal plains 
ecoregion, with a tree species transition from deciduous-dominated mixedwoods in the southern 
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portion, to coniferous-dominated mixedwoods in the northern portion [102, 103]. The area contains 
mixed boreal forest, composed of aspen (Populus tremuloides) and white spruce (Picea glauca) which 
are common where the sites are well drained. Jack pine (Pinus banksiana) and black spruce (Picea 
mariana) are found on dry sites composed of coarse-textured soils. In poorly drained areas, bogs 
support black spruce and tamarack (Larix laricina). Also present are fen areas, which are composed 
mostly of sedge vegetation with discontinuous cover of tree species such as tamarack. Forest 
disturbance is largely the result of localized logging operations and fire. Recent fires have been limited 
in their spatial extent and frequency through a comprehensive forest fire suppression program [104].  

The study area is characterized by a continental climate, with a range of temperature and 
precipitation conditions found seasonally. For example, monthly precipitation ranges from 
approximately 19 to 74 mm, between January and July, and constitutes one of the most important 
limiting factors for ecosystem productivity. Average daily temperature ranges from approximately -22 
to 17 °C [105]. The growing season is from March to November and the mean number of growing 
degree days is 1300 over the range of elevation and latitude within the study area, based upon 1951 to 
1980 climate norms [106].  

Located within the Saskatchewan Plains Region of the Great Plains Province of North America, the 
topography of the study area is of gentle relief, with elevations ranging from 400 to 700 m. The 
dominant landforms consist of glacial till plains, and rolling or hilly moraines. The geomorphological 
origin of the landforms found in the pilot region are glaciofluvial, glaciolacustrine, fluvial lacustrine, 
alluvial, and aeolian. As a result, soil development has been upon thick glacial deposits. Soils range 
from grey wooded to degraded black with brunisolic, gleysolic, chernozemic, luvisolic and organic 
soil orders [104]. 

2.2. Field Data 

As a component of the BOREAS project [101], forest mensuration data were collected at 130 
sample locations during the summer of 1994. Published data describe in detail the plot locations [107], 
measurement methods, and overstorey characteristics [108]. Trees were considered appropriate for 
overstorey sampling based upon a height greater than 1.3 m. Point-samples (with a Basal Area Factor 
ranging from 0.394 to 3 m2 ha-1) or fixed-area plots (ranging in size from 25 to 100 m2) were used for 
overstory measurements [109]. For each overstorey plot, a number of attributes were collected 
including DBH, species, canopy class, and health status. For a sub-sample of trees within each plot, 
representing a range of canopy classes and species, additional attributes were collected including: 
height, crown diameter, and core samples (for age determination). Understorey measurements used 
fixed area plots of 4 or 25 m2 and percent cover was estimated visually for all species present [109]. 

Stand basal area and stem density were calculated from these measured data [109]. Volume, or live 
stem volume, is an estimate of the total volume of wood in tree stems for the stand including the entire 
stem, not only the merchantable component of the tree as measured for commercial inventory purposes 
[108]. Tree volumes were calculated from estimated height (or measured height, if available) and 
measured DBH, multiplied by the number of stems per ha, and summed to estimate total plot volume 
[109]. Total AGB for each plot was estimated with regression equations [110], which use height, 



Sensors 2008, 8                            
 

 

535

DBH, and species-specific allometric equations to estimate biomass for each tree [109]. In total, 124 of 
the BOREAS sample plots were available within our study area. 

 

 

Figure 1. The study area is indicated by the black outline. Merchantable forest inventory 
polygons are shaded grey. 

2.3. Forest Inventory Data 

The inventory system in Saskatchewan is based upon the interpretation of 1:15,000 stereo aerial 
photographs, with re-inventory conducted on a 15-year (approximate) cycle [111]. Stereo aerial 
photographs were collected, interpreted, and digitised into a forest inventory GIS product over a 3.5-
year period, starting in 1984 [111]. Delineation of the land base into homogenous units (hereafter 
referred to as forest inventory polygons) is guided by biophysical criteria that can be recognized and 
differentiated from the air photos (e.g., species, density, height) [112]. However, our entire study area 
was not re-inventoried in 1984, resulting in variable vintages for the forest inventory: approximately 
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8% of the study area was inventoried prior to 1984, 78% in 1984, and the remaining 14% of the study 
area was inventoried after 1985. The source year of the inventory was used to project dynamic 
inventory attributes (e.g. age, height, stocking class) to represent a constant base year, and to coincide 
with the date of field data collection in 1994. The study area contained 8 coniferous, 84 mixedwood, 
and 7 deciduous species groups. Forest inventory attributes were used in conjunction with provincially 
developed lookup tables to assign volumes to the merchantable portions of trees within each 
merchantable stand. There were 79,056 inventory polygons within the study area, of which 50,247 
polygons were merchantable (Figure 1), accounting for 365,572 ha, or 51% of the total study area 
(Table 1). 

2.4. Remotely Sensed Data 

Landsat TM data were selected for AGB estimation due to its suitability in terms of resolution and 
practical considerations associated with its use [40]; the spatial resolution of approximately 30 m by 
30 m is adequate to assess information at the forest stand level, and this imagery has a minimum 
mapping area of about 0.5 ha, which is compatible with standard forestry mapping practices [86, 113]. 
The Landsat TM image, path 37, row 22, acquired July 1994, was georectified using a first-order 
polynomial rectification, resulting in an RMS error of 0.80 pixels (24m). A top-of-atmosphere 
correction was applied to convert the image to TOA reflectance [114]. This correction accounts for 
differences in sensor and viewing geometry, but does not correct for variations in absolute atmospheric 
conditions. 

 
3. Methods 

3.1. Remotely Sensed Image Classification 

The Landsat TM image was classified using a hyperclustering and labeling approach with an 
unsupervised K-means algorithm [95]. The original 241 clusters were manually merged to 16 broad 
land cover classes (Table 2). These classes are similar to those defined in Level 4 of the NFI 
classification schema [115], with the addition of some of the classes used for large area land cover 
mapping in Canada with AVHRR data (NBIOME), such as low and high biomass croplands [116]. A 
sample of aerial photography (1:15,000), collected in 1984 for the forest inventory program, was made 
available by the Saskatchewan government to assist in assigning the spectral clusters to the appropriate 
land cover classes.  

Following [117], a maximum likelihood approach was used to estimate stand density classes (also 
following NFI defined categories; Table 3) for each forest stand type (i.e., coniferous, mixedwood, 
deciduous) identified from the clustering and labeling of the Landsat TM image, as described above. 
Training data for the density classes were generated by interpreting the aforementioned air photos for a 
sample of each forest cover type. With the photo-interpreted crown closures as reference data, the six 
optical Landsat channels and the variance of Landsat TM channel 4 within a 3 by 3 pixel-window 
were input into a maximum likelihood classification. The variance texture measure is included to 
provide forest structural information to augment the spectral data [40]. Each stand type, as identified 
by the satellite image, was assigned a density class (dense, open, and sparse) using the maximum 
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likelihood approach. Thus, from the remotely sensed data, two pieces of information required for AGB 
estimation were generated: stand type and stand density.  

Table 1. Forest inventory summary for the study area. 

COVER TYPE 
NUMBER OF
INVENTORY 

POLYGONS

AREA 
(HECTARES) 

Merchantable Forest Inventory Polygons (by leading species) 

Black Spruce  19,483 109,850 

Jack Pine  17,333 158,974 

Balsam Fir  3 6 

Tamarack  573 3,682 

White Spruce  2,219 12,741 

Trembling Aspen  10,307 78,191 

Balsam Poplar  3 8 

Paper Birch  326 2,120 

SUB-TOTAL 50,247 365,572 

Non-merchantable Forest Inventory Polygons 

SUB-TOTAL 28,809 309,081 

Non-Inventoried Portion of Study Area 

SUB-TOTAL 0 40,199 

TOTAL STUDY AREA  79,056 714, 852 

3.2. Validation of the classified Landsat imagery 

Typically, to assess the accuracy of a remotely sensed image classification a source of ground 
validation data is required. The ground validation sample should capture all classes found in the 
classification and cover the range of conditions that may be encountered. These types of ground 
validation data are not always available [118]. The use of the forest inventory data as a validation 
source is problematic due to the age of the inventory and the methods used to delineate polygons; 
these factors often result in a poor agreement between data sources [119]. Additionally, within-
polygon spectral heterogeneity [120], and the method for selecting a pixel within the polygon for 
comparison, are confounding issues [119]. The sample plot data collected for the BOREAS study 
included information on vegetation cover types; hence the field plot data were selected as the best 
source to validate the Landsat image classification results. Unfortunately, the field plots did not 
contain information for the mixedwood open and sparse classes, or for any the non-forest classes 
(Table 2). 
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Table 2. Summary of land cover and density classes estimated from the Landsat TM data. 

COVER TYPE 
AREA

(HECTARES)

Forested Cover Types 

Coniferous, Dense 171,604

Coniferous, Open 99,711

Coniferous, Sparse 55,911

Deciduous, Dense 42,357

Deciduous, Open 20,909

Deciduous, Sparse 1,762

Mixed, Dense 99,973

Mixed, Open 16,393

Mixed, Sparse 5,569

SUBTOTAL  514,189

Non-Forested Cover Types 

Shrubs 31,819

Wetland Non-Treed 70,694

Non-Treed Herbaceous 16,441

Exposed Land 21,178

High Biomass Cropland 32

Low Biomass Cropland 1,956

Water bodies 58,543

SUBTOTAL 200,663

TOTAL 714,852

Table 3. NFI and corresponding Saskatchewan forest inventory density classes. The forest 
inventory classes, as defined in Saskatchewan’s forest inventory, do not exactly match the 
NFI density classes. As a result, the forest inventory ranges were reassigned to a NFI 
category to provide compatibility between the remote sensing and stand map-derived 
layers, and to enable cross-referencing and estimation. 

NFI DENSITY (%) NFI CLASS 
SASKATCHEWAN FOREST 

INVENTORY DENSITY (%) 

61 – 100 Dense 56 – 80; > 81 

26 – 60.9 Open 31 – 55 

10 – 25.9 Sparse 10 – 30 
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3.3. Data Compatibility: Field Data and Remotely Sensed Outputs 

In order to make comparisons between the BOREAS field plots and the remotely sensed outputs, 
the field plots had to be assigned a cover type and a density class matching those used in the image 
classification procedures (Table 2 and Table 3). Species and stem density information in the field plot 
data were used to assign each of the field plots a corresponding cover type and density class.  

3.4. Data Compatibility: Field Data and Forest Inventory  

In order to make comparisons between the field data and the inventory data, including timber 
volumes from lookup tables provided by the Saskatchewan government, two issues needed to be 
resolved: (i) the total stem volumes reported in the field data included merchantable and non-
merchantable portions of all trees, whereas the volume figures provided in the forest inventory lookup 
tables included only the merchantable portion of trees with a DBH above the merchantable limit; and 
(ii), there was an age difference of up to 10 years between the field plot and forest inventory data, an 
amount of time in which trees can grow enough to markedly change the stand volume.   

In accounting for non-merchantable and sub-merchantable timber volume in the forest inventory 
polygons, it was important first to understand how the total volumes reported for the field plots [108] 
were calculated. By following the steps outlined in the BOREAS documentation and seeking input 
from other forest inventory specialists where documentation was incomplete, it was possible to 
determine how the field volumes were calculated. As tree volumes were predicted using Kozak’s 
variable exponent taper function [121], the key to matching the inventory merchantable volumes with 
those in [108] was in replicating how this formula was applied. The results in [108] were matched 
using the following procedure: 

1. For each of the 3,124 sampled trees, height was calculated as a function of DBH and tree 
species, using regression equations and parameters listed in [108]. Tree heights were then 
adjusted using a plot bias multiplier, as described in [108]. 

2. Each tree was divided into ten segments—the stump segment was 30 cm in length, and the 
remaining nine segments were equal in length, i.e., 9)30_(_ ÷−= cmheighttreelengthsegment  and 
Kozak's formula was used to predict the inside-bark diameter at the top, middle, and bottom of 
each of these segments. The parameters used for Saskatchewan tree species in Kozak’s formula 
were taken from [122].   

3. The volume of the stump segment was calculated using the volume formula for a cylinder, and 
the volume of the top segment was calculated using the volume formula for a cone. 

4. Newton’s formula for volume of a neiloid, cone, or paraboloid frustum [123] was used to 
calculate the volume of the remaining eight segments. 

5. The volumes of all segments of each tree were totaled, and the point sampling factors were 
applied to individual tree volumes to determine the per-hectare volume represented by each 
tree. Finally, the sum of each of these per-hectare volumes was found, the result being the total 
live stem volume of the study plot. 

After completing this routine for all field plots and achieving results matching those presented in 
[108] (R2 = 0.99) it was possible to move on to calculating the merchantable volume of each tree for 
the field data. For this study, merchantable volume was defined as the volume of wood in the stem of a 
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tree between the top of the stump (at height = 30 cm), and the height at which the tree diameter inside 
bark was 8.01 cm. Finding merchantable volume involved the following steps: 

1. The volume of the stump was first subtracted from the total volume of each tree. 
2. Kozak’s formula was applied in reverse, as described in [121], to determine the merchantable 

height of each tree, or the height at which the diameter inside bark was approximately 8.01 cm. 
The formula for volume of a cone was used to calculate the volume of wood above the 
merchantable height, and this amount was subtracted from the total volume.  

3. Point sampling factors were applied to the remaining volume of each tree as in step 5 above, 
and the merchantable stand volume in cubic meters per hectare was totaled for each study plot. 

After calculating the merchantable volume of each study plot, the difference between each 
calculated merchantable volume and the corresponding merchantable volume from the forest inventory 
database was found, and divided by the number of years between the two data sets. The average yearly 
difference, or net growth increment, of all study plots was 6.875 m3ha-1yr-1  and  this factor was applied 
to the merchantable volume of the forest inventory polygons, creating a dataset which was now 
compatible with the field data.   

The final step in creating a forest inventory dataset which was compatible with the field data was to 
find the total stem volume of each forest polygon. A model needed to be found which predicted total 
stem volume by accounting for the sub-merchantable component which was important in stands with 
lower merchantable volume. In field plots with higher merchantable volume, the relationship of 
merchantable volume to total volume was nearly one to one. In field plots with lower merchantable 
volume, the contribution of the smaller trees to the total volume was greater and more variable. It was 
observed that, in general, the total volume of small trees in each stand was inversely related to 
merchantable stand volume, and several models predicting the volume of small trees as a function of 
merchantable stand volume were explored. Finding a curvilinear function which added a small trees 
component to the total volume proved unsuccessful, and it was finally decided that a lookup table 
which found the average sub-merchantable tree volume for a given merchantable volume would be 
adequate.   

Predicting total volume by adding together the volume of large trees and the volume of small trees, 
both as functions of merchantable volume, was achieved in four steps: 

1. Field plots which fell in a single forest inventory polygon were grouped together, and values 
for sub-merchantable volume, total volume of big trees, and merchantable volume were 
averaged for these groups of field plots. 

2. The average merchantable volumes of the field plot groups were divided into 30 m3/ha 
classes. The variance and average total volume of small trees in each of these classes was 
found, and a lookup table to find the average volume of small trees for a given merchantable 
volume was created (Table 4). The volume of small trees for a given merchantable volume 
was adjusted in four instances to produce a smoother relationship between the two variables..   

3. For trees larger than 8.01 cm, linear regression analysis was used to predict the total volume 
of these big trees as a function of merchantable volume. The model, 

MB VOLVOL ⋅= 117.1 , 
where VOLB is the volume of big trees, and VOLM is the merchantable volume, was found to 
be accurate, with an R2 of 0.964. 
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4. Volumes predicted in (2) and (3) above were totaled for each plot to find the total stem 
volume using: 

MST VOLVOLVOL ⋅+= 117.1 , 

where VOLS is the volume of small, sub-merchantable trees from the lookup table (Table 4).   
 
Total stem volumes were computed for each group of plots using the field data and the forest 

inventory data, and the results were compared. While a 1:1 relationship between the two sets would 
have been the ideal result, it was known that fundamental differences in the data sets would preclude 
this from happening (e.g., forest inventory volumes were in discrete classes, as opposed to the 
continuous values of the field data). Through the steps outlined above, compatible estimates of 
merchantable volume and total volume were possible from the field data and the forest inventory data. 

Table 4.  Average volume of small trees in each merchantable volume category. A lookup 
table based on these values was used in the total stem volume estimation model. 

VOLM RANGE 

(m3/ha) 

VOLUME OF SMALL 

TREES (m3/ha) 

VOLM RANGE 

(m3/ha) 

VOLUME OF SMALL 

TREES (m3/ha) 

0 – 29.9 23.8 180 – 209.9 2.9* 

30 – 59.9 29.7 210 – 239.9 2.6* 

60 – 89.9 42.7 240 – 269.9 2.2 

90 – 119.9 22.1* 270 – 299.9 1.2 

120 – 149.9 12.9* 300 – 329.9 0.6* 

150 – 179.9 3.6 330 + 0.0 

*these values were adjusted using the average of next and previous values to produce a smoother 
relationship between the two variables 

3.5.  Method 1:  Biomass estimation from  forest inventory 

In the BOREAS field data, AGB and total stem volume for each stand were closely related. Figure 
2 provides an overview of the process required to estimate biomass for the inventory polygons. The 
biomass estimation method followed was based upon the development of empirical relationships 
between the stand volumes assigned to the forest inventory polygons (using methods described above) 
and volumes from the BOREAS field plots. Of the 124 BOREAS field plots found within our study 
area, 95 were spatially coincident with the forest inventory polygons. In some cases, multiple field 
plots were found within a single polygon, or conversely, field plots straddled more than one inventory 
polygon. In order to build relationships between the plot-level data and the inventory data, weighted 
averages for field plot volume and biomass were calculated, proportional to the area of the field plot 
found within the inventory polygon. In total, 52 inventory polygons contained field plots, representing 
26 coniferous, 11 deciduous, and 15 mixedwood inventory polygons.  

There are two approaches to estimating biomass with the forest inventory data. One method 
determines the relationship for each structural cover type (i.e., coniferous, deciduous, or mixed) or 
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preferably, each species, individually, and then combines these estimates to obtain an overall estimate 
of biomass [124]. Alternatively, the relationship between volume and biomass may be determined 
using a more generic model that encompasses all species or cover types [34, 92]. The former method is 
more accurate, provided there are sufficient ground samples to develop the appropriate allometric 
relationships; the latter method may be more practical for large areas of mixed cover types [125].  

 

Figure 2. An overview of the process used to estimate biomass from the forest inventory 
data. 

These two approaches were explored when developing a model to predict biomass using total 
volume estimates from forest inventory lookup tables. Individual cover types (ICT) models were based 
on regression relationships between total volume estimates and biomass measurements for each of 
hardwood, softwood, and mixed forest cover types.  An all cover types model (ACT) was based on a 
single regression relationship between total volume estimates and biomass measurements for all forest 
cover types. Linear models were used in all cases, as biomass estimates from the non-linear models 
that were explored may have become unreasonably high for volume estimates greater than those used 
to calibrate the models. 
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In developing the ICT model, 52 paired AGB and total stem volume measurements were divided 
into three groups based on field plot forest cover type (i.e., coniferous, deciduous, mixedwood).  
Linear regression analysis was performed on the three data sets, and the regression parameters were 
used to calculate biomass in tonnes per hectare (t/ha) for each forest inventory polygon in the study 
area, using total volumes derived from lookup table estimates as described earlier in the Methods 
section. Table 5 contains the regression formulas used to estimate biomass for the forest inventory 
polygons. 

Table 5.  Formulas used to estimate biomass from regression relationships between total 
stem volume and AGB measured in the BOREAS field plots.   

COVER TYPE EQUATION R 2 RMSE 
SAMPLE SIZE 

(N) 

ICT Models 

Deciduous TVOLBIOM ⋅+= 4451.03247.25  0.947 9.094 11 

Coniferous TVOLBIOM ⋅+= 3529.08934.35  0.869 14.565 26 

Mixedwood TVOLBIOM ⋅+= 4617.03214.26  0.934 18.378 15 

ACT Model 

All TVOLBIOM ⋅+= 4123.02883.29  0.892 16.047 52 

 
After applying each of the models in Table 5 to the inventory polygons, the inventory-based 

biomass estimates were extracted from each polygon containing a corresponding field based estimate 
of biomass (n = 52). To determine the validity of the models in Table 5, regression relationships 
between the inventory-based AGB estimates, and field-based AGB were then found for each cover 
type. 

3.6.  Method 2: Biomass estimation from remotely sensed image outputs 

The entire study area is contained within one Landsat TM scene, allowing for biomass estimates for 
the entire study area to be calculated from the combined cover type and density classes output from the 
image processing (Table 2 and Table 3). For each cover type-density combination, average AGB 
values for BOREAS field plots were calculated. These average AGB values were then used as AGB 
lookup values for the corresponding cover type-density combinations from the remotely sensed data. 
Since not all of the 16 cover type-density combinations listed in Table 2 were represented by the 
BOREAS field plots, two issues had to be addressed. First, for the forest cover type-density classes not 
represented by the field plots (mixedwood open and mixedwood sparse), biomass lookup values (in 
t/ha) were generated from those forest inventory polygons with similar forest cover type-density 
attributes. For example, to generate the biomass lookup value for mixedwood open, the mean biomass 
value was calculated from all the forest inventory polygons with a mixed species composition and a 
stand density between 31 and 55% (Table 3). Second, AGB lookup values were required for the non-
forest land cover classes in the classified Landsat scene. Since these classes were not represented by 



Sensors 2008, 8                            
 

 

544

the BOREAS field plots and corresponded (primarily) to the non-merchantable areas of the forest 
inventory data, appropriate biomass values were obtained through a literature review and consultation 
with other researchers familiar with specific cover types (Table 2). Once each cover type-density 
combination had a corresponding biomass value, a lookup table approach was followed to apply a 
biomass value to each pixel in the classified image. The lookup values for each of the cover types are 
provided in Table 6. 

Table 6. AGB lookup values used for each cover type. 

COVER TYPE 
AGB STANDARD  

(TONNES/HA) 

Forested Cover Types 

Coniferous, Dense 111 

Coniferous, Open 94 

Coniferous, Sparse 89 

Deciduous, Dense 126 

Deciduous, Open 95 

Deciduous, Sparse 94 

Mixed, Dense 118 

Mixed, Open 95 1 

Mixed, Sparse 92 1 

Non-Forested Cover Types

Shrubs 35 2 

Wetland Non-Treed 25 3 

Non-Treed Herbaceous 3 4 

Exposed Land 0 

High Biomass Cropland 6 4 

Low Biomass Cropland 3 4 

Water bodies 0 

1Not represented in the BOREAS field plots, estimate generated from comparable polygons in the forest inventory. 
2Source: [128] Kovda, V.A., 1976. The problem of biological and economic productivity of the earth’s land areas. Soviet 
Geography, 12:6-23. Biomass for chernozem steppe. 
3Source: [129] Bazilevich, N.I., L. Ye. Rodzin, and N.N. Rozov. 1971. Geographical aspects of biological productivity. Soviet 
Geography, 12:293-317. Biomass for Bogs. 
4Source: Adrian Johnston, pers.comm.; Agriculture and Agrifood Canada, Lethbridge, AB.  

3.7.  Method 3: Biomass estimation using a hybrid approach 

The hybrid approach integrates the estimates generated from methods 1 and 2 above to create a 
complete, spatially explicit estimate of AGB for the entire study area. In this approach, spatial and 
attributional gaps in the forest inventory that preclude an estimation of biomass are filled by estimates 
generated from the remotely sensed data. In order to facilitate data integration, the non-merchantable 
forested inventory polygons are populated with the pixel based estimates from the imagery using a 



Sensors 2008, 8                            
 

 

545

polygon decomposition method [126]. Polygon decomposition is the creation of new polygon attribute 
values by the summation of the pixels found within a given polygon (e.g., summing of all the pixel 
based biomass values for a polygon based estimate of biomass). This polygon decomposition approach 
facilitates the harmonization of the forest inventory estimates and the pixel based estimates from the 
remotely sensed imagery. For those portions of the study area where the forest inventory does not 
exist, the remotely sensed biomass estimates were used directly. The result is a spatially contiguous 
representation of biomass across the entire study area. 

4. Results and Discussion  

Applying the two different biomass estimation approaches (from forest inventory or from remotely 
sensed imagery) led to three possible approaches to estimate and map biomass in the study area: from 
the forest inventory exclusively, from remotely sensed image outputs exclusively, and from a hybrid 
approach where the forest inventory estimates were augmented with remotely sensed image estimates, 
where the forest inventory had spatial or attributional gaps. 

4.1. Method 1: Biomass estimation from  forest inventory 

After applying each of the models in Table 5 to the inventory polygons, the inventory-based 
biomass estimates were extracted from each polygon containing a corresponding field based estimate 
of biomass (n = 52). To determine the validity of the models in Table 5, regression relationships 
between the inventory-based AGB estimates, and field-based AGB were then found for each cover 
type. The results of the validation are summarized in Table 7. The ICT models were shown to be 
unpredictable, with R2 values ranging from –0.174 to 0.754, and were based on too few instances of 
each cover type. In Figure 3, we present the regression relationship between the predicted and field 
measured biomass values illustrating a moderate positive relationship between the two estimates, with 
an R2 of 0.64.   

Table 7.  Summary of regression statistics for comparisons of field-based biomass versus 
forest inventory polygon (predicted) AGB estimates.  

MODEL MULTIPLE R R2 ADJUSTED R2 RMSE SAMPLE SIZE (N)

ICT Models 

Deciduous 0.345 0.119 -0.174 27.629 5 

Coniferous 0.639 0.408 0.372 9.643 18 

Mixed 0.878 0.771 0.754 21.220 15 

ACT Model 

All 0.803 0.645 0.636 16.949 38 
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Figure 3.  Predicted biomass estimates for forest inventory polygons (using ACT model: 
TVOLBIOM ⋅+= 4123.02883.29 ) compared to field-based biomass estimates (R2 = 0.64; 

RMSE = 16.95 t/ha; n = 38). 

The ACT model was applied to all forest inventory polygons in the database, except those classified 
as non-merchantable. The AGB estimates derived from the forest inventory ranged, by species, from 1 
to 209 t/ha. The remaining non-merchantable areas included waterbodies, disturbed land (including 
burn-overs and cut blocks), and land not inventoried, such as parks or private lands. Total AGB, 
representing only 51% of the study area, was estimated at approximately 40 Mt (Table 8).  

4.2. Validation of the classified Landsat imagery 

For the forested classes represented in both the field data and the image classification, overall 
agreement between the assigned cover types was 80.1%. The overall level of agreement between the 
plot determinations of density and those derived from the Landsat image classification was 73.7%. The 
BOREAS field data provides an independent data source for validation, as none of the field plots were 
used for the unsupervised classification of land cover type or in the creation of the supervised 
maximum likelihood approach for deriving the density information.  



Sensors 2008, 8                            
 

 

547

Table 8. Summary of AGB estimates generated from the forest inventory data. 

COVER TYPE BIOMASS (TONNES) 

Merchantable Forest Inventory Polygons (by leading species) 

Black Spruce  12,102,414 

Jack Pine  15,972,510 

Balsam Fir  927 

Tamarack  360,509 

White Spruce  1,846,504 

Trembling Aspen  9,339,950 

Balsam Poplar  499 

Paper Birch  205,901 

SUB-TOTAL 39,829,214 

Non-Merchantable Forest Inventory Polygons 

SUB-TOTAL N/A 

Non-Inventoried Portion of Study Area 

SUB-TOTAL N/A 

TOTAL STUDY AREA  39,829,214 

4.3. Method 2: Biomass estimation from  remotely sensed imagery 

The total biomass estimated from the satellite image approach (covering the entire study area) was 
approximately 58 Mt (Table 9). A regression of the remotely sensed estimates of AGB against the field 
measured biomass values resulted in an R2 of 0.54 (Figure 4).  

4.4. Method 3: Biomass estimation using a hybrid approach 

Table 10 summarizes the results of the hybrid or integrated approach to generating an estimate of 
AGB for the entire study area. Biomass estimates for the non-merchantable classes from method 2 
were decomposed to populate the non-merchantable polygons in the forest inventory. Similarly, those 
portions of the study area where there was no forest inventory data were infilled with the remotely 
sensed biomass estimates (Figure 5). Total biomass for the merchantable polygons is the same as for 
the inventory-exclusive approach (Table 8); total biomass for non-merchantable polygons and non-
inventoried areas are generated from the remotely sensed data approach (Table 9). Total AGB for the 
study area was estimated at approximately 62 Mt.  
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Figure 4. Predicted AGB estimates for the remotely sensed data compared to field-based 
biomass estimates (R2 = 0.52; RMSE = 19.97 t/ha; n = 52). 

 
The AGB estimated for the merchantable polygons with Method 2 was 5% lower than the AGB 

estimated from Method 1. This underestimation of forest biomass by remote sensing methods is a 
phenomena originally identified by [127]. Other studies have found a saturation effect, particularly in 
complex forest stands in tropical forests, whereby canopy reflectance becomes saturated when AGB 
approaches a certain level, and this effect, combined with the impact of canopy shadows, limits the 
ability of the data for detection of additional biomass beyond that level [40]. Given the capability for 
and the diligence with which the field and inventory data could be harmonized for this study, and the 
subsequent volume-biomass associations developed, it is not surprising that the there is a stronger 
positive relationship between the field and inventory estimates of AGB, when compared to the 
relationship between the field and remotely sensed estimates of AGB.  

The robustness of the inventory estimates of AGB are a function of the photo interpretation, the 
volume tables generated, and the volume to biomass conversion. Similarly, the robustness of the 
remote sensing estimates must be considered as a function of the land cover classification, the density 
estimation approach, and the AGB lookup values applied. As common to most studies using GPS 
under a forest canopy, both approaches will be impacted by the positional accuracy of the field plot 
locations. Potential users of the AGB estimates must consider the factors influencing the accuracy of 
the approach used when applying the results. 
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Table 9. Summary of AGB estimates generated from the remotely sensed data. 

COVER TYPE BIOMASS (TONNES) 

Forested Cover Types 

Coniferous, Dense 19,048,053 

Coniferous, Open 9,372,792 

Coniferous, Sparse 4,976,068 

Deciduous, Dense 5,337,024 

Deciduous, Open 1,986,396 

Deciduous, Sparse 165,655 

Mixed, Dense 11,796,845 

Mixed, Open 1,557,340 

Mixed, Sparse 512,308 

SUB-TOTAL  54,752,480 

Non-Forested Cover Types 

Shrubs 1,113,657 

Wetland Non-Treed 1,767,362 

Non-Treed Herbaceous 49,323 

Exposed Land 0 

High Biomass Cropland 194 

Low Biomass Cropland 5,868 

Water bodies 0 

SUB-TOTAL 2,936,404 

TOTAL STUDY AREA 57,688,884 

 

Table 10. Using the hybrid approach for AGB estimation, estimates from Method 1 (forest 
inventory) and Method 2 (remotely sensed outputs) have been integrated to produce a 
spatially explicit estimate of biomass for the entire study area.  

FOREST 

INVENTORY 

POLYGON 

STATUS 

NUMBER OF 

INVENTORY 

POLYGONS 

AREA 

(HECTARES) 

METHOD 1 

FOREST 

INVENTORY 

METHOD 2 

REMOTELY 

SENSED 

DATA 

METHOD 3 

DATA 

INTEGRATION 

AGB 

(TONNES)

AGB 

(TONNES) 

AGB  

(TONNES)

Merchantable  50,247 365,572 39,829,214 37,748,175 39,829,214 

Non-merchantable 28,809 309,081 N/A 19,940,709 19,940,709 

Not inventoried 0 40,199 N/A 2,593,484 2,593,484 

TOTAL 79,056 714,852 39,829,214 57,688,884 62,363,407 



Sensors 2008, 8                            
 

 

550

For this study, the estimates generated from the forest inventory, where available, are assumed to be 
more robust than those generated from the remotely sensed outputs. As a result, we treat the inventory 
estimates of AGB as the best available estimates, and then augment these estimates where there are 
spatial or attributional gaps in the forest inventory. By integrating multiple data sources, we are able to 
generate a complete picture of AGB for the study area. If we had relied only on the estimate generated 
from the forest inventory, we would have underestimated total AGB for the study area by 20% because 
the inventory only provided estimates for 51% of the study area. By integrating the AGB estimates 
from the two approaches, we are able to generate a more complete estimate representing 100% of the 
study area. Equally important is the ability to generate a map of AGB in the study area, thereby not 
only providing a total estimate of biomass, but also indicating the spatial distribution of AGB across 
our area of interest (Figure 5). In turn, this spatially explicit estimate can be an important information 
source for a wide range of applications.  

5. Conclusions 

Three different approaches were used to generate an estimate of AGB for our study area. Using 
conversion factors applied to a non-spatially exhaustive forest inventory dataset produced an AGB 
estimate with a RMSE = 16.95 t/ha. With this approach, total AGB for the study area was estimated to 
be 40 Mt. Applying a lookup table to unique combinations of land cover and vegetation density 
outputs derived from remotely sensed data resulted in biomass estimates with a RMSE = 19.97 t/ha. 
This approach provided complete coverage for the study area with total AGB estimated at 58 Mt. The 
hybrid approach combined the increased accuracy of the inventory approach with the more spatially 
comprehensive remote sensing approach and produced a complete AGB map for the study area, with 
total AGB estimated at 62 Mt. 

The forest inventory approach is the most well understood and commonly applied approach for 
large area biomass estimation. The remote sensing approach has the advantage in representing the 
natural variability of forest stands (and is a continuous dataset). The hybrid approach capitalizes upon 
the strengths of both the forest inventory and remotely sensed data sources, while the process of 
polygon decomposition facilitates the integration of the remotely sensed estimates into the non-
merchantable forest inventory polygons. The close agreement of the results of the forest inventory and 
remote sensing approaches is encouraging - where there is spatial concordance between the two 
approaches, total AGB estimates varied by only 2%. 

Biomass maps derived from forest inventory data exclusively are well established and understood 
by forest managers. These maps are highly correlated to stand volume, which is a well-documented 
attribute in forestry. The addition of remotely sensed imagery illustrates the importance of non-
merchantable and non-inventoried vegetation for estimating biomass over large areas. The inclusion of 
the biomass conversion factors, applied to satellite images, for non-merchantable or non-inventoried 
polygons, adds value to the forest management database. In addition, models that require spatially 
explicit biomass estimates over extensive spatial coverage may require the comprehensive coverage 
offered by satellite imagery. This study has demonstrated a biomass mapping solution whereby data 
integration is shown as a viable approach for generating spatially explicit estimates of AGB over large 
areas. 
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Figure 5.  Spatially explicit AGB estimates for the study area generated from the 
integration of forest inventory and remotely sensed AGB estimates. 
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