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Abstract 44 
 45 
Landsat data have been widely used for change detection studies of forest ecosystems. 46 
Technical issues related to the longevity and quality of the Landsat-5 and -7 instruments 47 
prompted this investigation into how data from other sensors may be integrated with the 48 
existing Landsat image archive. Change maps indicating the location and extent of stand 49 
replacing disturbances occurring between 1999 and 2004 were developed using a rank-50 
order change detection approach. The near infrared (NIR) band from an image 51 
representing initial stand conditions (T1: Landsat 7 ETM+), and the NIR band of images 52 
acquired on subsequent dates and with different sensors (T2: ASTER, SPOT-4, and 53 
Landsat-5 TM) were selected, essentially acting as three different T2 images. Pair-wise 54 
comparisons between the T1 image and each of the T2 images required the pixel values 55 
to be sorted, ranked, and differenced; a threshold was then applied to the difference 56 
values to identify the stand replacing disturbances. The rank-order change detection 57 
approach precluded the need for an additional image normalization process. When 58 
compared to a manually interpreted map of change events, the output from the ASTER, 59 
SPOT-4, and Landsat-5 TM data were all equally effective in identifying all of the stand 60 
replacing disturbances that occurred between 1999 and the year of T2 image acquisition, 61 
and errors of commission were minimal. Important logistical limitations to cross-sensor 62 
change do exist however and include the lack of spatially or temporally extensive image 63 
archives for sensors other than Landsat, incompatible image footprints, and data cost and 64 
policy. This rank-order change detection approach is suitable for applications involving 65 
multi-temporal datasets where problems may exist due to image normalization, cross-66 
sensor radiometric calibration, or unavailability of a desired sensor type.  67 
 68 
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continuity, monitoring, rank-order, LDCM, OLI, polygon decomposition 70 
 71 

1.0 INTRODUCTION 72 

Globally, forest ecosystems are under pressure from urban and agricultural expansion, 73 
fuel extraction, harvesting activities, and climate change (Hansen et al., 2001). Together, 74 
these factors result in high rates of forest change and subsequent monitoring challenges 75 
(e.g. Desclée et al., 2006; Hayes and Cohen, 2007). For instance, between 1990 and 2000, 76 
global forest area declined at a rate of 8.9 million hectares per year, and between 2000 77 
and 2005, global forest area decreased by approximately 7.3 million hectares per year 78 
(Food and Agriculture Organization of the United Nations, 2005). Changes in forest 79 
cover have significant ecological, economic, and social implications, particularly in 80 
nations such as Canada where 41% of the total landmass (402.1 million hectares) is 81 
forested (Natural Resources Canada, 2006). The pressures upon forests have resulted in a 82 
broad range of national, regional, and international initiatives promoting sustainable 83 
forest management. These initiatives have in turn generated new information needs and 84 
increased reporting requirements. The requirement to collect information on forest 85 
change over large areas with an increasing level of detail has resulted in the use of 86 
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remotely sensed data for forest monitoring programs (Wulder et al., 2004; Hickey et al., 87 
2005).   88 
 89 
Remotely sensed data can play a major role in forest monitoring programs; the timing and 90 
spatial extent of changes to forest cover may be captured at a range of spatial scales with 91 
remotely sensed data (Malingreau, 1993; Foody, 2003, Treitz and Rogan, 2004). The 92 
majority of forest monitoring research has relied on data from medium spatial resolution 93 
sensors such as Landsat-5 Thematic Mapper (TM) and Landsat-7 Enhanced Thematic 94 
Mapper Plus (ETM+) (Franklin and Wulder, 2002). The insightful and well integrated 95 
assemblage of Landsat's spectral, spatial, and temporal resolutions, combined with its 96 
extensive archive and relative low cost have resulted in an invaluable data source for 97 
change detection research (Woodcock et al., 2001; Cohen and Goward, 2004). The 98 
Landsat program has provided earth observation data to meet a wide range of information 99 
needs since 1972 (Mack, 1990). Unfortunately, temporal and spatial discontinuities in the 100 
extensive 34-year archive of Landsat data are increasingly probable. The failure of the 101 
Scan Line Corrector onboard Landsat-7 in 2003, (Markham et al., 2004) and problems 102 
with the solar array drive mechanism onboard Landsat-5 in 2005 (Frederick, 2005), 103 
coupled with the lack of formalized plans for a successor in the Landsat series of earth 104 
observation satellites (Goward and Skole, 2005), places an element of risk in reliance 105 
upon Landsat sensors for long-term forest monitoring programs.  106 
 107 
In this paper we present a multi-sensor change detection approach that facilitates the use 108 
of remotely sensed data collected from several medium spatial resolution sensors, 109 
including ASTER, SPOT-4, and Landsat-5. The ASTER and SPOT-4 data sources have 110 
different spatial and spectral resolutions than TM and ETM+ data, and the method 111 
presented demonstrates how these data sources can be used in conjunction with an 112 
existing Landsat image archive, to capture stand replacing changes in forest ecosystems 113 
over time. 114 
 115 
1.1 Change detection in forest ecosystems 116 
 117 
Forest changes are generally caused by three forces: growth and evolutionary 118 
development; natural forces such as flooding, fire, insects and disease; and anthropogenic 119 
changes such as harvesting, thinning, or burning (Gong and Xu, 2003). These changes are 120 
manifested over a variety of spatial and temporal scales and the methods to detect these 121 
changes should be carefully considered, especially when using remotely sensed data 122 
sources. Change detection in forest environments has been undertaken using a wide 123 
variety of remotely sensed data sources. As previously indicated, forest change detection 124 
studies have relied on Landsat imagery to detect forest change, including insect-related 125 
disturbances (Price and Jakubauskas, 1997; Allen and Kupfer, 2001; Falkenstrom and 126 
Ekstrand, 2002; Skakun et al., 2003; Wulder et al., 2006), and stand replacing 127 
disturbances such as harvesting (Wilson and Sader, 2002; Jin and Sader, 2005; Healey et 128 
al. 2006a; Healey et al., 2006b), and fire (Rogan et al., 2002; McMichael et al., 2004; 129 
Epting et al., 2005). 130 
 131 
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Other medium resolution sensors have also been used for change detection studies in 132 
forest environments. For example, SPOT multispectral data have been used to detect 133 
forest defoliation (Muchoney and Haack, 1994), damage caused by inundation of forest 134 
ecosystems (Michener and Houhoulis, 1997), harvesting (Desclée et al., 2006), as well as 135 
for more general land cover change applications (Nemmour and Chibani, 2006; Prenzel 136 
and Treitz, 2006). Studies using ASTER data for change detection are less common, 137 
largely as a result of ASTER's smaller footprint and limited archive; however, recently 138 
the use of ASTER for forestry-related applications has begun to emerge in the literature 139 
(Muukkonen and Heiskanen, 2005; Fedpausch et al., 2006; Heiskanen, 2006). 140 
 141 
The state-of-the-art in remote sensing change detection methods have been extensively 142 
reviewed and the relative strengths and weakness of these approaches are well 143 
documented (Mas, 1999; Gong and Xu, 2003; Coppin et al., 2004; Lu et al., 2004; Coops 144 
et al., 2006). Singh (1989) broadly grouped change detection approaches into either 145 
mathematical analyses of spectral differences between two images, or the more 146 
commonly applied post-classification comparisons. The former group of approaches 147 
includes image algebra, regression or correlation, and vegetation indices and principal 148 
component analysis (Gong and Xu, 2003).  149 
 150 
The main objective of this study is to capture stand-replacing disturbances across a 151 
forested landscape using data from multiple remote sensing platforms. A forest stand 152 
represents the smallest unit on which a forest resource is mapped when minimum 153 
mapping unit and resource management decisions are made (Gong and Xu, 2003). A 154 
stand replacing disturbance is considered one in which all the forest cover within a given 155 
stand is either removed or destroyed at a single point in time (Cohen et al., 2002). 156 
Generally, these events are large enough to be visible on an image with a moderate 157 
spatial resolution. Examples of stand replacing disturbances include wildfire and clearcut 158 
logging. In this study, we apply a rank-order change detection procedure and derive 159 
change maps from ASTER, SPOT-4, and Landsat-5 TM data using baseline Landsat-7 160 
ETM+ imagery (using NIR bands). Comparing the outputs of the process to a manually 161 
interpreted validation dataset assesses the effectiveness of the rank-order change 162 
detection process. Finally, we demonstrate how the change results generated from this 163 
method could be used to update an existing land cover product. 164 
 165 
2.0 STUDY SITE 166 
 167 
The study site is centered at 54° 45’ 00” N latitude 123° 30’ 00” W longitude and is 168 
located approximately 60 km northeast of Fort St. James, British Columbia, Canada 169 
(Figure 1). The site is located in the Prince George Forest District, which is positioned in 170 
the center of the province in the Sub-Boreal Spruce (SBS) biogeoclimatic zone 171 
(Medinger and Pojar, 1991). This zone spreads across the rolling terrain of the British 172 
Columbia interior plateau. The climate in this region is characteristically extreme, being 173 
hot and moist in the short summer months and cold with a large accumulation of snow in 174 
the winter months. Frequent thunderstorms are common in this zone, creating a fire 175 
hazard in the summer months. Forests here are dominated by white spruce (Picea glauca), 176 
subalpine fir (Abies lasiocarpa), and occasionally black spruce (Picea mariana), 177 
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lodgepole pine (Pinus contorta var. latifolia), and Douglas-fir (Pseudotsuga menziesii) in 178 
drier parts of the zone. Trembling aspen (Populus tremuloides) and paper birch (Betula 179 
papyrifera) are present on moist and dry upland sites (Medinger and Pojar, 1991). This 180 
site was chosen because there was active logging in this area between 1999 and 2005.  181 
 182 
3.0 DATA AND METHODS 183 
 184 
3.1 Image Data 185 
 186 
The Landsat-7 ETM+, ASTER, SPOT-4, and Landsat-5 TM images used in this study are 187 
all located within Path 49, Row 22 of the Landsat World Reference System (WRS) 188 
(Figure 1). These images were chosen based on coincident coverage for each sensor 189 
during the summer growing season, appropriate temporal coverage to perform change 190 
detection analysis, and coverage with minimal cloud/haze contribution. Given these 191 
criteria, it was not possible to acquire data with the same temporal coverage (due to a lack 192 
of systematic collection and archiving of non-Landsat data). The T1 image represented 193 
initial forest conditions and was acquired from the Landsat 7 ETM+ sensor on September 194 
12, 1999 as a Level 1G product (at-sensor radiance, geometrically corrected) (Irish, 195 
2000). The T2 images represented change conditions and were collected, as available 196 
from ASTER, SPOT-4, and Landsat-5 sensors in 2000, 2003, and 2004 respectively 197 
(Table 1). The SPOT-4 image was acquired as an orthorectified Level 1A product (scaled 198 
at-sensor radiance) (SPOT Image, 2006). The ASTER data was acquired as a Level 1B 199 
product (scaled at-sensor radiance and geometrically corrected). The Landsat-5 TM data 200 
were acquired from the USGS in Level 1 format processed using the National Land 201 
Archive Production System (United States Geological Service, 2007). The required 202 
image processing and subsequent analysis steps are outlined in Figure 2. 203 
 204 
3.2 Image pre-processing 205 
 206 
The Landsat-7 ETM+ image is used as the reference scene for initial (T1) forest 207 
conditions (pre-harvest). This image was georeferenced to Universal Transverse Mercator 208 
(UTM) Zone 10, using a nearest-neighbor, first-order polynomial transformation from the 209 
geographic coordinates provided in the header files, in conjunction with vector coverages 210 
from the Canadian National Topographic Database (NTDB) (Geomatics Canada, 1996). 211 
Using the Landsat-7 ETM+ image as the master, an image-to-image registration was then 212 
performed between each of the other images and the T1 image. Each of the other three 213 
images representing the changed forest conditions (T2: ASTER, SPOT-4, and Landsat-5 214 
TM) was corrected to the reference image using a minimum of 16 ground control points 215 
and a first-order polynomial. The root-mean-square (RMS) error was less than 15 m for 216 
each image-to-image correction. As part of the image registration process, the T2 images 217 
were resampled from their original spatial resolution (Table 1), using a nearest neighbor 218 
algorithm, to a 30m spatial resolution to match the spatial resolution of the Landsat-7 219 
ETM+ T1 image. The final step in the pre-processing stage was to extract a common, 220 
cloud-free area over all four images, suitable for analysis. The resultant area selected was 221 
420 by 650 pixels (approximately12.6 km by 19.5 km) (Figure 1). 222 
 223 
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 224 
3.3 Image normalization and change detection 225 
 226 
An ordinal conversion method of assigning ranks to pixel values was used to normalize 227 
the temporal sequence of imagery as per Nelson et al. (2005) (Figure 3). This approach to 228 
image normalization does not require extensive information on scene properties, nor does 229 
it require subjective determination of reference values, both of which are commonly 230 
associated with other image normalization procedures. Using an ordinal ranking 231 
approach, each pixel is assigned a new value based on its reflectance value, relative to all 232 
other reflectance values in the image. The concept of change detection implies that 233 
multiple images are compared to identify changes on the landscape that have occurred 234 
over time. The advantage of the ordinal ranking approach to image normalization is that 235 
the global characteristics of the distributions of pixel values in each image are matched 236 
(e.g., distributions will have the same range in values), thereby improving the detection of 237 
change events (Nelson et al., 2005).  238 
 239 
Only the near-infrared (NIR) band from each sensor was used in the analysis, as this band 240 
was common to all four sensors used in this study, and has documented sensitivity to 241 
vegetation chlorophyll content (Jensen, 2000). Following the approach presented in 242 
Figure 3, the pixel values in the NIR channel for the T1 and T2 images were extracted to 243 
a flat text file and sorted in ascending order. Ranks were then assigned to each pixel value 244 
and when the same pixel value was counted more than once, tied ranks were assigned 245 
(Burt and Barber, 1996) as shown in Figure 3. As per Nelson et al. (2005), it was 246 
understood that exposed areas (e.g., new harvest blocks) are high in the NIR (brightest) 247 
and would have the high ordinal rank values; conversely forested areas appear darker (as 248 
captured in the NIR) and have the lower rank values. The trends captured in each image 249 
with the ordinal rank values are then compared between images (by differencing the two 250 
image); areas where there has been no change will have ranks that match, or are similar, 251 
in the ordinal space, and commensurate rank-order difference values that are zero or close 252 
to zero. Conversely, areas with change will have different rank-order values for each 253 
image, and consequently will have differences in rank-order values that are greater or less 254 
than zero, with the magnitude of the difference varying with type of change that has 255 
occurred. In this manner, change is identified as the relative difference between two 256 
ordinal ranked images. This approach capitalizes upon the global characteristics of the 257 
distributions of pixel values for the image pairs. The change detection and image 258 
normalization are integrated through the rank-order differencing, enabling cross-sensor 259 
change detection. Based on image dimensions and the number of pixels in each image 260 
used in this analysis (which were constant - as all images had the same spatial extent and 261 
the same pixel spatial resolution), possible rank values ranged from 1 to 273000. 262 
 263 
Once a rank image was generated for the T1 image and the T2 images, the T1 image was 264 
subtracted from each of the T2 rank images (i.e., the rank values of the T1 image were 265 
subtracted from the T2 image at each pixel location). In order to reduce noise and to 266 
focus upon stand-replacing disturbances, a 3 by 3 modal filter was applied to each 267 
thresholded change map resulting in an approximate 1 ha minimum mapping unit 268 
(MMU). 269 
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 270 
3.4 Calibration and Validation  271 
 272 
The British Columbia Ministry of Forests and Range provided the forest inventory data 273 
for the study area, which was compiled following the specifications for production of a 274 
vegetation resources inventory (VRI) from aerial photographs collected on various dates 275 
ranging from 1954 to 2005 (Resources Inventory Committee, 2002). The Ministry of 276 
Forests and Range also provided an update layer containing information on forest 277 
harvesting activities between 1999 and 2005. This update layer is generated by the 278 
Ministry using a change detection process and two dates of Landsat imagery, and is used 279 
by the Ministry as a quality assurance tool for auditing the currency of the inventory data 280 
(British Columbia Ministry of Forests and Range, 2007).  281 
 282 
To facilitate the production of a set of calibration and validation data for this study 283 
identifying all of the stand replacing disturbances in the area of interest between 1999 and 284 
2005, the NIR bands from the Landsat-7 ETM+, ASTER, SPOT-4, and Landsat-5 TM 285 
data were loaded into the viewing platform for the manual delineation of change. Using 286 
both the inventory data and the update layer supplied by the Ministry of Forests as 287 
guides, stand replacing disturbance events were manually interpreted from each of the T2 288 
images and labeled with the year of the T2 image in which they were detected. For 289 
example, stand replacing disturbances identified in the 2003 SPOT-4 image were labeled 290 
as "2003"; however, these disturbances could have occurred between 2000 (after the 291 
collection of the ASTER image) and 2003. A summary of the manually interpreted stand 292 
replacing disturbance events is provided in Table 2. There were 31 stand replacing 293 
disturbances in the study area between 2000 and 2004 (Figure 4). A polygon 294 
decomposition process (Wulder and Franklin, 2001) was used to identify the number and 295 
area of forest inventory polygons impacted by stand replacing disturbance events (Table 296 
2). Polygon decomposition is a process enabling the consideration of pixel values falling 297 
within a given polygon. Polygon decomposition, in this case, uses the vector VRI 298 
polygons and the manually delineated stand replacing disturbance polygons to organize 299 
and consider the change detection results.   300 

 301 
To determine the threshold range that corresponded to the stand replacing disturbance 302 
events, the manually delineated disturbances were used as a mask, and all of the pixel 303 
values from each of the differenced image pairs under the mask were extracted. For the 304 
purposes of calibration, 10% of these extracted pixel values were then selected at random 305 
and used in an iterative process to determine the rank-order threshold value. After the 306 
threshold was determined, the pixels with values corresponding to the threshold range 307 
were extracted from the rank-order difference image, placed in a separate data layer, and 308 
labeled as stand replacing disturbance events. These disturbance events were then 309 
compared against the manually delineated disturbance polygons. Since each of the T2 310 
images was acquired in a different year, the objective of the validation was to determine 311 
the effectiveness with which the stand replacing disturbances that occurred between T1 312 
and T2 were detected. The change events identified through the rank-order change 313 
process were then decomposed to the forest inventory polygons to determine if all of the 314 
stands replacing events occurring in any given year were correctly identified. Validation 315 
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is therefore conducted at the polygon level as opposed to the pixel level (Healey et al., 316 
2006b). 317 

 318 
3.5 Land cover update 319 
 320 
The production of land cover maps with medium spatial resolution imagery is common 321 
and is considered reliable and operational (Franklin and Wulder, 2002). At present, the 322 
focus of many applications is the update of these land cover products to reflect changes in 323 
land cover over time (Langevin and Snow, 2004; Feranec et al., 2007). The outputs of the 324 
rank-order change detection process used in this study can be applied to update an 325 
existing land cover product. To demonstrate this, a portion of an existing land cover 326 
product, corresponding to the study area, was updated. The original land cover product 327 
was created for the Earth Observation for Sustainable Development of Forests (EOSD) 328 
project using Landsat-7 ETM+ to represent land cover circa 2000 (Wulder et al., 2003). 329 
GIS processing can be used to update the EOSD product with the stand replacing 330 
disturbances identified from the rank-order change detection process. 331 
 332 
 333 
4.0 RESULTS 334 
 335 
4.1 Rank-order change detection 336 
 337 
Each of the T2 images was processed separately according to the methods outlined in 338 
Figures 2 and 3. The rank-order process normalized the distributions of the NIR band for 339 
the images (Figure 5) and thereby eliminated the need to use a more complex radiometric 340 
normalization process. The ranks of the T1 image were subtracted from the ranks of each 341 
of the T2 images. The distributions of the rank difference values for each of the T1 and 342 
T2 image pairs are shown in Figure 5. Three scenarios were expected and observed: 343 
negative values would be found where the T1 image had a higher rank than the T2 image 344 
(indicating forest growth); positive values would be found where the T2 image had a 345 
higher rank than the T1 image (indicating forest depletion); and values close to zero 346 
would be found where there was no or minimal change.  347 
 348 
4.2 Threshold development 349 
 350 
Using the manually interpreted stand replacing disturbances as a mask, the pixel values 351 
representing the rank-order difference between the Landsat-7 ETM+ image (1999) and 352 
the ASTER (2000), SPOT-4 (2003), and Landsat-5 TM (2004) images were extracted. 353 
Figure 6 shows the distribution of ordinal-rank difference values corresponding to these 354 
manually interpreted stand replacing disturbances for each image pair. These distributions 355 
indicate that conditions within a stand replacing disturbance are not homogenous and this 356 
is in keeping with our understanding of operational forestry. Harvested areas are often an 357 
assemblage of leave patches (groups of standing trees left behind for various management 358 
or logistical reasons), other intact vegetation, slash piles, landings, and roads – resulting 359 
in high spectral variability. A threshold range is applied to the rank difference image to 360 
identify the majority of pixels corresponding to stand replacing disturbance, while at the 361 
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same time minimizing errors of omission and commission. For example, pixels 362 
representing leave patches in the T2 image will likely have rank difference values close 363 
to zero, whereas pixels representing newly constructed roads or landings in the T2 image 364 
will likely have large positive difference values. In the analysis described here, a 365 
threshold minimum is therefore used to avoid inclusion of vegetation that has not 366 
changed (lower end of the rank difference distribution), while a threshold maximum is 367 
used to avoid identifying all roads and landings (at the upper end of the rank difference 368 
distribution) as stand replacing disturbance. If our objective was to identify both stand 369 
replacing disturbances and all new road construction within our study area, a maximum 370 
threshold would likely not be necessary.  371 
 372 
To facilitate threshold selection, 10% of these pixel values were selected at random. The 373 
mean and standard deviation the rank-order difference values were then iteratively used 374 
to determine the threshold for each image source. It was found that by using the mean 375 
value of the rank difference distribution ± 1 standard deviations, the stand replacing 376 
disturbances could be identified in all of the image sources (Table 3 and Figure 6). All 377 
pixel values having rank difference values within the threshold range, for each T2 image, 378 
were extracted, placed in a separate data layer, and labeled as stand replacing disturbance 379 
events. The application of the threshold resulted in many small areas or single pixel units 380 
identified as change. Many of these areas corresponded to locations where new roads had 381 
been constructed or where there was a potential spatial misregistration between the T1 382 
and T2 images. These small change units were filtered out with the same operational 383 
criteria used in the construction of the VRI data (a 2 ha minimum mapping unit) 384 
(Resources Inventory Committee, 2002). As a result, all of the disturbance events that 385 
remained were greater than 2 ha in size. 386 
 387 
4.1 Validation 388 
 389 
A polygon decomposition process (Wulder and Franklin, 2001) was used to organize the 390 
stand replacing disturbance events identified by the rank-order change process to the 391 
corresponding forest inventory polygon (VRI). Table 4 summarizes the validation results. 392 
The first two columns of Table 4 characterize the VRI data and indicate the unique id and 393 
area (ha) of the VRI polygon. The next 3 columns characterize the manually delineated 394 
disturbance information by the year of the disturbance, area (ha), and proportion of the 395 
corresponding VRI polygon that was harvested. The subsequent columns summarize the 396 
area (ha) and proportion of the corresponding VRI polygon that were labeled as stand 397 
replacing disturbance through the rank-order change detection process. For example, VRI 398 
polygon #17272, with an area of 37 ha, was, according to the manual delineation, 100% 399 
harvested in 2000. The rank differencing approach using the ASTER image (2000), 400 
indicates that 78% of the polygon was harvested. This difference in area reported by the 401 
manual delineation and the change detection approach may be attributed to the fact that 402 
the manually delineated disturbance would generalize conditions on the ground by 403 
lumping all features, such as leave patches and roads, into the disturbance polygon, while 404 
the image-based change detection approach captures more spatially discrete units of 405 
change - and with the threshold range applied, excludes extreme difference values that 406 
are not directly associated with the removal of vegetation cover. For polygon #17272, the 407 
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proportion of the polygon identified as having been disturbed diminishes over time, likely 408 
due to either reforestation or re-establishment of natural vegetation over time; the SPOT-409 
4 (2003) and Landsat-5 (2004) images identified 64% and 55% respectively of the VRI 410 
polygon as disturbed.  411 
 412 
VRI polygon #45917 was also 100% harvested in 2004. Related harvesting activity may 413 
have occurred in 2003 however, as the SPOT-4 (2003) data identified that 6% of polygon 414 
#45917 was disturbed that year. It is worth noting that in an operational forestry context,  415 
harvest blocks do not always align with stand boundaries as defined as the forest 416 
inventory. There are several reasons for this: first, the VRI is a strategic inventory 417 
delivered at a scale of 1:20,000, which provides an inadequate level of detail and spatial 418 
precision for operational harvesting plans. Secondly, there may be issues in how the 419 
original VRI polygon was delineated (e.g. the interpreter incorporated a swamp into the 420 
stand polygon, and it is unlikely that this area of the stand would be harvested); and 421 
finally, there may be operational or management constraints associated with harvesting 422 
certain areas of the stand. All of these factors, combined with the aforementioned 423 
difference in spatial representation inherent in raster and vector data sources, result in the 424 
variability in the proportion of the polygon that is disturbed.  425 
 426 
Overall, Table 4 indicates that the rank-order change process applied to the corresponding 427 
year of the remotely sensed imagery successfully identified all of the stand replacing 428 
disturbances occurring in any given year. Figure 7 illustrates the proportion of each VRI 429 
polygon that was identified as change by each of the image sources. For example, all of 430 
the stand replacing disturbance events that occurred in 2000 were identified in the 431 
ASTER (2000) imagery. In addition, some disturbances occurring after August 2000 432 
were also detected with ASTER (2000) for some VRI polygons that were subsequently 433 
harvested in 2003 or 2004, indicating capture of pre-harvesting access (road building) 434 
developments. Figure 7 illustrates the challenge associated with characterizing dynamic 435 
change on the landscape, where even for stand replacing disturbance, the change may 436 
manifest over several years. Four commission errors occurred where stand replacing 437 
disturbances were identified by the rank-order change detection process, but where the 438 
manual delineation did not identify any change events. These errors are noted in the last 4 439 
rows of Table 4 (polygons #8344, #8454, #8781, #45951).   440 

 441 
4.3 Land cover updating  442 
 443 
Figure 8 illustrates the process followed to update an existing land cover product based 444 
on the outputs generated from the rank-order normalization and change detection 445 
procedure. Figure 8(A) and (B) depict the pre- and post-forest harvest scenes acquired 446 
from Landsat-7 and SPOT-4 platforms, respectively. Figure 8(C) details a subset of the 447 
EOSD land cover legend, as it pertains to the area under investigation, while Figure 8(D) 448 
shows the EOSD land cover product, representing land cover conditions in this area circa 449 
2000. The change output generated from the rank-order process is shown in Figure 8(E) 450 
and finally, the updated EOSD land cover is shown in Figure 8(F). In this example, the 451 
type of disturbance and spectral clues from the T2 image aid in label assignment. 452 
 453 
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5.0 DISCUSSION 454 
 455 
Regardless of the change detection approach followed, some form of image 456 
normalization is invariably required to ensure that detected changes result from physical 457 
changes in the target, rather than differences in image properties. For example, Paolini et 458 
al. (2006) found that change detection methods applied to non-corrected image pairs 459 
resulted in estimates of change in broad land cover classes that were two to three times 460 
greater than estimates obtained with corrected imagery. Similarly, Nelson et al. (2005) 461 
found changes in forest cover were difficult to detect when using non-normalized 462 
imagery. The need to normalize images must be weighed against the effort and cost 463 
required to complete the normalization (Cohen et al., 1998), and some consideration must 464 
also be given to the objective of the change detection (e.g., to identify stand replacing 465 
disturbance or identify all changes in forest cover) when assessing the need for 466 
normalization (Cohen et al., 2002).  467 
 468 
The information received at a sensor includes measurements of reflected solar energy, 469 
and is inherently influenced by such factors as the spectral band response function, solar 470 
zenith angle, and sun-object-sensor orientation. More importantly, when analyzing multi-471 
temporal imagery from the same sensor, environmental variables such as atmospheric 472 
conditions, topography, surface moisture, and seasonal phenology all influence the signal 473 
received at the sensor (Coops et al., 2006). When analyzing multi-temporal imagery from 474 
different sensors, all of the aforementioned factors must be considered as well as 475 
additional factors such as differences in the spectral and spatial resolutions of sensors, 476 
and in cross-sensor calibration coefficients must also be considered.  477 
 478 
Normalizing multiple dates of imagery from the same sensor can be accomplished 479 
through either absolute or relative radiometric normalization techniques (Song and 480 
Woodcock, 2003). Absolute normalization (or image calibration) attempts to calibrate 481 
multiple images to a standard radiometric scale that results in comparable units such as 482 
surface reflectance (Peddle et al., 2003) and is often performed as a two-step process 483 
involving calibration coefficients that are used to convert at-sensor radiance to planetary 484 
reflectance, followed by the use of a radiative transfer model to derive surface reflectance 485 
based on in situ atmospheric measurements. In cases where no atmospheric data or sensor 486 
calibration data is available (especially when using historic image data), relative 487 
radiometric normalization is applied to match two or more scenes to one another based on 488 
an arbitrary scale such as scaled radiance or digital number (Yuan and Elvidge, 1996; 489 
Hall et al., 1991). This approach has been used to radiometrically normalize imagery to 490 
create seamless, large-area mosaics (Du et al., 2001), to estimate multi-temporal and 491 
multi-sensor defoliation in the boreal forest (Heikkila et al., 2002), to test change 492 
detection in forested environments (Chen et al., 2005; Nelson et al., 2005) and to derive a 493 
seamless mosaic of northern Canada from Landsat imagery (Olthof et al., 2005). 494 
 495 
Normalizing multiple dates of imagery from multiple sensors is complicated by the 496 
differences in spatial and spectral resolution, and in sensor calibration coefficients. These 497 
complexities may explain why there are so few cross-sensor studies that have appeared in 498 
the literature. Landsat is fairly robust, and much effort has been focused on studying the 499 



 12

relative calibration of each instrument (Teillet, et al., 2001; Teillet et. al. 2006). Examples 500 
of multi-sensor change detection are becoming more common due to the limited 501 
availability of data from older sensors or data from sensors that have stopped collecting 502 
data due to technical or administrative concerns (Serra et al., 2003). Cross-sensor 503 
normalization attempts to remove differences between multi-sensor images that are due to 504 
non-surface factors (Heo and FitzHugh, 2000). With the launch of Landsat-7 ETM+ in 505 
1999, much of the multi-sensor research has focused on cross-calibration between the 506 
ETM+ sensor and earlier Landsat sensors (TM or MSS) to provide a consistent 507 
radiometric record from the extensive archive of Landsat imagery collected since 1972 508 
(Teillet et al., 2004; Roder et al., 2005). Several studies have made use of the robust 509 
cross-calibration between Landsat sensors to characterize long-term trends in rangeland 510 
coverage (Hostert et al., 2003), post-fire vegetation dynamics (Chen et al., 2005), and 511 
patterns of forest succession (Schroeder et al., 2006; Song et al., 2007).  512 
 513 
Data continuity is an important consideration for long-term monitoring programs and the 514 
unavailability of desired imagery from a particular sensor can restrict the goals of such a 515 
program. A multi-sensor change detection procedure, such as the rank-order change 516 
process demonstrated in this study, could be used to develop and analyze a suite of 517 
potential satellite sensors for long-term change detection studies. The approach shown 518 
here is ideal for detecting change in studies involving multi-temporal datasets where 519 
problems may arise due to relative image normalization or cross-sensor absolute 520 
radiometric calibration and issues around data continuity. 521 
 522 
In this study, we applied a method of change detection, which addressed the issue of 523 
normalization of imagery collected with different sensors, and facilitated generation of 524 
change outputs. We applied an ordinal rank normalization procedure after Nelson et al. 525 
(2005) to multi-temporal imagery acquired from four different satellite sensors (Landsat-526 
5 TM, Landsat-7 ETM+, ASTER, and SPOT-4) and use image differencing to detect 527 
changes between image dates. The normalization procedure employed in this method 528 
does not require extensive information on atmospheric parameters or the subjective 529 
selection of pseudo-invariant features. Each pixel is assigned a rank, relative to all other 530 
pixels in the image. The rank values for the image pairs are then subtracted and a 531 
threshold is applied to the difference values. 532 
 533 
There are however several caveats associated with the use of the rank-order 534 
normalization change detection procedure. Firstly, as with many change detection studies, 535 
analysis of the results at the individual pixel level should be avoided, as the change maps 536 
are inherently noisy due to misregistration between image dates or differences in spatial 537 
resolution. Although this issue restricts the size of the change events that the procedure 538 
will resolve, as illustrated in this study, the trade-off is a more accurate change map at a 539 
slightly coarser spatial resolution. Furthermore, the use of existing data sets and 540 
operational mapping criteria provide a realistic context for the change detection. In this 541 
study, the existing forest inventory data and requirements for minimum mapping unit 542 
sizes were used pragmatically to capture the change events of interest.  543 
 544 
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Secondly, change thresholding is a somewhat subjective operation that should be 545 
strengthened through the use of pre- and post-disturbance ground surveys. Although this 546 
type of data was not available in this study, future work using this normalization 547 
procedure for change detection can be made more operational given calibration 548 
measurements on the ground to measure disturbance characteristics. The ability to use the 549 
statistical distribution of the data to determine a threshold, and to be able to apply the 550 
same standard criteria for the threshold (i.e., the mean ± 1 standard deviation) is 551 
advantageous in a multi-date, multi-sensor study such as this. For instance, 8-bit images 552 
only allow for a range of 256 possible values and the resultant normalized image may 553 
reveal many tied ranks, which may be an issue when using imagery with a narrow 554 
dynamic range or when attempting to discern subtle changes. Such issues merit further 555 
investigation over larger spatial extents. A related opportunity for additional research is in 556 
the investigation of rank-order change detection to detect a broader range of disturbance 557 
types. Further, the map update approach can be made increasingly sophisticated through 558 
use of context information (i.e., disturbance type) and spectral information (T2 class). 559 
 560 
 561 
6.0 CONCLUSIONS 562 
 563 
The main objective of this study is to capture stand-replacing disturbances across a 564 
forested landscape using data from multiple remote sensing platforms. Normalizing 565 
multiple dates of imagery from multiple sensors is complicated not only by factors 566 
relating to atmospheric conditions and sun-object-sensor illumination geometry but also 567 
by differences in spatial and spectral resolution, and at-sensor calibration coefficients. In 568 
this study, we attempt to minimize multi-temporal, multi-sensor differences by applying a 569 
rank-order change detection approach to derive change maps from Landsat-5, ASTER 570 
and SPOT-4 sensors, using an earlier baseline Landsat-7 image as reference. The rank-571 
order change detection process may be most useful for applications involving multi-572 
temporal and multi-sensor datasets where there is insufficient information for image 573 
normalization and cross-sensor radiometric calibration, or where data from the desired 574 
sensor is unavailable. The results of in this study show that methods for cross-sensor 575 
change may be developed that meet a particular application need, such as mapping stand 576 
replacing disturbance.  577 
 578 
Limitations to cross-sensor change detection include: the absence of a spatially or 579 
temporally extensive image archive for the majority of sensors other than Landsat; small 580 
and/or incompatible image footprints and the associated processing overhead; and data 581 
distribution, policy, and cost. These logistical issues are likely to have a greater impact on 582 
further developments in cross-sensor change detection than issues of a purely scientific 583 
nature, and further emphasize the on-going need, particularly in the context of land cover 584 
applications, to promote and ensure continuity of the Landsat program and sensors.  585 
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Table 1. Study image data.  
 

Sensor Acquisition Date 
Spatial Resolution 

(m) 

NIR Spectral 
Resolution 

(µm) 

Landsat-7 ETM+ September 12, 1999 30 0.75 - 0.90 

ASTER August 4, 2000 15 0.78 - 0.86 

SPOT-4 August 8, 2003 20 0.79 - 0.89 

Landsat-5 TM July 15, 2004 30 0.75 - 0.90 
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Table 2. A summary of the manually interpreted stand replacing disturbance events 
and the corresponding VRI polygons. 
 
 

Date Range and Data 
Sources 

Count of stand 
replacing 

disturbance 
polygons 

Area (ha) 
Number of VRI 

polygons 
VRI polygon 

area (ha) 

1999-2000 
Landsat 7 ETM+ (1999) 
and ASTER (2000) 

5 144 6 202 

1999-2003 
Landsat 7 ETM+ (1999) 
and SPOT-4 (2003) 

23 739 23 754 

1999-2004 
Landsat 7 ETM+ (1999) 
and Landsat-5 TM 
(2004) 

3 102 4 115 
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Table 3. A summary of information used for threshold determination. 

Image  Year 
Total # of 

Pixels 
Sample 

Size 
Mean 

Standard 
Deviation 

Lower 
Threshold 

Upper 
Threshold 

ASTER 2000 1599 160 114860 64554 50306 179414 

SPOT-4 2003 8172 817 125695 60855 64840 186550 

Landsat-5 2004 1133 113 122612 54215 68397 176827 
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Table 4. A complete listing of the polygon decomposition results of the manually 
interpreted stand replacing disturbance, and output from the rank-order change 
detection process for the ASTER, SPOT-4, and Landsat-5 TM data. 
 

VRI 
DISTURBANCE 

DATA 
ASTER (2000) SPOT-4 (2003) 

LANDSAT-5 
(2004) 

VRI# 
AREA 

(ha) 
YEAR 

AREA 
(ha) 

% of 
VRI 

POLY 

AREA 
(ha) 

% of 
VRI 

POLY 

AREA 
(ha) 

% of 
VRI 

POLY 

AREA 
(ha) 

% of 
VRI 

POLY 
17272 37 2000 37 100 29 78 24 64 21 55 
45898 53 2000 29 56 20 38 23 43 21 41 
45940 45 2000 28 63 15 33 16 35 15 32 
45945 37 2000 19 53 9 24 12 32 12 34 
45947 22 2000 22 100 8 36 10 46 9 39 
45948 8 2000 8 100 5 66 3 43 4 45 
45896 35 2003 35 100 3 7 20 57 17 50 
45897 9 2003 9 100 0 3 6 64 5 52 
45899 15 2003 15 100 0 2 12 79 10 67 
45900 18 2003 18 100 1 3 14 82 14 81 
45901 15 2003 9 61 0 2 7 49 7 44 
45909 27 2003 27 100 0 0 17 64 15 55 
45912 23 2003 23 100 0 0 17 75 12 53 
45913 30 2003 30 100 0 0 18 60 13 43 
45916 15 2003 15 100 0 0 10 66 8 57 
45924 40 2003 40 100 0 0 33 82 29 73 
45925 41 2003 41 100 0 1 29 70 15 36 
45927 17 2003 17 100 1 7 12 69 7 39 
45931 7 2003 7 100 0 2 6 79 5 65 
45932 33 2003 33 100 1 4 24 73 12 38 
45933 7 2003 7 100 0 0 2 32 1 12 
45937 17 2003 17 100 0 2 5 27 4 26 
45938 35 2003 35 100 2 6 30 85 29 82 
45939 117 2003 98 83 6 5 69 58 64 54 
45944 96 2003 96 100 5 5 65 67 19 20 
45946 27 2003 27 100 0 0 12 45 11 41 
45949 52 2003 52 100 1 1 24 45 18 35 
45950 51 2003 51 100 5 10 39 76 24 47 
45952 27 2003 27 100 1 2 24 88 24 89 
45915 43 2004 30 71 1 1 2 6 19 45 
45917 45 2004 45 100 1 2 3 6 23 51 
45921 13 2004 6 44 0 1 0 3 4 32 
45935 15 2004 9 62 0 2 1 7 7 46 
8344 8 0 0 0 3 37 1 13 1 11 
8454 8 0 0 0 2 30 0 1 0 1 
8781 8 0 0 0 3 36 0 4 1 7 

45951 6 0 0 0 1 17 2 38 1 22 
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Figure 1. Image extents for the Landsat-7 ETM+, ASTER, SPOT-4, and Landsat-5 

TM (420 by 650 pixels). The NIR band for each image is shown (see Table 1 
for spectral range of NIR). The ASTER and SPOT-4 images were resampled 
to a 30 meter spatial resolution to match the Landsat images. 
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Figure 2. Flowchart illustrating the change detection steps. 
 
 



 26

 
 
Figure 3. The rank-order normalization procedure. 
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Figure 4. Forest inventory data with location and year of stand replacing 

disturbance. 
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Figure 5. Distribution of rank pixel values for the NIR band from each of the image 

sources. 
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Figure 6. Distribution of the rank-order difference values within stand replacing 

disturbances for each of the T1 and T2 image pairs with threshold ranges 
indicated. 
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Figure 7.  Proportion of forest inventory polygons identified as disturbed by the 

ASTER, SPOT-4, and Landsat-5 TM imagery. 
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Figure 8. Updating a land cover map based on change areas derived from SPOT-4 
imagery from 2003. A. Landsat-7 image, 1999. B. SPOT-4 image, 2003. C. 
EOSD land cover legend. D. Land cover circa 2000. E. Change Mask filtered 
to 1ha. F. Updated land cover map, circa 2003. 

 
 
 


