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Abstract 

Global estimation and monitoring of plant photosynthesis (known as Gross Primary 

Production - GPP) is a critical component of climate change research. Modeling of 

carbon cycling requires parameterization of the land surface, which, in a spatially 

continuous mode, is only possible using remote sensing. The increasing availability of 

high spectral resolution satellite observations with global coverage and high temporal 

frequency has allowed the scientific community to revisit a number of existing 

approaches for modeling GPP, and reassess the potential for using remotely sensed 

inputs. In this paper we examine the current status and future requirements of modeling 

global GPP thereby focussing on the light use efficiency approach which expresses 

GPP as product of the photosynthetically active radiation (PAR), the fraction of PAR 

being absorbed by the plant canopy (fPAR) and the efficiency  with which this absorbed 

PAR can be converted into biomass. The capacity of remote sensing to provide the 

critical input variables for this approach is investigated and key issues are identified and 

discussed for future research.  

 

Keywords: remote sensing, GPP, photosynthesis, light use efficiency, fPAR, carbon 

fluxes 
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1. Introduction 

Terrestrial ecosystems absorb approximately 60 Gt of carbon annually through the 

physiological process of photosynthesis (Janzen, 2004), also referred to as Gross 

Primary Production (GPP) (Hamilton et al., 2002). Simultaneously, autotrophic and 

heterotrophic organisms release about the same amount of carbon back into the 

atmosphere thereby closing the terrestrial carbon cycle. As the estimated annual 

turnover between the atmosphere and terrestrial ecosystems is approximately 120 Gt, 

considerably greater than the amount of fossil fuel emissions (5 Gt), small alterations in 

the terrestrial carbon balance are likely to have a significant impact on atmospheric CO2 

concentrations. As a result, there is a need for a better understanding of the dynamics 

of carbon fluxes between biosphere and atmosphere to help quantifying potential 

changes due to increased atmospheric CO2 rates (Comins and McMurtrie 1993; Luo 

and Reynolds 1999). Global monitoring and prediction of GPP over forested and 

agricultural environments is therefore an ultimate goal of Earth climate change research 

seeking universal, generic modelling approaches applicable across multiple biomes and 

a wide variety of vegetation types. 

Modeling of carbon cycling requires parameterization of the land surface (Hall et al., 

1995), which, in a spatially continuous mode and on a regularly basis, is only possible 

using remote sensing. Modeling GPP from remote sensing is largely based on the 

awareness that plant physiological properties are related to the biochemical composition 

of plant foliage, and that this composition is reflected in the spectral radiation properties 

of leaves. Since the launch of the first satellite based sensors in the 1970s the remote 
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sensing community has been limited in the number and width of the spectral wavebands 

available, and observation frequencies of existing sensors were incapable of detecting 

the spatial and temporal variability of primary production of vegetation. Recently, the 

advent of high spectral resolution optical sensors, capable of detecting changes in leaf 

spectral properties with a high temporal frequency (Prince and Goward, 1995) has 

allowed the scientific community to revisit a number of existing approaches for modeling 

GPP, and reassess the potential for using remotely sensed inputs, with the ultimate aim 

of driving GPP models entirely from satellite based observations (Running et al., 2004; 

Rahman et al., 2005). This paper reviews the current status of determining GPP from 

remotely sensed inputs and addresses future requirements for developing remote 

sensing based models of the terrestrial carbon cycle, specifically on approaches based 

on the light use efficiency concept. 

 

2. Light use efficiency based modeling of primary production   

One of the most widely applied concepts for modeling GPP is the light use efficiency 

approach of Monteith (1972; 1977) (e.g. Prince, 1991; Goetz and Prince, 1999; Heinsch 

et al., 2002; Turner et al., 2003a,b), which expresses GPP as the product of the 

absorbed photosynthetically active radiation (PAR) ( mol m-2 s-1), defined as absorbed 

solar radiation between 400-700 nm wavelength, and the efficiency, with which the 

absorbed PAR can be converted into biomass: 

PARfPARGPP    (1) 
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where fPAR represents the fraction of PAR absorbed by the canopy and  (g MJ-1) is the 

photosynthetic efficiency term. The light use efficiency concept is based on the 

functional convergence theory (Field, 1991) hypothesizing that plants are scaling 

canopy leaf area and light harvesting by the availability of resources as a result of 

evolutionary processes in order to optimize their carbon fixation (Goetz et al., 1999). 

Detailed development and discussion of the underlying concepts behind the light use 

efficiency model are described in extensive studies and reviews by Field (1991), Reich 

et al. (1997) and Goetz and Prince (1999).   

 

The amount of photosynthetically active radiation absorbed by a plant canopy a is 

defined as the difference between the PAR incident upon the canopy (Q), the amount of 

PAR being reflected from the canopy ( r), and PAR being transmitted through the 

canopy ( t) (Beer-Lambert law): 

tra Q      (2) 

For a given time, r and t are a function of the leaf surface area (Sellers, 1985) 

parameterized by the leaf area index (LAI) defined as half the total foliage area per unit 

ground surface area (Chen and Black, 1992). Because of temporal variations in solar 

irradiance, chlorophyll content (Dawson et al., 2003) and leaf-sun geometry (Chen and 

Black, 1992) the amount of solar radiation being absorbed by a plant canopy varies 

diurnally as well as seasonally (Chen, 1996).  
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 is determined by the most limiting of a large number of environmental stresses 

restraining the photochemical reaction process, such as nutrition supply, water and 

temperature, depends on individual vegetation types, and, as a result, varies greatly 

within space and time (Field and Mooney 1986; Prince and Goward 1996; Turner et al. 

2003b). The biochemical process driving  is known as photoprotection (Figure 1). In 

situations where plants receive more sunlight than they can actually use, light 

harvesting is being regulated to balance absorption and utilization of quanta as 

excessive light energy can cause photo-oxidative damage to the leaf (Demmig-Adams, 

1990). The mechanism regulating the use of absorbed light is uniformly controlled by a 

group of leaf pigments named xanthophylls which occur over a broad range of species 

(Bilger et al., 1989; Bilger and Björkman 1990; Demmig-Adams and Adams, 2000; 

Demmig-Adams et al., 1998). Under excessive light conditions, the xanthophyll cycle 

pigment violaxanthin is de-epoxidized rapidly via intermediate antheraxanthin to 

zeaxanthin and this reaction is reversed when light is limiting. Antheraxanthin, as well 

as zeaxanthin, have photo-protective structures accepting excessive light energy from 

the antenna pigments of Photosystem II and safely dissipating it as heat (Demmig-

Adams and Adams, 1996). Recently, a second xanthophyll cycle, the lutein cycle, has 

been discovered (Bungard, 1999), which is believed, within some species, to work in 

parallel. Photo-protection is also closely related to active emittance of light quanta in 

leaves, known as chlorophyll fluorescence (Demmig-Adams and Adams, 1996).  
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Figure 1: Schematic drawing of the photoprotective mechanism inside the light harvesting complex (LHC) of 
a leaf. A: Light is harvested by antenna pigments and the energy is transferred to the reaction center. B: In 
case plants receive more light energy than they can actually use, this excessive energy accumulates inside 
the LHC (illustrated by the black disk). Excessive radiation energy can potentially cause photo-oxidative 
damage to the photosynthetic apparatus of the leaf. C: The excessive radiation energy is safely dissipated as 
heat by means of a quenching complex. At the same time chlorophyll fluorescence is increased thereby re-
emitting photons into space.    

 

3. Current status of determining GPP from remote sensing  

3.1 Photosynthetically active radiation 

While the extraterrestrial radiation budget and its wavelength distribution are well known 

and relatively constant, the terrestrial reception of PAR is altered by a dynamically 

changing atmosphere (Van Laake and Sanchez-Azofeifa, 2004). Atmospheric radiative 

transfer is driven by absorption, molecular (Raleigh) and particle (Mie) scattering effects 

attenuating the amount of solar radiation received by the earth surface (Szeicz, 1974; 

B 

C 
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Rao, 1984; Baker and Frouin, 1987). Early estimates of broad scaled PAR were 

obtained from networks of surface pyranometers (Bland and Clayton, 1994; Bland, 

1996), allowing long-term time series from well maintained and calibrated instruments. 

This method, however, is insufficient for global modeling since estimates of PAR are 

restricted to a few discrete observations (Frouin and Pinker, 1995). Since the launch of 

the first multispectral satellite sensors, numerous approaches have been developed to 

infer large scaled PAR from top of the atmosphere solar radiance using optical modeling 

(Sellers et al., 1995) to allow spatially exhaustive estimates of broadband and 

shortwave irradiance (Eck and Dye, 1991; Frouin and Gautier, 1992; Pinker and Laszlo, 

1992). PAR is thereby often defined as a fraction of the reflected shortwave radiation 

(e.g., Tarpley, 1979; Gautier et al., 1980; Pinker and Ewing, 1985; Running et al., 1999), 

which is sufficient for most biological applications (Blackburn and Proctor, 1983; Weiss 

and Norman, 1985). 

Recently, research focuses on incorporating the temporal and spatial variability of solar 

irradiance with respect to changing atmospheric conditions into global estimates of PAR 

to obtain highly accurate inputs for climate change modeling. Atmospheric conditions 

are currently assessed on a global scale by the Moderate Resolution Imaging 

Spectroradiometer (MODIS), on board of NASA’s EOS (earth observation system) 

satellites Terra and Aqua. The MODIS Atmospheric Profile products (MOD04–MOD07) 

consist of total-ozone burden, atmospheric stability, temperature and moisture profiles, 

and atmospheric water vapour, measured on a daily basis. Even though the 

atmospheric interactions of solar irradiance are well understood, a standardized product 

providing regular observations of global PAR is currently not available (Liang et al., 
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2006), however, techniques to derive accurate estimates of global PAR using MODIS 

have been developed (Van Laake and Sanchez-Azofeifa, 2004; Liang et al. 2006). 

 

3.2 Absorbed photosynthetically active radiation 

Approaches to infer the fraction of PAR which is absorbed by the vegetation canopy 

using remote sensing techniques can be divided into empirical techniques, primarily 

relying on curve fitting of reflectance measurements and physical approaches, which 

attempt to model the relationship between leaf, canopy and stand-level biophysical 

characteristics and reflected and emitted radiation (Myneni and Williams, 1994; Hall et 

al., 1995) (Figure 2).   

 

3.2.1 Empirical determination of absorbed PAR 

Empirical approaches are largely based on spectral vegetation indices (SVI) which are 

linear and non-linear combinations of discrete spectral bands, seeking to maximize the 

sensitivity of the index to the canopy characteristic requested while minimizing the 

sensitivity to the unknown and unwanted canopy characteristics (Hall et al., 1995). 

Starting in the early 1980s, numerous studies have shown substantial evidence of a 

close relationship between fPAR and the top of the canopy reflectance measurements in 

the visible and near infrared region (Tucker 1979; Daughtry et al. 1983; Asrar et al. 

1984), and theoretical work (Sellers, 1985; 1987) has given this relationship a solid 

basis as a measure of the solar photosynthetically active radiation absorbed by the 

canopy. Various linear and non-linear relationships between satellite-derived SVIs and 
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fPAR have been found for different vegetation types and climatic conditions (e.g., Asrar et 

al., 1984; Badhwar et al., 1986; Fassnacht and Gower, 1997) with the most popular SVI 

being the Normalized Difference Vegetation Index (NDVI), defined as 

dReNIR

dReNIRNDVI    (3)  

where NIR and Red is the reflectance in the near infrared and red, respectively (Tucker 

1979). SVIs have also been used to follow seasonal dynamics of vegetation using 

temporal profile analysis (Badhwar and Henderson, 1981; Henderson and Badhwar, 

1984), and, when seasonally integrated, have been shown to be correlated with above-

ground net primary production (NPP, defined as the difference between GPP and plant 

respiration) on an annual basis (Goward and Dye, 1987; Waring et al., 2006). 

While the body of evidence proving these relationships is impressive (Myneni and 

Williams, 1994), a direct conversion of satellite spectral reflectance to surface fPAR over 

larger areas is difficult, since empirical relationships are site and sampling condition 

dependant, sensor-specific, change in space and time and generally are unsuitable for 

application to large areas or in different phenological seasons (Goward and Huemmrich, 

1992; Huemmrich and Goward, 1997; Gobron et al., 1997). Major factors influencing 

empirical estimates of fPAR using SVIs are vegetation spectral properties, pixel 

heterogeneity, background reflectance, solar zenith and view zenith angle, vegetation 

shadow fractions, atmospheric scattering and bidirectional reflectance effects (Li and 

Strahler, 1985; Myneni and Williams, 1994). Some of these factors can be mitigated 

using more advanced indexing techniques such as the enhanced vegetation index (EVI) 
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(Huete et al., 2002; 2006), which seek to enhance the vegetation signal with improved 

sensitivity in high biomass regions thereby de-coupling canopy background signals and 

reducing atmospheric influences, however, broad scaled direct application of vegetation 

indices remains challenging (e.g. Running and Nemani, 1988).   

An empirical solution to the directional reflectance problem, resulting in the first globally 

available LAI and fPAR product as a monthly 1x1° dataset, was the FASIR (Fourier 

Adjusted, Solar zenith angle corrected, Interpolated and Reconstructed) approach of 

Sellers et al. (1994) and Los et al. (1994), based on data from the spaceborne 

Advanced Very High Resolution Radiometer (AVHRR) sensor (Tucker et al., 1986). 

FASIR accounts for the effects caused by varying illumination conditions using heuristic 

corrective methods to obtain spatially continuous multiyear datasets of surface 

variables, primarily for use in global climate models (Hall et al. 1995). Further (semi-

physical) algorithms for the modeling of global LAI have also been reported by Price 

(1993).  

 

3.2.2 Physical models for determination of absorbed PAR 

Since the mid-1980’s there has been an increase in the development of physical 

approaches to determining fPAR, due partly to global diagnostic studies using satellite 

data (Tucker and Sellers, 1986), plot scale field studies (Asrar et al., 1984; Tucker et al., 

1981), large field experiments (Sellers et all., 1992; Hall et al, 1992; Sellers et al., 1997; 

Running et al., 1999) and theoretical work (Myneni et al, 1992; Hall et al, 1990; Sellers 

1985; 1987; Sellers et al,. 1992; Sellers et al., 1996a,b). This research formed the basis 
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for physical models of canopy reflectance, transferring reflectance and biophysical 

property relationships from the leaf level, where they can be easily measured and 

related to leaf composition and structure, to the pixel level, where leaf optics interact 

with canopy structure, understorey characteristics, background reflectance, view and 

illumination geometry to produce a complicated relationship among pixel-level 

reflectance, stand structural, biophysical and leaf optical properties (Hall et al., 1995). 

The understanding gained from these models is then used to develop algorithms to 

relate biophysical characteristics to reflectance measurements on the landscape and 

global levels (Hall et al., 1995). Modeling efforts that have addressed this problem are 

numerous, and can be placed into four general classes (Goel, 1988): 1) turbid medium 

models, describing the interaction of photons in the atmosphere-vegetation-soil medium 

(e.g. Myneni et al., 1997), 2) geometric optical models (e.g. Li and Strahler, 1985), 3) 

hybrid combinations of 1) and 2) (e.g. Li et al, 1995), and 4) complex computer 

simulation models (e.g. Goel et al., 1991). The model parameters either depend on 

physical properties directly (i.e. canopy structure and vegetation type) or can be 

obtained from mathematical inversion of reflectance measurements (e.g. Wanner et al., 

1995), allowing the estimation of both leaf and canopy parameters in a predictive mode, 

thereby overcoming the need of parameterisation required for the use of regressive 

semi-empirical models (Privette et al., 1996, Bicheron and Leroy 1999). Over the last 

decade, models allowing for parameter acquisition from mathematical inversion have 

arisen as the most promising technique for retrieving fPAR (Meroni et al., 2004) and 

several studies have been successfully conducted for crop and forestred environments 

(e.g. Gao, 1994; Goel and Grier, 1988; Myneni et al., 1997). The accuracy of such 
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estimations is dependent on the model employed, the type and quality of remote 

sensing data and the inversion procedure used (Jacquemoud et al., 2000). 

One of the most prominent examples of a radiative transfer based global fPAR model is 

the LAI/fPAR product used in MODIS, providing 8-day averaged global LAI and fPAR data 

at a 1x1 km spatial resolution. The algorithm uses photon transport theory to estimate 

both the radiation regime within the vegetation canopy and the radiant exitance, based 

on the architecture of individual plants and the entire canopy, optical properties of 

vegetation elements and soil atmospheric conditions (Knyazikhin, 1999; Myneni et al. 

1989). The MODIS algorithm requires a land cover classification (also derived from 

MODIS data) to model the radiative transfer over larger areas. Canopy transmittance, 

reflectance, and absorptance are elements of a look-up table (LUT), distinguishing 

between biome types, each of which represents a pattern of the architecture of an 

individual tree (leaf normal orientation, stem-trunk-branch area fractions, leaf and crown 

size) and the entire canopy (trunk distribution, topography), as well as patterns of 

spectral reflectance and transmittance of other vegetation elements. Soil type and 

understorey are also biome specific, and can vary continuously within given biome-

dependent ranges. Information on the leaf canopy spectral properties from MODIS and 

structural attributes from the LUT are then used to retrieve LAI and fPAR (Knyazikhin et 

al. 2003).  A full description of the MODIS fPAR LAI product can be obtained from 

Knyazikhin et al. (1998; 2003), reviewed by Myneni et al., (2002).  

 

3.3 Photosynthetic light use efficiency  
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Whilst determination of fPAR has matured over a number of years, the estimation of  

using remote sensing techniques increased only in the past decade, encouraged by the 

advent of fine resolution spectral measurement devices allowing tracking of subtle 

changes in canopy reflectance using narrow wavebands in the visible and near infrared 

region. In general, approaches inferring  from remote sensing can be classified into 

either indirect techniques, seeking to determine  from environmental stresses, or direct 

approaches, trying to predict  by measuring changes in leaf spectral reflectance 

resulting from photoprotection and chlorophyll fluorescence (Figure 2).  

 

3.3.1 Determination of photosynthetic efficiency from environmental stresses 

Stress factors driving photosynthetic efficiency are numerous and their detection over 

larger areas is relatively difficult due to the high temporal and spatial variability inherent 

to site and meteorological conditions. Remote sensing of stresses has mostly focussed 

on water, nitrogen and temperature related conditions. While more severe stresses, 

manifesting in symptoms such as chlorosis, defoliation or degradation of canopies, can 

be sensed using time series of broad band SVIs based on reflectance in the visible and 

near infrared region (Liu and Kogan, 1996), these stresses are exceptional and such 

techniques cannot be applied to sense more moderate stress situations where the 

plants’ response is much less apparent (Baret et al., 2007).  

Remote sensing of soil moisture related stress factors includes passive microwave 

systems (e.g. Prevot et al, 2003; Wigneron et al., 2003) and combinations of 

simultaneous measurements in the visible, near infrared, and thermal infrared radiation. 
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While microwave systems have shown good correspondence to soil moisture content, 

existing instruments lack adequate spatial and temporal resolution for sufficiently 

detailed estimates of water related vegetation stresses (Deshayes et al., 2006). Spectral 

measurements, combining SVI based estimates of the vegetation status with thermal 

radiation (so called temperature vegetation index – TVX (Prihodko and Goward, 1997)) 

predict soil moisture content from the difference between soil temperature and 

vegetation canopy temperature. This technique has been successfully used to 

determining plant water deficit (Lopez et al., 1991), water balance (Duchemin et al., 

1999), and latent heat fluxes (Vidal et al., 1994) on local scales, however, application 

over larger areas remains complex (Prince and Goward, 1996), as 1) the difference 

between soil temperature and vegetation canopy temperature is not only a function of 

soil moisture but is also dependent on the incident solar radiation load and 2) the 

moisture content of sub-surface layers cannot be determined using this technique 

(Prince and Goward, 1995). 

Like soil water related stresses, the understanding of nitrogen cycling and nitrification in 

forest ecosystems has greatly improved over recent decades, however the ability to 

characterize spatial patterns using remote sensing is limited (Ollinger et al., 2002) as 

derivation of stress maps is complex (Guerif and Duke, 2000). Early studies on the use 

of remote sensing for nitrogen stress quantification were based on empirical 

relationships using SVIs sensitive to the leaf chlorophyll content (Peñuelas et al., 1994; 

Bausch and Duke, 1996). More recent approaches suggest the use of hyperspectral 

imagery for direct prediction of foliage nitrogen content from narrow waveband 

reflectance (Wessman et al. 1988, Martin and Aber 1997). Ollinger et al. (2002) 
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presented a method to derive foliage nitrogen using data from NASA's Airborne Visible 

and Infra-Red Imaging Spectrometer (AVIRIS). A first study successfully applying 

spaceborne instrumentation was reported by Smith et al. (2003) using EO1-Hyperion 

satellite data. While the results from these hyperspectral approaches are encouraging, 

application over larger areas presents challenges to data analysis (Liu et al., 2006), as 

narrow waveband reflectance measurements are highly sensitive to atmospheric 

scattering and directional reflectance effects.       

Arguably, the first stress based model for prediction of global  was the Global 

Production Efficiency Model (GLO-PEM) of Prince and Goward (1995) based on the 

AVHRR Land Pathfinder dataset providing 10 day averages of daily global 

observations. GLO-PEM uses a TVX based approach to estimate water related stresses 

for a normalized solar zenith angle (Goward and Prince 1995; Nemani and Running, 

1989). Estimates of atmospheric saturation deficit (D) are modeled from combinations of 

air temperature and atmospheric water vapour, derived from thermal infrared 

observations in two different wavebands. A similar approach of a global model 

predicting primary production was presented by Field et al., 1995 which uses estimates 

of  based on the CASA model (Carnegie Ames Stanford Approach) introduced by 

Potter et al., 1993; calibrated using AVHRR data.  

More recently, global estimation of  from environmental stresses is undertaken using 

the MODIS GPP product (MOD17), which estimates GPP from 8-day averages of fPAR, 

PAR and  (Heinsch et al., 2002). The MOD17 algorithm models  using a look-up table 

containing biome specific information about the maximum light use efficiency max, daily 

minimum temperature (TMin) and D for maximum and minimum  of each biome type 
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(Running et al. 2000; Turner et al. 2003a). The biome specific constant max is adjusted 

using 1°x1.25° estimates of TMin and D, derived from GCMs (e.g. Potter et al., 1993; 

Sellers et al., 1996a, 1996b) to account for the limiting effects of climatic variables on  

(Heinsch et al., 2002; Turner et al., 2003a),  

DTMinmax    (4) 

For a full description of the MODIS GPP algorithm see Heinsch et al. (2002). 

 

3.3.2 Direct estimation of photosynthetic efficiency  

Thus far estimation of  has been via environmental stresses. In the past decade 

research has focussed on the direct estimation of , as this technique not only offers the 

potential to determining the combined effect of vegetation stresses, but also includes 

information about the degree to which these stresses are limiting photosynthesis 

(Adams and Demmig-Adams, 1996). 

Remote estimation of chlorophyll fluorescence includes both passive (Carter et al., 

1990) and laser-induced active methods (Rosema et al., 1998; Corp et al., 2006). Active 

fluorescence measurements use laser pulses to manipulate the level of photosynthetic 

activity and to measure the corresponding changes in the chlorophyll fluorescence yield 

(e.g. Kolber et al., 2005). These pulse-modulated measuring systems, probe the yield of 

chlorophyll fluorescence under steady-state illumination (Fs) and during a short 

saturating flash delivered at close range (1–100 mm), and have been successfully used 

for measuring photosynthesis (Adams et al., 1999; Rascher et al., 2000). However, their 
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application is mostly restricted to individual leaves in accessible canopies (Ananyev et 

al., 2005), with a few notable exceptions (e.g. Cecchi et al., 1994).   

Evidence of a solar induced fluorescence signal superimposed on leaf reflectance 

signatures has been reported by various studies (Buschmann and Lichtenthaler, 1977; 

1999; Peñuelas et al., 1995; Gitelson et al. 1999) and the effects of solar induced 

chlorophyll flurorescence emissions on the apparent spectral reflectance have been 

investigated using radiative transfer modeling (Zarco-Tejada et al., 2000). Chlorophyll 

fluorescence from passive remote sensing systems provides a potential for broad 

scaled assessment of  (Corp et al., 2006), however, its application is technically 

challenging as under natural sunlight illumination chlorophyll fluorescence emitted by 

the vegetation represents less than 3% of the reflected light in the near infrared part of 

the electromagnetic spectrum (Moya et al., 2004). Consequently, passive sensing of 

chlorophyll fluorescence is possible only using sub-nanometer reflectance bands in the 

red and near infrared regions (often 690 and 760 nm) where solar radiation is not 

abundant as a result atmospheric absorption (so called Fraunhofer lines) (Meroni and 

Colombo, 2006). The intended launch of a spaceborne fluorescence sensor by the 

European Space Agency (ESA) as part the FLEX (fluorescence experiment) mission 

may provide new opportunities to exploit this method for estimation of global  from 

space.  

  

Determing  using the photoprotective mechanism in leaves is based on observation of 

changes in leaf spectral reflectance resulting from the epoxidation state of the 

xanthophyll cycle. These changes manifest in two narrow waveband absorption features 
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at 505 and at 531 nm and can be quantified using SVIs, such as the Photochemical 

Reflectance Index (PRI), defined as (Gamon et al., 1990), 

570531

570531PRI       (5) 

comparing the reflectance at 531 nm ( 531) to a xanthophyll-insensitive reference band 

at 570nm ( 570). Originally established for sunflower leaves, the empirical relationship 

between PRI and  has been confirmed over a wide range of species (Peñuelas et al., 

1994; 1995; Filella et al., 1996; Gamon and Surfus, 1999) thereby demonstrating the 

potential use of this method for global estimation of . Upscaling of these findings from 

leaf to canopy, regional and global levels, however remains challenging. First, the 

temporal dynamics existing in plant photosynthesis, require the observation of 

vegetation status under multiple illumination and viewing conditions and these 

observations are then, even more than in the case of fPAR, subject to bidirectional 

reflectance and scattering effects (Los et al., 2005) overlapping with the desired 

reflectance signal (Huemmrich et al., 2005). Second, airborne or spaceborne sensors 

can only provide snapshots in time determined by a given aircraft or satellite overpass 

(Sims et al., 2005), however, the temporal and spatial requirements for these 

observations to be representative of the physiological status of plant canopies are not 

well understood (Hall et al., 1995). Third, the relationship between PRI and  is species 

dependent and also changes with age, canopy structure, disturbances and LAI 

(Rahman et al., 2001), making a spatial extrapolation of empirical findings difficult.  
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Recent efforts to further the understanding of the temporal and spatial dynamics 

involved, include near surface observations using transect measurements (Sims et al., 

2006), permanently established tower based observations of forest canopies (Leuning 

et al., 2006; Hilker et al., 2007), and airborne measurements (Nichol et al., 2000; 2002; 

Chen and Vierling, 2006; Rahman et al., 2001). A first spaceborne assessment of  was 

introduced by Drolet et al. (2005), successfully using backscatter reflectance data from 

MODIS Aqua over the Canadian boreal forest with a spatial resolution of 1 km2.  
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Figure 2: Illustration of approaches to assess GPP from remote sensing. PAR is generally derived from Top 
of Atmosphere (ToA) reflectance, techniques inferring fPAR from remote sensing can be divided into empirical 

empirical approaches and physical models.  can either be determined directly or indirectly through stress 
factors.  Some examples of key literature to each approach are given.   
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4. Validation approaches 

Validation and operationalization of the light use efficiency approach is currently 

underway at a number of spatial and temporal scales. At the stand level, eddy 

covariance data (EC) exhibit a key role for studying the temporal and spatial variability 

of GPP (Turner et al., 2006). EC measurements facilitate continuous estimates of net 

carbon accumulation, also referred to as net ecosystem production (NEP), from flux 

towers measuring CO2 mixing ratios of up and down-moving eddies (Baldocchi, 2003), 

thereby using the covariance between the vertical velocity (w) and the mole-mixing ratio 

of CO2 (sc) to estimate carbon fluxes (Fc), 

    C a cF w s    (6) 

where a is the mean molar density of dry air and csw is the covariance between the 

vertical velocity (w) and the mole-mixing ratio of CO2 (sc). The spatial scale of an EC 

flux tower is about 1 km2 (Kljun et al. 2004) and the temporal resolution is given by the 

integration of high frequency data, usually at a half hourly basis (Morgenstern et al., 

2004). GPP can be determined from EC data by adding estimates of ecosystem 

respiration (R) to measured NEP values, and  can be obtained from additional 

measurements of fPAR and PAR using radiation sensors above and below the canopy 

(Humphreys et al., 2006).  Remotely sensed estimates of stand level GPP have been 

correlated with EC flux data from ground based (Cheng et al., 2006;   Sims et al., 2006), 

tower based (Filella et al., 1996; Stylinski et al., 2002), airborne (Nichol et al., 2000; 

2002) and spaceborne platforms (Running et al., 1999; Drolet et al., 2005; Coops et al., 

2007). Also, to bridge the spatial gap existing between near surface and airborne 
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remote sensing platforms, Chen and Vierling (2006) tested a tethered balloon mounted 

platform to evaluate canopy reflectance of a grassland conifer forest ecotone. 

Networking approaches, such as the recently established SpecNet initiative (Gamon et 

al., 2006) attempt to link these observations with existing global fluxtower sites to further 

the understanding of relationships existing between biophysical processes and spectral 

reflectance data, thereby trying to overcome the fundamental scale mismatch between 

estimates obtained from eddy flux and remote sensing (Running et al., 1999; Rahman 

et al. 2001; Cheng et al. 2006; Gamon et al., 2006). Other objectives of this network are 

the exploration of temporal matters, derivation of flux components and the validation of 

satellite data products (Gamon et al., 2006).   

 

At the landscape level, verification of GPP estimates has been undertaken in various 

broad scaled field studies comparing ground based estimates to remotely sensed data. 

One of the first projects designed to coordinate data collected by satellites, aircraft, and 

ground instruments in order to improve the understanding of carbon and water cycles, 

was FIFE (First ISLSCP (International Satellite Land Surface Climatology Project) Field 

Experiment), undertaken in the prairies of central Kansas from 1987 through 1989 (e.g. 

Hall et al., 1991; 1992; Sellers and Hall., 1992; Walthall, et al., 1993). The objectives of 

FIFE were to improve the understanding of interactions between the atmosphere and 

the vegetated land surface and to investigate the use of satellite observations to infer 

climatologically significant land surface parameters (Sellers and Hall., 1992). While 

remotely sensed estimates of fPAR were found to be accurate within a range of 10%, key 

issues identified for remote sensing of photosynthesis were stress related factors such 
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as soil moisture and saturation deficit (Hall et al., 1992; Charpentier and Groffman, 

1992). 

One of the largest projects aiming to improve our understanding of terrestrial carbon 

cycling and other biosphere-atmosphere interactions was the Boreal-Ecosystem-

Atmosphere Study (BOREAS), undertaken between 1993 and 1997. Specifically 

designed to bridge a wide range of spatial scales (e.g. Kharouk et al., 1995; Sellers et 

al., 1995; 1997; Potter et al., 1999; Goetz et al., 1999), BOREAS integrated repeated 

leaf scale, flux-tower, airborne, and spaceborne observations to investigate issues of 

up-scaling local observations to landscape levels (1000x1000km) (Sellers et al., 1997). 

The study, located at multiple boreal forest sites in Saskatchewan and Manitoba 

(Canada), substantially improved the use of remote sensing for definition of vegetation 

structure and land cover for assessment of the surface–atmosphere exchange of mass 

and energy, nature and variability of surface albedo and radiation budgets, and the 

regional carbon balance (Gamon et al., 2004). 

Most recently, validation of the MODIS GPP product was undertaken using the BigFoot 

approach, scaling field observations to global, satellite based estimates of GPP. BigFoot 

relied on ground measurements, EC-flux tower data, remote sensing data, and 

ecosystem process models to represent CO2 fluxes for different biome types. Nine 

BigFoot study sites spanned eight major biomes, from desert to tundra, to tropical forest 

(Running et al., 1999). Validation of the MODIS GPP product was mainly undertaken in 

form of time series comparisons between GPP estimated from eddy covariance flux 

tower data and GPP from MODIS for one or more 1-km2 cells surrounding the tower 

(Turner et al., 2003a,b; Xiao et al., 2004). While some of these comparisons have 



25 

shown reasonable agreement between tower based estimates of CO2 fluxes and 

MODIS land cover products, also numerous limitations were found and issues identified 

for further research: The largest error associated with the land cover classification is the 

simplifying assumption that each 1x1 km pixel only contains a single land cover class 

(Heinsch et al., 2006). This assumption generally fails to reflect the spatial 

heterogeneity in land cover, stand age, soil type and canopy structure for most biomes 

(Goulden et al., 1996). The use of a simple lookup table approach to determining  from 

biome-specific parameters which do not vary in space and time (Running et al., 2000; 

Heinsch et al., 2002; Turner et al., 2003a), and distinguish only between 11 different 

vegetation types (Turner et al., 2003a; Heinsch et al., 2006) has been identified as the 

weak point of the GPP product as it greatly simplifies the existing spatial and temporal 

variability in . In addition, assigning values of  on the basis of biome type assumes 

between-biome variability to be greater than within biome variability, which is often not 

realistic (Goetz and Prince, 1996; Landsberg et al., 1997). A further serious limitation is 

the degree to which the GCM derived inputs represent realistic estimates of climate 

variables because of the coarse scale of the GCM model outputs (~100 km) (Turner et 

al., 2003a,b). These issues, together with errors related to propagation from other 

underlying MODIS products (Heinsch et al., 2006), have been identified as potential 

sources of the differences found between satellite-based GPP estimates and field 

measurements for some biomes (Running et al., 1999; Coops et al., 2007).  
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5. Requirements and direction for future studies 

The ability to acquire primary production from remotely sensed data has increased 

considerably over the last few decades. However, from the reviewed literature, it is 

apparent that accurate modeling of GPP over large areas remains an active area of 

research with issues remaining to be solved on the leaf, stand, and landscape level.  

 

5.1. Leaf level 

Arguably, the use of remote sensing to detecting photosynthesis at the leaf level is 

relatively established, however many gaps remain our in understanding of the 

biochemical mechanisms that invoke and relax photo-protection and chlorophyll 

fluorescence. To date, an energy dependent component, likely induced by low pH 

values in the thylakoid membrane of the chloroplast (Demmig-Adams and Adams, 

1996) and an energy independent component, relaxing only very slowly after more 

severe stress situations such as droughts or winter stress, have been identified (Adams 

et al., 1999). While the energy dependent component is reasonably well understood, 

less is known about the processes driving the energy independent component (Demmig 

and Winter, 1988). Additionally, the role of the Lutein cycle (Bungard et al., 1999) in 

photosynthetic efficiency is largely unexplored. Comprehensive understanding of these 

biochemical mechanisms driving the photochemical reaction process across a wide 

range of species is a key requirement for upscaling leaf level estimates to stand and 

global levels.  
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5.2. Stand level 

At the stand level, uncertainty remains in understanding the temporal dynamics involved 

in photosynthetic efficiency and the contributions of shaded and sunlit parts of the 

canopy (Demmig-Adams et al., 1998). To improve the understanding of stand level 

GPP, modeling requires observation of vegetation canopies in a continuous mode and 

under varying illumination and environmental conditions. Accurate algorithms are 

required to distinguish the reflectance signals obtained from such observations between 

physiologically and physically induced components. The application of bi-directional 

reflectance distribution functions (BRDF)(e.g. Wanner et al., 1995; Li and Strahler, 

1995) can help in this regard. Separation of reflectance signals however, is not trivial, as 

the high physiologically induced variability in canopy reflectance especially with respect 

to  makes acquisition of BRDF-parameters from inversion of semi-empirical algorithms 

difficult (Los et al., 2005). 

Possible ways to address these issues include spectral measurements from 

permanently established, near surface remote sensing devices, facilitating intensive and 

continuous studies of canopy level reflectance. At present, relatively few spectral 

datasets have been acquired using radiometers mounted on canopy cranes (Mariscal et 

al., 2004) or towers (Leuning et al., 2006; Hilker et al., 2007). Future research would 

benefit from integrated, tower based approaches to intensify measures of reflectance 

properties and temporal variability of GPP at networked sites, which can then be linked 

directly to CO2 fluxes determined using the eddy covariance technique. Based on 

physical reflectance properties studied on the stand level using near surface remote 

sensing, mathematical models can be developed which, when calibrated from high 
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resolution satellite platforms on a daily and fully spatially basis, may facilitate detailed 

estimates of photosynthetic flux from space. Hence, the success for estimating carbon 

fluxes at broader levels will heavily depend on our understanding of the dynamics and 

interrelations of spectral reflectance obtained at the stand scale.  

 

 

5.3. Landscape level 

At the landscape scale, research focused on the complex interactions between the 

biosphere and atmosphere targeting issues of upscaling from site observations to 

ecoregion, biome, and global levels is underway and must be actively pursued, with 

major challenges evident in the areas of modelling and minimising signal distortions, 

due to both the atmosphere and directional reflectance effects. Our understanding of 

bidirectional reflectance, radiative transfer modeling, and interactions between 

reflectance and forest stand structure has benefited greatly from multi-angle 

instruments, including the POLDER (Polarization and Directionality of Earth 

Reflectance) (Deschamps et al., 1994) and MISR (Multi-angle Imaging Spectrometer) 

(e.g. Lyapustin et al., 2007) sensors, specifically designed to address BRDF 

characteristics of the Earth surface from space (Leroy et al. 1997; Gamon et al., 2006). 

However, several challenges related to atmospheric effects remain, primarily caused by 

water vapor and aerosols, as these, even though they are well understood, are difficult 

to correct due to their high temporal and spatial variability (Hall et al., 1995).  

Direct approaches regarding global prediction of  from remote sensing, using both 

xanthophyll related pigment changes in the visible spectrum and fluorescence 
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measurements in the near infrared region show promise to facilitate precise estimation 

of  over large areas thereby overcoming a number of issues related to indirect 

approaches using stress related factors. Global estimation of vegetation stresses, 

however, provides valuable information that can help understanding the physiological 

responses of plant canopies observed. Satellite sensors providing high spectral and 

spatial resolution hold promise to facilitate acquisition of detailed stress maps of plant 

canopies which will allow mutual validation of  acquired from direct and indirect 

approaches in a spatially comprehensive mode. 

Currently there is an absence of spaceborne sensors available with wavebands narrow 

enough to obtain reflectance measurements specifically in the PRI region. EO1-

Hyperion was the first hyperspectral sensor in space with a contiguous spectral 

bandwidth of 10 nm. However, being designed as a demonstration instrument, this 

sensor is limited in its signal to noise ratio and calibration accuracy (Datt et al., 2003; 

Khurshid et al., 2006). The MODIS sensor, such as on AQUA, provides wavebands 

close to the PRI region (Drolet et al., 2005), however, initial results indicate that the 

approach at this stage does not sufficiently account for the spatial heterogeneity of the 

landscape. Additionally, there is a lack of algorithms available for processing the full 

suite of MODIS Aqua spectral bands over land surfaces which limits the routine 

application of the approach. Future generation satellite sensors, data processing 

streams, and resultant data products can combine to help address and eventually 

overcome these issues.  

The large area characterization of primary production depends on comprehensive 

testing and continued efforts of land surface validation, requiring coordinated scientific 
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networking to meaningfully combine findings and results representative of a range of 

spatial scales. Networking approaches such as the Fluxnet community have greatly 

improved our knowledge on interactions of plant physiological responses to changing 

environmental conditions in the past. Intensified and networked research efforts are 

required for improved understanding of physically and physiologically induced 

reflectance properties of various vegetation types to facilitate modeling of GPP 

estimates representative of large areas. The ability to characterize GPP over a range of 

scales will greatly benefit from interdisciplinary communication and networking for both 

development of algorithms and product validation.  
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