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Abstract

The feature which characterize dynamic pro­
gramming problem are reviewed. Optimal fore t man­
agement problem are then hown to fit into the frame­

ork for solution u ing d namic programming.
chronological re iew of the literature of d namic pro­
gramming in fore try follow.

Resume

Le rapport examine d 'aboI'd Ie caracteri tiques
de que tion re olue par programmation d namique.
II montI-e ensuite que les problemes d 'amenagement
forestier optimal tombent dans la categorie de ceux
auxquels cette methods convient. II revoit ensuite, dans
I'ordre chronologique, la documentation portant sur la
programmation dynamique appliquee en foresterie.
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Introduction

Fore t planning can be carried out at a number of
Ie el : a ingle tand. multiple stand, a timber uppl
area, a pro ince or tate, or even a nation. Of these, stand
level olution are the ba ic unit of anal si. n effec­
ti e plan at thi Ie el can b integrated into higher Ie el
plan to impro e those anal ses. In recent ear, dy­
namic programming has emerged as a powerful ap­
proach to stand level problems. The purpose of thi
report i to acquaint the reader with d namic program­
ming and its application to forestr . This will be accom­
pli hed by reviewing the basic features which must
characterize a problem which can be sol ed using
dynamic programming. A di cu ion will follow of the
suitability of dynamic programming to tand level op­
timization problems. This will be followed by a review
of application of dynamic programming to forestr
problems with empha is on tand Ie el optimization
applications.

Characteristics of dynamic
programming problems

D namic programming is e entially an optimiza­
tion approach that simplifies complex problems by
transforming them into a sequence of smaller simpler
problems (Bradley et al. 1977). However, not all prob­
lems can be broken down and simplified. Following the
presentation in Hillier and Lieberman (1980) the basic
features which characterize dynamic programming
problems are di cussed below:

I. The problem can be di ided into stages with a
policy decision required at each stage. Stage normally
represent time period in a planning horizon, but they
can represent anything which divides the problem up
into sections with a decision required at each ection;
for example, legs of a journey might be considered
stages of a long journey. The policy deci ion is the
action to be taken at each time period, stopping point,
etc. A further characteristic of dynamic programming
problems is that the equence of policy deci ions are
interrelated.

2. Each stage has a number of states related to it.
The state is a de cription of the ariou possible condi­
tion the stem may be in at a gi en stage. A state i
expressed in terms of one or more state variable ,such
as stock in entory level, a degree of machine wear, or a
de cription of a forest tand in term of the number of
trees, ba al area, and stand age. The state description is
a vital component of the DP formulation. It must be
detailed enough to accurately describe the system being
studied but simple enough to limit the number of tates
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at each tage. the number of tate at each tage
grows the problem is beset with the "curse of dimen­
ionalit " and become difficult if not impo ible to
01 e. For in tance, the fore t could be de cribed b the

number of ree . basal area, tre height, stand age, oil
characteri tics, years ince la t thinning, and 0 on, but
by doing 0 each stage would ha e a er large number
of tate and the problem could not be 01 ed. In tead.
detail is acrificed to allow a olution to be obtained.

3. Each time a policy deci ion is taken it trans­
form the current state into a tate a sociated with the
next tage. The new tate ma be determined by both the
policy decision and a probability di tribution. For in­
stance, gi en a level of product inventory (a state

ariable), the decision (a stage) of how much to produce
toda (the polic decision) will influence how much
inventory (the tate) we have at the next stage. A
decision to thin a tand at age fifteen will influence the
characteri tic of that tand at age twenty. The probabil­
it distribution recognize that we do not know with
certainty what the stand will look like. Some dynamic
program can be set up as networks and solved as linear
program (Hillier and Lieberman 1980, chapter 10). In
Figure I the columns refer to the stages while the nodes
correspond to tates. Policy decisions move us through
the network. Contributions to the objective function
from the various policy decisions are repre ented by
values assigned to the branches which connect the
nodes.

4. The optimal policy for all remaining stages is
entirely independent of policie adopted in previous
stages.

This feature of dynamic programs is commonly
called the principle of optimality. Wagner (1975, page
266) de cribes this principle a follow: '"An optimal
policy must have the property that regardless of route
taken to enter a particular state, the remaining decisions
must con titute an optimal policy for leaving that state."
It i thi propert that allows cl namic programs to be
broken up into a series of smaller, simpler problems. We

Figure 1. The network form of a dynamic program.



ill see in the next ection how this propert places
ome important constraint on the formulation of prob­

lem in 01 ing policie or action which ha e a la ting
effect, uch a fore t management operation .

5. The olution procedure mu t begin b finding
the optimal policy for either the fir t or last stage.

These technique are called forward induction
and back ard induction respecti el . Back ard induc­
tion i more commonl u ed, but in the fore tr litera­
ture (Brodie et al. 1978) forward induction is more
common. The ad antages and di ad antage of each
method are discu ed in the next ection.

6. Finally, a recursi e optimization procedure
can be de eloped "which builds to a solution of the
overall - tage problem by ... sequentially including
one tage at a time and olving one tage problems until
the overall optimum has been found" (Bradley et al.
1977, page 462). While the recursive relation hip will
ary according to the problem, a general formulation

suitable to deterministic problem is described below.
A general forward recur i e function is:

f ll (s) = n:ax {[II..-' (.\"11+1) + C" 11+1 }
11+1

where:f)s) is the return from being in any tate in the
set of all feasible states from the first stage of the
problem to the pre ent stage (n) and state (s); \'+1 i any
tate in the set of all feasible states from which the

current state s can be reached; and C"II+1 is the return
associated with going from state x

lI
+

1
to the current

state s. The problem is solved by sequentially choosing

the maximizing alues of .\"11+1'

Forestry and dynamic
programming

The previous section outlined the basic features of
problems that can be solved using dynamic program­
ming. Are forest management problems amenable to
solution using dynamic programming?

Many dynamic programming problems are di­
vided into stages by di iding up an extended period of
time into equal sections. Stand optimization problems
are suited to be divided up into time segments of 1,5, 10
or any other number of year with an action or policy
decision such as thin, fertilize, or har e t required at
each stage. The role of the stage interval in a dynamic
programming problem in fore try is considered by Kao
and Brodie (1979) and to a lesser extent b Roi e
(1986). Reducing the stage interval from 10 ears to 1
year increa ed the soil expectation value of the stand by
about I % according to Kao and Brodie. Roise increased
the soil expectation value by 39% by reducing the stage

7

inter al from 15 to 10 ears. Since the gain obtained b
reducing the inter altole sthan 10year aresmall,thi
inter al i often used in the literature.

mentioned in the pre iou ection, the tate
ariable hould d scribe the fore t in a imple a.

balance must be achie ed between describing the forest
a accuratel a po ible and limiting the number of
tate 0 that the probl m can be 01 ed in a rea onable

time. Pre iou work, de cribed in more detail in the next
section, ha limited the description of the forest tand to
age, number of tree per hectare, ba al area per hectare,
and ometimes one other ariable uch a time ince la t
thinning or type of thinning. As well as limiting the
number of variables which describe the forest, it is also
important to render these ariable discrete.

Kao (1980) hows that, if all diameter classe are
to be considered for thinning, the difference in the
number of trees per hectare between states must be at
least IS. Similarly, ba al area is described in intervals
of, for example, 0.5 m:'/ha. Kao (1980) discu e the
impact of various intervals of the number of tree and
basal areas. A small interval of about IS trees pro ides
more accuracy for a gi en basal area interval, but
increases computing time. Increa ed precision can be
obtained by decreasing both the tree interval and the
basal area interval. Kao (1980) shows that reducing the
basal area inter al from a 3.7 m~/ha to 0.37 m~/ha

increase the soil expectation value by about 5%. The
greatest benefits come in reducing the interval from 3.7
m~/ha to 1.9 m~/ha. Kao state that any interval between
0.37 m~/ha to 1.9 m~/ha hould be suitable along with a
tree interval of IS trees. Larger basal area inter als were
shown to significantly reduce computing time.

Smaller tree and basal area intervals also reduce
the occurrence of artifact effects. Such effects occur
when more than one alternative i found to lead to a
state. The alternative with the greatest cumulative net
worth is selected to represent that state. It is pos ible,
however, that an alternative not selected could contrib­
ute more in future periods and ultimately would have
been the best choice by a small amount. Kao (1980) and
Brodie and Kao (1979) stress that the difference in

alue will be er mall. The error caused b artifact
effect could only be eliminated by using continuous
states. They can be minimized by using large tree
intervals or by using a combination of small tree inter-

als and small basal area intervals.
The key factor in determining interval widths is

the same a thatfordetennining the number of variables
used per tate: they mu t not be 0 fine a to create an
inoperable number of states, or so broad that they do not
distinguish between fore t stands that should be classed
differently.

Policy decisions in forest tand problems involve



fore t management deci ion uch as degree ofju enile
pacing, Ie el of fertilization, degree of thinning, and,

e ntuall, the decision to hal' e t and to return to bare
land or an initial tocking den ity. The e decision
move the tand from an exi ting tate to a tate a soci­
ated with the ne t stage. with the description of
tate, the e deci ion are made in inter al . For

e ample,ju enile pacing of 10,20, and 30% of tem
or basal area might be compared.

The principle of optimalit place an important
con traint on fore t tand problems. The effect of an
action tak n toda mu t be completel de cribed b the
state ariables. This i exemplified b fertilization. Let
u a sume that the state ariables being used are number
of trees and ba al area per hectare and the tage are time
inter als of 10 ears. If in ear 30 a tand i fertilized.
this action accelerate growth and in year 40 the tand
is again gescribed b the number of trees and basal area
per hectare. The principle of optimal it require that all
the effects of the fertilization be completed in the 10­
year period. Another way of stating this is that a tand
with _ tree per hectare and Q basal area per hectare
today which ha been fertilized in the pa t must grow
from now on in the same way as a stand with the same
number of trees and basal area which has not been
fertilized. If the time interval between tages i not
sufficient to guarantee thi condition, then an additional
state variable is required to described the stand as fertil­
ized, or the stage interval must be increased.

When a ingle-tree di tance-dependent growth
model is u ed, the configuration of the trees will also
affect stand growth. s noted, the principle of optimal­
ity requires stands in the same state to grow in the same
way. umberoftree andba alareaperhectarewillnot
be sufficient de criptors if tand configurations vary.
The nonrandom element hich will ha e the greatest
effect on where the tree are in the stand, and in
particular how close one tree ma be to another, is the
initial tocking densit of the stand. Stand with the
same initial density must be simulated repeatedly with
the same initial tree locations. This will prevent differ­
ences in growth cau ed by tree location. Where initial
den it is an important con ideration, it must be added
to the Ii t of state descriptors.

Forward recursion have been favored in the for­
estry dynamic programming literature largel because
they do not require "a separate pas through the network
... for each candidate rotation" (Brodie et al. 1978
page 517). Forward recur ion require only paths of
interest to be searched. The ad antage ofthi technique
is that it minimizes the solution time and pro ides
optimal paths to rotations horter than those paths being
investigated. It fails, howe er, to provide optimal re­
gimes for states not on the optimal path; in such case ,
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the recur ion mu t be re tarted at the "nonoptimal" state
and the problem resolved. Backward recur ions pro ide
optimal regime for all tate con ider d in the problem.
Within a large problem, uch a 010 tfore tr problem.
and here th optimal path is of primm' importance,
the time avings in 01 ed in forward recursion are
significant when only one pa through the net ork i
required. If the u er is primaI-il intere ted in what
happens outside the optimal path or if the problem being
tudied i relati ely small, then backward recursion

appear to be uperior.
Fore t tand optimization problem fit the frame­

work for dynamic programming. However, the prin­
ciple of optimality must be adhered to, and the problem
must not be too large to b 01 ed within a reasonable
time. It mu t also be remembered that the growth model
used does not provide exact stand growth but only an
approximation based on limited information. Charac­
teri tics such a pecie. age. site qualit , densit ,
management regime, or tree qualit are related directl
through equation to stand parameters such as number
of trees, average diameter, height, basal area and vol­
ume ( itchell 1980). The olution will only be as
precise as the data.

Alternative methods

The problem of optimal forest management re­
gimes ha been (and continues to be) solved by methods
other than d namic programming. Indeed, the early
d namic programming literature (such as Amidon and
Akin 1968) used the same problems solved earlier by
other means to erify their solution. Other than dy­
namic programming, there are three dominant solution
methods: marginal analy is, control theory, and com­
parative simulation

Marginal anal sis was one of the earlie t ap­
proaches to the stand optimization problem. Early
approaches include SDA Forest Ser ice (1963), DuelT
and Christiansen (1964) and Chappelle and elson
(1964). Schreuder (1971) criticized the work of Chap­
pelle and elson and noted some weakne es in the
marginal analysis approach. In forestry marginal analy­
sis involves comparing the marginal value growth per­
cent of the stand with the marginal cost of capital for
each con ecuti e time period. The optimal stocking
Ie el is then determined. Schreuder states that the main
problem with this approach i that it may not provide a
global optimum, becau e it take into account only one
period at a time and thus does not con ider the interde­
pendencies of the periods. This approach excludes
precommercial thinnings, which are defined as thin­
nings which cost more than they enhance the alue of



the tand in the same period, although such thinnings
ha e been shown to be economic over the life of a stand.
Schreuder al 0 say that marginal analysis become
very difficult if not impossible to use when prices and
costs vary.

Brodie et al. (1978) provide a brief re iew of the
important contributions to the tand optimization prob­
lem by writers working in a control theoretic frame­
work. aslund (1969) formulated the problem but
provided no solution. Ander on (1976) formulated a
solution which showed consistency with the traditional
Faustman model (Samuel on 1976) and other more
general dynamic models but again no actual solutions
are shown. Clark and de Pree (1979) formulate the
problem as one of linear control and provide numerical
results. McDonough and Park (1975) and Dixon and
Howitt (1980) are reported in Cawrse et al. (1984) to
have obtained local optimum solutions using iterative
techniques. As evidenced by the papers noted here, the
major shortcoming of this approach is the difficulty in
obtaining numeric solutions to problems. Cawrse et al.
(1984) attempt to overcome this difficulty by employ­
ing a variational solution technique. Their solution,
however, would only be effective for simple models of
stand growth which use only one equation.

Comparative simulation has been very popular in
recent years. Simulators "grow" a stand to a given age,
thin the stand, grow the stand again, and so on. A path
is followed to some rotation age. Paths are compared,
and the path which maximizes a particular characteris­
tic of the stand, such as volume or market value, is
considered best. Complete enumeration of every pos­
sible path through a network is not feasible, and even
approaching that lofty goal is time-consuming and
expensive. Randall (1977), Reukema and Bruce (1977),
and Sleavin (1983) discuss comparative simulation
techniques and provide examples.

The method of solution of stand optimization
problems which has shown the greatest promise in
recent years is dynamic programming. It has the poten­
tial to overcome the difficulties noted in each of the
alternative methods discussed above. It is a multiperiod
approach; it provides global optimal solutions; variable
factor and product prices can be allowed for; and every
possible path need not be searched to obtain the solu­
tion. In sum, dynamic programming is a useful tool for
this problem because it is more efficient than simula­
tion, and simpler and more versatile than marginal
analysis and control theory.
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Literature review

Hool (1966) provided the first orth American I

application of dynamic programming to a forest pro­
duction problem. sing data from the Darlington Woods,
Indiana Continuous Forest Inventory System, he de­
fine states by groupings of volumes, tree counts, and by
whether or not the stand had been thinned. Stages are
divided into 2-year intervals over a total time period of
16 years. The choices left to the deci ion makers are
undisturbed growth, thinning, and harvesting; the har­
vesting option was divided into selection harvesting and
clearcutting. The problem is then solved as a Markov
chain using the general recurrence relation:

V*(i) = max II p k [r k + v* (j)] I
I?I k j =1 ij ij 111-1

where i represents states of which there are 11; m
represents stages; P/j represents the probability of a
transition from state i to state j given decision k; rA

IJ

represents the return associated with the transition from
ito j given decision k; VIIl~'1 (j) represents the optimal ac­
cumulated expected returns given that you start from
state j in stage m-l; V *(i ) represents the optimal ex­
pected return of being"in state i at stage m.

Hool uses the above to obtain the optimal mange­
ment activity policy for each state and then develops
prescriptions by assuming that once the optimal policy
decisions have been made that the most likely transi­
tions occur. He goes on to calculate the mean number of
stage transitions in which each state is expected to
remain unchanged, the mean number of transitions the
woodlot in a given state requires in orderto go to another
state by undisturbed growth, and the probability of a
state existing if the stand were allowed to grow undis­
turbed for a long period of time. It is a Markovian
problem since the probability and return values are
specified to be independent of time and the probability
of transition from state i to state j depends only on state
i and not on the history of the system.

While the Hool paper is valuable in demonstrating
a forestry application of the Markov chain, it is applied
to a very restricted problem. The number of states is
small, and time horizon is not only finite (16 years) but
very short for a forestry problem. The technique could,
however, be generalized and used for larger problems.

Two researchers in the USDA Forest Service
provided the first widely circulated application of a
deterministic dynamic problem to a forest stand prob-

(I )He cites a Japanese paper that appears to be the first dynamic
programming application to forestry.



lem (Amidon and Akin 1968 .The authors u e d namic
programming to confirm the re ult obtained through
marginal analysis by Chappelle and elson (1964).
The u e a backward recur ion and therefore 01 e the
problem for e eral different rotations. The re trict th
decision to be made on their awtimber stand to the
following option: a light thinning that lea e the tand

ith 1. BFmore olumeofsa timberatthe tart of the
next stage 5 years h nee, or a hea ier thinning that
lea e the tand with I BF Ie s sawtimber at the tart
of the next tage. Thi highly re tricted problem
solved by using the folio ing recur i e tructure:

T(.r.y) = max {D(x.y) + T(.r+ 1. y+ 1):
I(.r.y) + T(x+ 1, y-I ) I

where.r refers to stand age in 5- ear inter al ; y refers
to sawtimber olume in 1 MBF inter als: D(.Ly) is
decrement in growing stock value fromx+ 1, y+ 1 to x.y;

/(.r.y) is increment in growing stock alue fromx+ 1, y­
1 to .r.y: T(.r.y) i the optimal total alue from (x,y) up to
the rotation age; and 1(I1.y) is the initial condition, i.e.,
final hal' est value for the rotation corre ponding to 11.

The re ults confirm the work of Chappelle and
elson and note the more flexible nature of dynamic

programming in handling changes such as increases in
product prices. The hortcoming of the work was the
highly restricted set of thinning options and the simple
description of the stand in terms of sawtimber volume
alone.

Gerard Schreuder (1971) recasts a continuous
time model as a discrete time dynamic program to
obtain an optimal thinning schedule and rotation age.
This recasting simplifies the solution of the problem.
The stages are time periods and states are described by
the total volume per acre. The decision variable is net
cut (cut minus growth). The problem is solved by
backward recursion and improves upon the Amidon and
Akin solution by including the cost of land. This paper
also uses an oversimplified description of the stand, but
it was valuable in demonstrating the flexibility of the
dynamic programming approach compared to other
solutions.

Lembersky and Johnson (1975) and Lembersky
(1976) use a Markovian decision process to optimize
timber production in the face of uncertainties. The
uncertainties stem from the growth and natural mortal­
it of the trees in the latter paper, while the former also
includes uncertain future prices. Lembersky and Johnson
(1975) seek to maximize the financial return from the
forest while Lember ky (1976) i interested in maxi­
mizing a erage annual olume. According to Lember­
sky (1976, page 69): "The two criteria receive separate
treatments because there are fundamental differences
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between arko Deci ion Proce e (MDP) with a er­
age undi counted re ards (her olume) and DP
with discounted ummed reward (dollar re enue in
Lember k and John on). The differ nce are not in the
under! ing basic tructure, but re ult from mathemati­
cal properties of aggregated expected reward."

The properties differ becau e undi counted re­
turn tend to infinit 0 er an infinite horizon and there­
fore must be a eraged to pro ide meaningful compari­
on . Di counted returns are almo t always finite and

therefore comparable.
Lembersky and John on expand on the work of

Hool (1966) by stretching it to an infinite horizon and
including market beha ior. The state space include the
state ariables of average dbh, number of trees per
hectare and relative market price. By not including an
indicant of thinning. the author are assuming that
whether the stand reaches its current stat naturall or
by thinning it will grow the same thereafter. Forty-eight
fore t states are considered and gi en fi e relati e
market alue so the problem can ists of 240 tate in
total. Fifteen management actions are considered rang­
ing from leaving the stand undi turbed to clearcutting
and replanting at arious densities. Optimal action are
then derived for each state.

The strength of these papers is that they recognize
risk in forest production problems; their weakness is
that the range of states and management decisions, as in
Hool's work, is very limited.

J. Douglas Brodie and his colleagues and students
at Oregon State University have made a number of
valuable contributions to the literature of dynamic
programming and forestry. Brodie et al. (1978) using
data on yield cur es from McArdle et al. (1961) use a
forward recursion to simultaneously determine optimal
stocking levels and rotation. The stage intervals are 10
years and the stands are described by volume per acre.
A major improvement over previous work is the in­
creased number of states and therefore policy decisions
included. The authors consider interval units of 100
cubic feet per acre (7 m3(ha). At each state all actions
which could achie e a lower stocking Ie el are consid­
ered using the recur i e function described by Kao
(1980) as:

T (x+ 1, y) = max {T (x, y') + p (y' . y) I
}'

where y' is any node stocking Ie el in the current tage
that can reach stocking level y in the next stage; P (y',

y) is the net revenue obtained from the transition from
state y' to y; T (x+ I, y) is the total alue of the optimal
schedule up to (x+ 1, y); T (x, y') is total revenue of the
optimal schedule up to the stage being considered.



Since fore t growth i continuou and d namic
programming require tate to be described in di crete
term, ome tand required a mandator thinning 0 a
to fit into a tate. Thi i 0 ercome in Brodie and Kao
(1979) where network node are treated as "neighbor­
hood torage location" for the exact value which
de cribe the state and optimize the pre ent tage. For
example, all tand ith between 14 and I 5 tems and
a basal area of between 10.5 and I 1.5 m~ could be tored
at node (185, I I). The values used for subsequent
growth would be the actual optimal continuou values
and not the neighborhood value. Pre ious olution
ha e u ed the neighborhood alue. well. thinning
are onl con idered eery 10 ears. The effect of
varying this stage length was discussed in the previous
section.

The primary shortcoming of Brodie et al. (1978)
wa "the model could not explicitl treat the accelerated
diameter growth a ociated with more inten i e thin­
ning" (Brodie and Kao 1979, page 665). This is over­
come by replacing the yield table of the previous paper
with the biometric model DFIT (Bruce et al. 1977)
which imulates the growth of Dougla -fir stands. The
incorporation of tree ize is important as it affect
selling prices and logging cost. In order to incorporate
tree size into the dynamic programming solution, the
state descriptors are altered. The tand age remains one
descriptor but the olume descriptor has been replaced
by two de criptors: the number of tree and basal area.
The solution i again obtained by u ing a forward
recursion and the algorithm DOPT. DOPT is simply
DFIT with an algorithm to solve dynamic programs.
This allows for the greatest amount of ariabilit een
in the literature to date. Intervals of 15 trees, 4 quare
feet per acre (0.89 m~/ha) of basal area, and stage of 10
years are used in the paper. The optimal value function
is defined as the value of the present net worth "path"
from regeneration to age t. number of trees ,and ba al
area G for the tand:

PoT- LoT- C
I( .G) = max +1(1.10) (n,g)"

!n,g} (l +i)'

(Brodie and Kao 1979, pages 668-669)

where Po is the selling price of logs of average diameter
D at brea t height; Tithe volume ofthinnings [includ­
ing mortality captured]; Lo repre ents logging cost
gi en a erage diameter D; Cia fixed entr cost which
i incurred if thinning or hal' e t take place; i is the
interest rate; (n,g) is the set of feasible basal areas and
number of trees at age (t-l 0) from which the current
level of and G can be reached.

II

The starting condition i

j~o ( .G) = R

where R represent the alue cost of all regeneration
and other treatment before age 30~.

Thi paper repre ented the culmination of work in
the field of determini tic d namic program related to
forestr . Kao (1980) expands on this article in hi
di sertation and considers more management variables
than ju t thinning. Riitters et al. ( 1982) in estigate the
optimization of timber production and grazing in pon­
dero a pine (Pin liS ponderosa Laws) but "the tructure
of the dynamic programming algorithm essentiall is
the same" (page 519). Hann et al. (1983) used the same
structure to study initial planting density and precom­
mercial thinning.

DOPT is used again in Riitter et al. (1982) to
compare volume ersus value maximization. Slea in
(1983) develops a similar model for the growth simula­
tor DFSIM. Martin (1978) and Haight et al. (1984)
utilize ingle-tree simulator as opposed to whole tand
imulators such a DFIT and DFSI but modify the

output to permit the computational format to remain
e sentially the same (Brodie and Haight 1985).

While this research was going on at Oregon State
Universit , a few other paper linking dynamic pro­
gramming and fore tr appeared independently of that
main body of research. The mo t fundamental were
tho e of Chen et al. (1980a, 1980b). The tate variable
u ed is basal area and the decisions are thinning by
amount of basal area. De Kluyver et al. (1980) deter­
mine optimal stand management using a two- tage
approach for a fore t consisting of many stands. A
dynamic program is used to find the most efficient
regime for each stand, then a multiple objective linear
program is used to determine the optimal policies for the
whole fore t. The state space i a yield distribution over
various products such as eneer,'sawlogs, or pulpwood.
The problem solved is ery restricted and only eight
different regimes are investigated. The paper has very
limited practical application.

With the exception of the paper that constructed
dynamic program as Markovian decision processes
(Hool 1966; Lembersky and Johnson 1975; Lembersky
1976) the questions of ri k and uncertainty have not
been taken into account in the papers reviewed3• The

(2)The authors simulate a naturally regenerated stand to age 30
and make management deci ion from that point on.

(3) Risk and uncertainty are used in the Knightian sense. Risk
refer to decision making with known probabilities of oc­
curence, while uncertainty refers to complete ignorance of the
probabilties.



risk of fire is handled in a Marko process dynamic
program b artell (19 0). He shows that the oil
expectation alue and the optimal rotation fall as the
ri k of fire increa e . Reed and Errico (1985) reach a
similar conclu ion. A more general re iew of risk and
uncertaint in stand Ie el problems is a ailable in Kao
(1982, 1984); these two papers in e tigate optimal
tocking Ie els and rotation under ri k and uncertainty,

re pecti el .
nder deterministic assumption ,when we know

the Ie el of gro ing stock'\ growth is a fixed alue.
When ri k is present, growth become a random vari­
able and is characterized b a probabilit function. In
Kao (1982) tocking level is u ed as the state variable
and olume i maximized. There i a probabilit of
being in each state and an expected thinning a sociated
with being in that same tate.

If we are in state A and desire to be in state Y then
the probability of being in state Y' is the cumulative
probabilit of ha ing a growing tock greater than that
level in the next stage. The stand could then be thinned
back to that level and the appropriate amount of thin­
ning can be calculated. It should be stressed that the
structure of network nodes and the basic method of
solving the problem remain unchanged from the deter­
ministic case. Howe er, more calculations are needed
as each node mu t now carry information about the
probability of which node would be reached in the next
stage.

The recursion used by Kao to solve thi problem
the following:

R1"+I)(Y)=max IP,,+I,(YI X)P" (X) [T1"+'J (YI X)
"

+C" (X) + Y] I

where R(I1+ll (y) is the expected total volume which can
be captured from state Y (a stocking level) at stage 11+ 1;
X is the decision variable. It is the stocking level we
choose to be in at stage n to get to state Y at stage n+ I.
p,,+I(YI X) is the probability of being in state Y in stage
n+ I conditional on being in state X in stage n; P,,(X) is
the probability of being in state X in tage n; T"+I(YI X)
is the expected volume of thinning associated with mak­
ing tran ition from state X in stage n to state Y in stage
n+ I; C,,(X) is the total expected thinnings associated
with being at stateX in stage 11; Y is the stocking level in
state Y.

ote that the recursion is composed of two parts.
The first part concern the probabilities of being in the
desired tates and is obtained by multiplying the proba­
bility of being in state Y at stage 11+ I (conditional on

(4lThe level of growing stock in cubic metres per hectare in a

stand

12

being in state X) by the probabilit of being in tate X at
tagen.The econdi compo ed of the expected olume

including accumulated thinnings contained in tate Y.
These two part are multiplied together to ield the
expected total olume associated with being in tate Y.
The optimal alue for X i e entuall used to generate

alue for P,,+I(Y) and C"+I(Y)'
While the method employed b Kao allows for

more fie ibilit in state de cription than the earlier
arko deci ion process approaches (it could even be

de cribed a quasi-continuou ), it would be much more
difficult to employ iffinancial result ere de ired. The
tate pace ould need to be expanded to include

number of tree and a prox for tree size uch as ba al
area. Thi would expand the elements of risk and more
probabilities would need to be included. The "curse of
dimensionality" would soon become a factor.

Kao (1984) focuses on optimal stocking levels and
rotation under uncertainty. Kao stres e that pure uncer­
taint , which he defines (page 922) as "the complete
ignorance of the probabilities attached to each out­
come" doe not reall exist since we have at least a
vague idea of possible outcomes or at least of impos­
sible outcome. Kao modifies the definition of uncer­
tainty (page 923) to "no probability is known exactly."
Kao estimates growth from a growth function derived as
the stand develops. Probabilities of future states can
al 0 be estimated from the growth function and thus the
problem is transformed from one of uncertainty to one
of risk and the recursion equation of Kao (1982) can be
u ed. In thi process of adaptive optimization, the
optimal stocking levels and rotation are recalculated
each time more information about the true growth
function becomes available. The results show that under
uncertainty expected returns are less than under any of
the levels of risk used in Kao (1982). The optimal
rotation, however, is 70 years, which is longer than the
rotation at the highest level of risk which wa 50 years.
Closer investigation of the uncertainty solution shows
that the level of risk i actually less in Kao's uncertainty
case than in the highest risk case.

Conclusion

The structure of forest stand optimization prob­
lems has made them an ideal candidate for solution
using dynamic programming. In particular, the fact that
the solutions require a series of interrelated deci ions
that makes dynamic programming particularly suitable.
The fundamentals have been covered and the field is
now open for more sophisticated applications of dy­
namic programming to forestry. These include the fi­
nancial implications of risk and uncertainty, integrating



d namic programming in more model (T SS, for
e ample) and linking d namic programming stand
model with multiple tand model. Ithough ome
work ha been done b illiam (1976) and azareth
(1973), more work in thi area i required.

References

Amidon, E.; Akin, G. 1968. Dynamic programming to
determine optimal levels of growing stock. For.
Sci. 14:2 7-291.

Anderson, F. 1976. Control theor and the optimal
timber rotation. For. Sci. 22: 242-246.

Bradley, S.; Hax, A.; agnanti, T. 1977. pplied mathe­
matical programming. ddi on-We Ie . Read­
ing, a s.

Brodie, J.D.; Kao, C. 1979. Optimizing thinning in
Douglas-fir with three descriptor dynamic pro­
gramming to account for accelerated diameter
growth. For. Sci. 25: 665-672.

Brodie, J.D.; Haight, R. 1985. Optimization of silvicul­
tural inve tment for several types of stand projec­
tion systems. Can. J. For. Res. 15:188-191.

Brodie, J.D.; Adams, D.; Kao, C. 1978. Analysis of
economic impacts on thinning and rotation for
Douglas-fir, using dynamic programming. For.
Sci. 24:513-522.

Bruce, D.; Demars, D.; Reukema, D.L. 1977. Douglas­
fir managed yield simulator. DFIT: User's Guide.

SDA Forest Servo Tech. Rep. P W-57, Pac.
orthwe t Forest and Range Exp. Stn. Portland,

Oregon. 26 p.
Cawrse, D.; Better, D.; Kent, B. 1984. A variational

solution technique for determining optimal thin­
ning and rotational schedules. For. Sci. 30:792­
802.

Chappelle, D.; elson, T. 1964. Estimation of optimal
stocking levels and rotation ages of loblolly pine.
For. Sci. 10:421-502.

Chen, c.; Rose, D.; Leary, R. 1980a. Derivation of
optimal stand density over time - a discrete
stage, continuous state dynamic programming
solution. For. Sci. 26:217-227.

Chen, c.; Ro e, D.; Leary, R. 1980b. How to formulate
and solve optimal stand den ity over time prob­
lems for even-aged stands u ing dynamic pro­
gramming. U.S. For. Ser . Gen. Tech. Rep. 56,

orth Central For. Exp. Stn. St. Paul, innesota.
Clark, C.W.; De Pree, J.P. 1979. A simple linear model

for the optimal exploitation ofrenewable resources.
App!. ath. Opt. 5:181-186.

de Kluyver, c.; Daillenbach, H.; Whyte, A. 1980. A
two-stage, multiple objective mathematical pro-

13

gramming approa h to optimal thinning and har­
e ting. For. Sci. 26:674-686.

Dixon, B.L.; Ho itt, R.E. 1980. Re ource production
under uncertaint: tochastic control approach
to timber har e t cheduling. m. J. gric. Econ.
62:499-507.

Duerr, W.; Chri tian en, .1964. Exercise in manage­
rial economics of fore try. Oregon State ni er­
sity, Corvallis. 325 p.

Haight, R.; Brodie, J.D.; Dahms, W. 1984. A dynamic
programming algorithm for optimization of lodge­
pole pine management. For. Sci. 31 :321-330.

Hann, D. 1980. Development and evaluation of an
e en- and uneven-aged ponderosa pinelArizona
fe cue stand imulator. .S. For. Servo Re . Pap.
I T-267. Intermount. For. and Range Exp. Stn.,
Ogden, tah.

Hann, D.; Brodie, J.D.; Riitters, K. 1983. Optimum
tand prescriptions for ponderosa pine. J. For.

81 :595-598.
Hillier, F.; Lieberman, G. 1980. Introduction to opera­

tions research, 3rd Edition. Oakland, Holden Day.
Hool, J. 1966. A dynamic programming-Markov chain

approach to forest production control. For. Sci.
Monogr. 12, 26 p.

Kao, C. 1980. A study of optimal timing and intensity
of silvicultural practices - commercial and pre­
commercial thinning, fertilization and regenera­
tion effort. Ph. D. The is. Oregon State Univer­
sity. Corvallis.

Kao, C. 1982. Optimal stocking levels and rotation
under risk. For. Sci. 28:711-719.

Kao, C. 1984. Optimal stocking levels and rotation
under uncertai nty. For. Sci. 30: 921-927.

Kao, c.: Brodie, J.D. 1979. Determination of optimal
thinning entry inter al using dynamic program­
ming. For. Sci. 25:672-674.

Lembersky, M. 1976. Maximum average annual vol­
ume for managed stands. For. Sci. 22:69-81.

Lembersky, M.; Johnson, K. . 1975. Optimal policies
for managed stands: An infinite horizon Markov
decision process approach. For. Sci. 21: 109-122.

Martell, D. 1980. The optimal rotation of a flammable
forest stand. Can. J. For. Res. 10:3-34.

Martin, G., Jr. 1978. A dynamic network analysis of
silviculture alternative for red pine. Ph.D. thesis,

niver ity of Wisconsin, adison.
McArdle, R.E.; eyer, W.H.; Bruce, D. 1961. The

yield of Douglas-fir in the Pacific orthwest. .S.
For. Servo Tech. Bull. 210.

McDonough, J.M.; Park, D.E. Jr. 1975. A discrete
maximum principle solution to an optimal control
formulation of timberland and management prob­
lems. PROSE Res. Pap., PROSE, Inc., Los Ange-



leal proce e. ew York, Inter cience.
itchell, K. 19 O. Di tance dependent indi idual tree

stand model . Page 100-137 in K. . Brown and
F.R. Clark , ed . Proceeding of the workshop on
foreca ting forest tand d namic . School of For­
e tr ,Lakehead ni ersity, Thunder Bay, On­
tario.

Mitchell, K. 1986. Com pari on of Me rdle, DFSI
and TASS growth and ield models. Page 350­
359 in C. Oliver, D. Hanley and J. John on, ed .
Douglas-fir: tand management for the future.
College of Fore t Re ources, ni er it ofWa h­
ington, Seattle.

a lund, B. 1969. Optimal rotation and thinning. For.
Sci. 15:446-451.

azareth, L. 1973. A resource allocation model that
combine Dantzig- olfe decomposition and d ­
nami~ programming. M.Sc. Thesi . CoIl. of Engi­
neering, University of California, Berkeley.

Randall, R. 1977. Financial con equences of commer­
cial thinning regimes in oung-growth Dougla ­
fir. U.S. For. Servo Res. ote P W-292, Pac.

orthwest For. and Range Exp. Stn. Portland,
Oregon, 8 p.

Reed, W.; Errico, D. 1985. Assessing the long-run yield
of a forest stand subject to the risk of fire. Can. J.
For. Res. 15:680-687.

Reukema, D.; Bruce, D. 1977. Effects of thinning on
yield of Dougla -fir: Concepts and some esti­
mate obtained by simulation. .S. For. Ser .
Tech. Rep. P W-58, Pac. orthwest For. and
Range Exp. Stn. Portland, Oregon, 36 p.

14

Riitters, K.; Brodie, J.D.; Hann, D. 1982. Dynamic
programming for optimization of timber produc­
tion and grazing in pondero a pine. For. Sci.
28:517-526.

Roi e, J. 1986. nonlinear programming approach to
stand optimization. For. Sci. 32:735-74 .

Samuelson, Paul A. 1976. Economic of fore tr in an
e 01 ing ociet . Econ. Inq. 14:466-492.

Schreuder, G. 1971. The simultaneou determination of
optimal thinning chedule and rotation for an
e en-aged fore t. Fore t Sci. 17 :333-339.

Slea in, K. 1983. Searching the re pon e urface of
stand simulator under different objecti es and
constraint ...DFSIM a a case tud . Page 106­
12 in Proceedings of the national il iculture
workshop on economics of silvicultural in est­
ments. Eugene, Oregon, May 16-20, 1983. SDA
Forest Ser ice, Timber anagement Branch,
Washington, D.C.

SDA Forest Service. 1963. Timber trends in we tern
Oregon and we tern Wa hington. .S. For. Ser .
Res. Pap. P W -5, Pac. orthwest For. and Range
Exp. Stn., Portland, Oregon, 154 p.

Wagner, H. 1975. Principle of operation re earch.2nd
Edition. Prentice-Hall. Englewood Cliffs, ew
Jersey.

Williams, D. 1976. Integrating tand and fore t model
fordecision analysis. Ph.D. Thesis. Department of
Forestry. University of British Columbia, Van­
couver.




