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Abstract: Forest fires have a major impact on Canada’s forest carbon balance. National level simulations are used to 

gauge the potential impact of forest management, climate and other important factors on the carbon balance. In this proc-

ess a joint simulation of the area burned in 29 Canadian forest fire regions is required. This study presents seven simula-

tion algorithms for this complex task. Simulated areas burned are compared to historic data for 1959-1999 with respect to: 

1) the average, 2) the variance, 3) the cumulative distribution function, 4) the first and last quartile, 5) skewness, and 6) 

kurtosis. Comparisons occur at three levels: regional, supra-regional, and combined regional level. Simulations based on a 

resampling of historic records (bootstrap) confirmed that the data were too sparse for this technique. Treating regions as 

independent (zero covariance) leads to a significant underestimation of the interannual variance of area burned at the su-

pra regional and combined regional level. Thus an irregular and patchy interregional covariance structure must be taken 

into account. Only five regions could be viewed as independent from all other regions. A model-based simulation was 

challenged by the highly skewed and irregular regional distributions of area burned to which no known multivariate dis-

tribution would fit well. At the grouped regional and combined regional levels the best fit to historic data was achieved by 

first generating correlated probits with a multivariate-t distribution with four degrees of freedom, followed by a plug-in of 

these probits into empirical quantile interpolation functions. Approaches with time-varying or random covariance struc-
tures were also promising. 

Keywords: Correlation, stratified bootstrap, multivariate normal, multivariate-t, correlation curves, skewness, kurtosis, forest 

carbon. 

INTRODUCTION 

 Forest fires contribute significantly to global greenhouse 

gas emissions [1, 2] and predictions are that we can expect 

an increase in the frequency and severity of forest fires as the 

earth’s atmosphere gets warmer [3-5]. Models for predicting 

the effect of forests on regional and national carbon budgets 

[6, 7] must be able to quantify the impact of forest fires at 

multiple scales (regional, supra-regional, and combined re-

gional). The prediction of the area burned in a given region 

over a fixed time period is made difficult by extreme re-

gional interannual variation in size of areas burned in a fire 

[8-14]. Additional difficulties stem from the high sensitivity 

of fire propensity to minor changes in various climate drivers 

[15]. In regional models it is the annual aggregate effect of 

fire that is most often predicted. The annual area burned in 

forest fire is a key variable in this context. A good model 

takes into account any spatial or temporal correlation struc-

ture relevant at the level of resolution [16-18]. For a multi-

regional model the presence of a significant interregional, 

temporal, or spatial correlation structure must be verified and 

taken into account in the simulation process. If spatial and 

temporal associations between regions are ignored the simu-

lated distribution of the area burned in a group of more than  
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two regions could be severely biased in terms of variance 

and higher moments [19-21]. Even seemingly weak regional 

correlations can exert a disproportionate influence on the 

variance of a sum of random variables [22]. 

 Multiregional and multiyear simulation of area burned in 

forest fires in the boreal forest is a complex challenge when 

the data suggest a non-trivial correlation structure. The dis-

tribution of annual areas burned is often highly skewed with 

extremes occurring in years with either a warm and dry 

summer or in years with a late spring followed by a cold and 

wet summer [23]. It can be argued on physical grounds that 

in northern climates the fire-regime in one year is independ-

ent of the fire-regimes in the immediate past [24]. In Canada 

the winter snow-pack acts as an annual reset of the fire-

danger rating to near zero during the last weeks of winter. 

Global cycles like El Niño [25] may generate apparent tem-

poral correlations as serious conflagrations of forest fires in 

the boreal forest tend to co-occur during periods of El Niño 

[8, 26]. Overall, however, temporal correlations tend to be 

localized and short-lived [27]. 

 In this study we assess the performance of seven algo-

rithms for the joint simulation of area burned in 29 Canadian 

forest fire regions. Fire regions are those portions of the in-

tersection of ecoclimatic zones and provinces and territories 

where fire is actively managed to protect forest resource val-

ues or communities. The 29 regions account for about a third 

of the total forested area burned annually in Canada. All 

simulations attempt to reproduce the regional and joint re-
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gional distribution of the area burned in the 29 forest fire 

regions between 1959 and 1999. The ability to reproduce the 

distribution for groups of regions and for all regions com-

bined is a key performance criterion. We demonstrate a seri-

ous underestimation of the interannual variance of area 

burned in groups of regions and all regions combined if re-

gions are treated as independent by virtue of ignoring an 

irregular and patchy inter-regional correlation structure. 

 Five of the seven simulation algorithms are variants of 

the empirical percentile method of [28]. We acknowledge the 

shortcomings of this approach but failed to identify a more 

promising approach. No single parametric multivariate dis-

tribution or spatio-temporal model [29] was suitable for this 

simulation problem [20] nor do copula or related techniques 

for joining marginal distributions into a multivariate joint 

distribution apply due to the large number of correlated re-

gions which would make the computations infeasible [30-

32]. 

MATERIAL AND METHODS 

Data 

 Estimates of annual forested area burned (BA) in fires 

with a minimum size of 200 ha (BA 200) between 1959 and 

1999 in 29 of Canada’s forest fire regions were used as data 

for simulation of ‘future’ regional BA-values. Fig. (1) indi-

cates the spatial domain of the 29 fire regions. Stocks also 

reported on the methods and procedures behind these esti-

mates. The reliance on remotely sensed data since 1975 also 

means that the error structure changed at that time [33-35]. 

Estimates of BA in forest fires consuming less than 200 ha of 

forest (BA<200) were obtained and added to BA 200. To obtain 

BA<200 estimates the provincial/territorial records of area 

burned in seven size categories from the National Forest 

Database Program were used (Canadian Council of Forest 

Ministers, Compendium of Canadian Forestry Statistics, 

http://nfdp.ccfm.org as accessed on Jan. 22
nd

 2007). Empiri-

cal distribution functions of area burned by size class were 

created to obtain an estimate of BA<200 and to establish the 

relationship between BA<200 and BA 200 via nonlinear regres-

sions. Provincial/territorial-level regression models were 

then used to predict regional BA<200 values for each year 

between 1959 and 1999. Specifically: 

   
BA<200 = Max 0, Exp â + b̂ Log BA

200
+ 1( ) + 0.5 Var resid.( ) 1{ }    (1) 

 Regional sums 
   BA = BA<200 + BA 200  are used as data; in 

most regions the BA<200 estimates account for less than 1% 

of the annual area burned. 

 

Fig. (1). Map of 29 forest fire regions in Canada. 
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Simulation Objectives 

 The objective of the simulation is to generate a joint se-

quence of annual BA-values for 29 Canadian forest fire re-

gions. For each region the distribution of simulated values of 

BA should, in principle, match the empirical distributions for 

1959-1999. Simulations should strive to conserve both 

interregional and temporal correlation where they exist in the 

data. A conservation of correlation patterns assures that the 

distribution of simulated sums of regional BA-values also 

matches the empirical distribution. We apply this require-

ment to four grouped regions, each composed of four to ten 

individual fire regions. The grouped regions are: Maritime 

Canada (MC = {NB1,NF1,NF2,NS1}), Eastern Canada (EC 

= {PQ1,PQ2,PQ4,ON1,ON2,MB1,MB4,MB5}), Central 

Canada (CC = {SK2-SK4,AB1-AB5,NWT1-NWT3}), and 

Western Canada (WC = {BC1-BC5,YK1}). The requirement 

was also extended to the total of annual burned area formed 

by summing 29 regional BA-values. 

 We propose seven simulation algorithms and evaluate 

their ability to reproduce six key statistics (mean, variance, 

cumulative distribution function, first and last quartile, 

skewness, and kurtosis) of the historic data at the regional, 

the four supra regions (MC, EC, CC, WC), and all regions 

combined [36]. Using each of the seven algorithms, we gen-

erated 200 replicates of 41 years of simulated regional BA-

values and compared the six statistics of each replicate to the 

statistics of the historic data and performed a statistical test 

of the null hypothesis of equality. 

Temporal and Regional Correlations 

 Regional BA-values for any two distinct years from 1959 

to 1999 were moderately and positively correlated (mean = 

0.25, median = 0.18) with about a third of the correlation 

coefficients statistically significant at the 5% level. Fig. (2) 

shows a histogram of the relative frequencies of correlation 

coefficients binned to 0.1-wide classes. The correlation was 

largely driven by a co-occurrence of relatively large BA-

values in one, two, or sometimes three regions. However, 

within regions there was generally a lack of significant time 

trends and temporal autocorrelation of BA-values [37] for 

years  t +  and 
   
t, t = 1,..., 41 , = 1,…,8 . A significant 

time trend (cubic polynomial) was identified in just one re-

gion (ON1) where an analysis of variance suggested (P = 

0.04) that the area burned during the last third of the ob-

served 41 years has been significantly larger than in first two 

blocks of 13(14) years. Yet, correlations involving BA-

values from ON1 did not seem to be confounded by this time 

trend. As a consequence no temporal detrending of the data 

was attempted. In terms of year-to-year autocorrelations, 

only three lag one ( = 1) correlations for AB1, AB2, and 

NWT2 reached significance at the 5% level. The three auto-

correlations varied from 0.42 to 0.5. Higher order 
 

> 1( )  

autocorrelations were all close to zero and none reached a 

20% level of significance. Consequently we decided to ig-

nore a possible significant time trend in the ON1 data and we 

shall henceforth treat the regional data as a series of 41 inde-

pendent observations. 

 

 

Fig. (2). Distribution of year-to-year and region-to-region correla-

tion coefficients ( , rounded to nearest 0.1) of annual forest area 
burned. 

 Regional Pearson’s product moment correlation coeffi-

cients 
 OBS( ) of 1959-1999 BA-values were, for the most 

part, close to zero (mean = 0.06) with 56% slightly below 

zero (Fig. 2, bottom). However, a total of 61 coefficients 

(15%) were statistically significant at the 5% 

level
 

ˆ > 0.308( )  and the average of 0.50 for significant co-

efficients suggests they should be recognized in a simulation 

procedure. Under the null hypothesis of zero-valued 

interregional correlation coefficients tested at the 5% level of 

significance we would expect 5% of the correlations to be 

significantly larger/smaller than zero. The  29 29  matrix of 

empirical estimates of correlation coefficients 
  

R̂( )  is listed 

in Table 1. 

Empirical Distribution and Quantile Functions of BA 

 Joint stochastic simulation of regional BA-values requires 

a model for the joint and marginal distributions of BA [20]. 

A parametric approach requires models that describe the 

marginal distributions well. Yet a series of preliminary 

analyses quickly made it clear that the historic regional dis-

tributions of BA-values could not be captured with any de-

sired accuracy by any of the common distribution functions 

for positively valued random variables. We tried the follow-

ing distributions: Gamma, Cauchy, Weibull, Logistic, In-

verse Gaussian, Generalized Lambda Distribution, Logistic, 

and Beta with the latter two applied to BA-values divided by 

the regional forest area supporting a combustible biomass in 

excess of one metric tonne per ha. A truncated exponential  
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Table 1 Pearson’s Product Moment Correlation Coefficients of Regional Annual Area Burned (BA). All Entries have been Multi-

plied by 100. Coefficients Larger than 0.31 (Displayed as 31) are Significant at the 5% Level 

 

 AB1 AB2 AB3 AB4 AB5 BC1 BC2 BC3 BC4 BC5 MB1 MB4 MB5 NB1 

AB1 100 68 2 -5 -9 50 11 5 -7 0 12 -7 -1 -1 

AB2 68 100 32 9 -5 19 8 7 -4 -7 8 -3 15 -4 

AB3 2 32 100 1 -7 -5 -6 -10 -3 -7 3 6 50 -2 

AB4 -5 9 1 100 35 -5 4 4 24 13 22 22 1 -12 

AB5 -9 -5 -7 35 100 -13 -6 2 4 -5 -5 -11 -10 -7 

BC1 50 19 -5 -5 -13 100 44 34 25 50 -11 8 3 0 

BC2 11 8 -6 4 -6 44 100 72 87 43 1 49 36 -9 

BC3 5 7 -10 4 2 34 72 100 68 39 -5 32 13 1 

BC4 -7 -4 -3 24 4 25 87 68 100 43 -3 43 29 -10 

BC5 0 -7 -7 13 -5 50 43 39 43 100 -10 3 -4 -6 

MB1 12 8 3 22 -5 -11 1 -5 -3 -10 100 75 8 8 

MB4 -7 -3 6 22 -11 8 49 32 43 3 75 100 39 -7 

MB5 -1 15 50 1 -10 3 36 13 29 -4 8 39 100 -6 

NB1 -1 -4 -2 -12 -7 0 -9 1 -10 -6 -8 -7 -6 100 

NF1 -13 -8 -7 -9 -8 -1 -9 -3 -10 4 -12 -10 -13 -5 

NF2 -5 -3 -1 3 -8 21 87 66 82 16 2 56 41 19 

NS1 -9 -7 -2 35 -9 -4 29 20 38 26 26 33 6 -6 

NWT1 39 7 -6 1 -3 45 -4 -9 -5 -8 -5 -11 -14 2 

NWT2 46 31 34 -12 -4 -8 -8 -11 -13 -14 29 -4 2 -3 

NWT3 13 15 43 -3 -11 2 0 -4 6 18 2 -1 -4 -11 

ON1 17 5 -4 10 12 -17 -13 -19 -15 -15 17 -11 -2 -7 

ON2 1 15 45 0 -13 8 53 22 40 -3 10 39 65 2 

PQ1 -6 4 -13 6 -6 -8 -3 -21 -16 -3 -9 -11 -13 23 

PQ2 -11 -13 -10 -16 -4 -6 -1 -12 -10 -15 -11 -3 -7 -6 

PQ4 21 -1 -8 -4 -2 -1 4 -8 7 -8 17 -7 -11 -8 

SK2 66 77 11 -6 5 -3 2 4 -9 -12 39 5 -2 -10 

SK3 49 43 26 -10 -3 -7 0 -7 -8 -13 34 0 19 -7 

SK4 -3 -13 -8 -6 -4 -12 -4 -8 -3 -7 -5 1 6 -4 

YK1 23 12 11 10 -6 33 -1 -10 0 -2 39 29 0 0 
 

 NF1 NF2 NS1 NWT1 NWT2 NWT3 ON1 ON2 PQ1 PQ2 PQ4 SK2 SK3 SK4 YK1 

AB1 -13 -5 -9 39 46 13 17 1 -6 -11 21 66 49 -3 23 

AB2 -8 -3 -7 7 31 15 5 15 4 -13 -1 77 43 -13 12 

AB3 -7 -1 -2 -6 34 43 -4 45 -13 -10 -8 11 26 -8 11 

AB4 -9 3 35 1 -12 -3 10 0 6 -16 -4 -6 -10 -6 10 

AB5 -8 -8 -9 -3 -4 -11 12 -13 -6 -4 -2 5 -3 -4 -6 

BC1 -1 21 -4 45 -8 2 -17 8 -8 -6 -1 -3 -7 -12 33 

BC2 -9 87 29 -4 -8 0 -13 53 -3 -1 4 2 0 -4 -1 

BC3 -3 66 20 -9 -11 -4 -19 22 -21 -12 -8 4 -7 -8 -10 

BC4 -10 82 38 -5 -13 6 -15 40 -16 -10 7 -9 -8 -3 0 

BC5 4 16 26 -8 -14 18 -15 -3 -3 -15 -8 -12 -13 -7 -2 

MB1 -12 2 26 -5 29 2 17 10 -9 -11 17 39 34 -5 39 

MB4 -10 56 33 -11 -4 -1 -11 39 -11 -3 -7 5 0 1 29 

MB5 -13 41 6 -14 2 -4 -2 65 -13 -7 -11 -2 19 6 0 

NB1 -5 19 -6 2 -3 -11 -7 2 23 -6 -8 -10 -7 -4 0 

NF1 100 -4 -9 -9 0 -1 9 -4 0 -8 -9 -12 -12 -12 -12 

NF2 -4 100 22 -8 -5 3 -10 56 -4 -6 -2 -8 -6 -1 -3 

NS1 -9 22 100 -8 -12 -10 -5 11 -13 -10 1 0 -6 -6 6 

NWT1 -9 -8 -8 100 21 30 -15 -7 -11 7 -9 -2 -11 -11 72 

NWT2 0 -5 -12 21 100 44 52 17 -2 -16 49 61 79 -19 30 

NWT3 -1 3 -10 30 44 100 -10 1 -5 -15 -16 10 -1 -11 24 

ON1 9 -10 -5 -15 52 -10 100 6 4 -5 47 31 60 -6 5 

ON2 -4 56 11 -7 17 1 6 100 13 9 -1 3 24 -11 4 

PQ1 0 -4 -13 -11 -2 -5 4 13 100 18 5 -9 -2 11 -11 

PQ2 -8 -6 -10 7 -16 -15 -5 9 18 100 -8 -16 -15 -3 -10 

PQ4 -9 -2 1 -9 49 -16 47 -1 5 -8 100 29 56 -7 -3 

SK2 -12 -8 0 -2 61 10 31 3 -9 -16 29 100 76 -10 15 

SK3 -12 -6 -6 -11 79 -1 60 24 -2 -15 56 76 100 -10 10 

SK4 -12 -1 -6 -11 -19 -11 -6 -11 11 -3 -7 -10 -10 100 -11 

YK1 -12 -3 6 72 30 24 5 4 -11 -10 -3 15 10 -11 100 
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distribution of log-transformed BA-values - as proposed by 

Cumming [14] - was included for completeness. A Gamma 

distribution was the most promising. Data from nine regions 

could be reasonably described by this model (Kolmogorov-

Smirnov test statistics of fit were non-significant, P > 0.10) 

but for 15 regions a Gamma distribution would have been a 
poor choice (P  0.01). 

 A suitable distribution function could not be found in 

Johnson’s primer on multivariate statistical simulation [20]. 

Fleishman’s method [38], for generating multivariate data 

with pre-specified marginal means, variances, skewness, and 

kurtosis was also tried. It has been used successfully by Vale 

and Maurelli [39] but with our data a valid transformation 

rule could only be found for five of the 29 regions. 

 Attempts to improve these results by a data-

transformation were unsuccessful. The following transforma-

tions were tried: logarithmic, square-root, inverse hyperbolic 

sine, Box-Cox power transforms [40], and 

  
pBA 1 pBA( )

1

 where pBA is the proportion of exposed 

forest burned. Our conclusion from these preliminary analy-

ses was that empirical regional distribution functions would 

accommodate the simulation objectives better than any at-

tempt to fit the data to a parametric model. 

 Empirical distribution functions 
 

F( ) were linear interpo-

lation functions. For region i we have 

  
F̂

i
BA

i,r ( j )( ) =
r( j)

41+ 1
, r( j) = 1,.., 41           (2) 

where 
  
r( j)  is the rank (smallest = 1, largest =41) of the re-

gional BA-value in year j [41]. To cap 
  
F̂

i
 we fixed the ex-

tremes of regional BA-values at 
  
0.88 Min

j
BA

ij( ) , and 

  
1.08 M ax

j
BA

ij( ) , respectively. At these extremes the dis-

tribution function takes values of zero and one, respectively. 

 The scaling factors of 0.88 and 1.08 for capping the ex-

tremes were gained from a simulation study on the effect of 

sample size (number of years) on the extremes of a gamma-

distributed random variable. We took 50 to be the target 

number of years in the simulations and then estimated the 

effect of increasing the sample size from 41 to 50 years on 

the extremes of a gamma distributed random variable. Pa-

rameters in the gamma distribution were regional maximum 

likelihood estimates. The above scaling factors are the esti-

mated means taken across all regions and 800 replicate sam-

ples of size 41 and 50. Sarhan and Greenberg [42] investi-

gated the effect of sample size on the expected values of 

extremes of random variables generated from a symmetric 

distribution. According to their results, one should expect the 

range of a random variable to increase by approximately 

10% when the sample size is increased from 41 to 50. For a 

right-skewed distribution an expected increase in the range 

due to an increase in the length of the observational period is 

likely to inflate the mean. In other words the expected mean 

annual area burned in a finite sequence of years depends on 

the length of the sequence. 

 The inverse of F is called a quantile (viz. percentile) 

function and is used to generate a random BA-value 
  

BA*
( )  

from a random draw of a variable (probit, u) uniformly dis-

tributed on the unit interval
  

BA* = F 1 u( ) ,0 u 1( ) . For a 

given u the empirical quantile function yields the   u 100  

percentile of the regional distribution of BA. For the ob-

served data we have 

  

F̂
i

1 r

42
= BA

i,r ( j )
, r = 1,..., 41           (3) 

 Examples of the empirical quantile functions are dis-

played in Fig. (3) alongside maximum likelihood estimates 

of the gamma distribution functions. 

Simulation Procedures 

Bootstrap (BOOT) 

 A simple way of achieving the simulation objective(s) 

would be to generate bootstrap samples of the data [43]. A 

single bootstrap sample would then consist of 41 BA-values 

for each region representing a randomly selected (with re-

placement) sequence of years (1959-1999). The sequence of 

years would be the same for all regions in a single bootstrap 

sample. By repeatedly drawing a new sequence of 41 years 

and their associated BA-values one obtains a bootstrap sam-

ple of the joint regional distribution of BA-values. However, 

a bootstrap sample generated from just 41 records of ex-

tremely variable numbers will tend to exaggerate the tempo-

ral variability considerably [44]. A large number of bootstrap 

samples will appear as unrealistic when, by chance, years 

with either a high or a low BA-value are drawn more than 

once in a sequence. Putting a restriction on the number of 

times that a BA-value for a given year can appear in a sample 

is an attempt to rectify this problem. We therefore propose a 

stratified bootstrapping procedure whereby the regional BA-

values are stratified by years of observation. Eight strata of 

BA-values corresponding to years 1-5, 6-10, ..., 30-35, and 

36-41 were formed. A bootstrap sample was then generated 

by first drawing five years at random (with replacement) 

from each of the first seven strata and six years from the last 

strata, and then collecting the corresponding regional BA-

values. Thus a BA-value for a specific year between 1959 

and 1992 can appear at most five times in a bootstrap sample 

while a BA -value from a year between 1993 and 1999 can 

appear at most six times. 

 Call the vector of years drawn for a single bootstrap 

sample 
  
Y

41

*
= (Y

1:5

* , Y
6:10

* ,..., Y
35:41

* ).  A bootstrap sample of 41 

years of BA-values in 29 fire regions forms a 29  41 matrix 

   
BA

BOOT

*
= {BA

1
(Y

41

* ),...,BA
29

(Y
41

* )}         (4) 

where 
   
BA

i
Y

41

*
( )  is the ith regional vector of 41 BA-values 

specific to the stratified bootstrapped sequence of years. 

Bootstrap results applicable to MC, EC, CC, WC and all 

regions combined (Canada) were obtained by a simple sum-

mation of appropriate bootstrap records. 



42    The Open Forest Science Journal, 2008, Volume 1 S. Magnussen 

Multivariate Normal (MVN) 

 The multivariate normal simulation approach has been 

advocated by Bradley [28] and Johnson [20]. A random vec-

tor of 29 correlated regional annual BA-values 

  
BA

it

* , i = 1,..., 29( )  was obtained by the following algorithm 

    

BA MVN

*

= BA1

*

,…, BA29

*

= F̂
1

z
*

( )( ) , z
* MVN 0, R̂( )        (5) 

where 
1

F̂  is a vector of the 29 regional empirical quantile 

functions defined in (3),  is the multivariate normal distri-

bution function (MVN),   z
*
 is a random draw from a standard 

(mean 0 and variance 1) multivariate normal distribution of 

dimension 29, and   R̂ is the  29 29  matrix of Pearson’s 

product moment correlation coefficients of regional BA-values 

  
ˆ

OBS
BA

ij
, BA

i j( ) , j = 1,...., 41, i, i = 1,..., 29( ) . We have 

  
u

*
= z

*
( )  where    u

*
is a vector of regional correlated 

probits 
  

u
1
,...,u

29( )  on the unit interval. The predominantly 

right-skewed distributions of BA predispose an attenuation of 

the correlation coefficients in the simulated data. 

 

 

Multivariate-t (MVT) 

 To mitigate the anticipated attenuation problem we pro-

pose a multivariate-t distribution function (MVT) T for gen-

erating a vector of correlated probits 
  

u
*

( )  

    

BA MVT

*

= BAT1

*

,…, BAT 29

*

= F̂
1

T t
ˆ

*
( )( ) , t

ˆ

* MVT ˆ, R̂( )     (6) 

where  ˆ  is the degree of freedom for T (to be estimated). 

We chose  ˆ  to minimize the sum of squared differences 

between the empirical and simulated correlation coefficients. 

Thus, 

   

v̂ = argmin ˆ
obs

BA
ij
, BA

i j( ) ˆ
MVT ( ) BAij

*

, BAi j

*
2

i i
i=1

29

    (7) 

A 
  
MVT 4, R̂( )  achieved the best results, i.e.  ˆ = 4.  

 Fig. (4) illustrates that the attenuations of the correlation 

coefficients in   R̂  are less in MVT than in MVN simula-

tions; at least for correlation coefficients larger than 0.2. Yet 

a MVT creates a negative bias for weaker correlation coeffi-

cients. In an attempt to strike a balance between the two op-

posite attenuation problems a simulation with a mixture of 

draws from a MVN and a MVT distribution was explored. 

 

Fig. (3). Four (random) examples of empirical quantile functions (full lines) and the maximum likelihood estimate of the gamma distribution 

function (dashed line). Function values for u = 
  
j 41+1( )

1

, j = 1,...,41  have been connected by straight lines. 
  
D

max
 is the Kolmogorov-

Smirnov test statistics of maximum absolute difference in distribution functions (evaluated at u). 
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Fig. (4). Regional correlation coefficients of annual area burned in 

forest fires. A random sample of 100 observed correlation coeffi-

cients
 OBS

 are plotted against the correlation coefficient in simu-

lated values of area burned
  SIM( ). Full circles: MVT simulations. 

Open circles:  MVN simulations. A one to one line has been added 
for reference.. 

A Mixture of MVN and MVT Simulations (MIX) 

 In this algorithm a proportion ( )  of the simulations 

were done according to (4) and the remainder 
 
1( )  ac-

cording to (5). We denote a simulation from this mixture 

distribution as
   BAMIX

*

. The best mixing ratio 
 

ˆ( )  was esti-

mated at 0.37 by minimizing a least-squares criterion like the 

one in (6). In every 100 MIX simulations 37 will come from 

a MVN distribution and 63 from a MVT distribution. 

MVN with a Stochastic Correlation Matrix (RND) 

 Regional correlation coefficients of BA have so far been 

interpreted as if they were deterministic. In a simulation con-

text the question is whether observed (historic) correlations 

apply. Significant interregional correlation coefficients were, 

in most cases, determined by a co-occurrence of years with 

relatively large BA values. A censoring of these events 

would - in general - sharply reduce the magnitude of historic 

correlations. In other words, the observed significant correla-

tion coefficients depend critically on a few years with con-

comitant relatively large BA-values. Fig. (5) purveys an im-

pression of this dependency by showing the wide distribution 

of correlation coefficients based on 10 randomly selected 

years (without replacement). More than 40% of the random 

10-year correlation coefficients deviate by more than 0.05 

from their historic 41-year value (Fig. 6). Our results suggest  

 

 

that MVN (or MVT) simulations with a stochastic correla-

tion-matrix instead of   R̂  may make the results less depend-

ent on the historic correlation structure embodied in  R̂.  We 

propose two procedures (RND and TS) to lessen this de-

pendency. 

 In RND a random subset of 10 years 
   

J
RND

*
( )  is selected 

(without replacement) from the 41 years of observation. For 

each vector 
   
J

RND

*
a 29  29 matrix 

   
R̂

*

RND
 of product moment 

correlation coefficients was computed in the obvious way 

from the randomly selected subset of 10 years of observa-

tions
   

BA
ij

, j J
RND

*
( ) . A random vector of BA-values was 

then simulated as in MVN but with 
   
R̂

*

RND
 replacing   R̂  

    

BARND

*

= BARND1

*

,…, BARND29

*

= F̂
1

z
RND

*
( )( ) , z

RND

* MVN 0, R̂
RND

*
( )      (8) 

MVN with Time-Varying Correlation Coefficients (TS) 

 In TS the correlation coefficients of regional BA-values 

are functions of time [45]. Let 
 ii

j( )  denote a correlation 

coefficient of linear association between BA -values in re-

gions 
  
i and i  at time j (j = 1, ..., 41). For each year of ob-

servation (j) an in-time localized estimate of the expected 

regional correlation is obtained by methods outlined in Dok-

sum [45]. We used a linear moving-average filter with a 10-

year bandwidth to obtain smoothed time-trends of regional 

BA-values, and estimates of the standard deviation and tem-

poral covariance structure of the smoothed BA-values. The 

smoothed BA-values were considered as a continuous peri-

odic correlation curve in time with a return period of 41 

years. Thus every correlation coefficient 
 ii

j( )  is estimated 

as the weighted average in a symmetric 10-year neighbour-

hood extending 5 years into the past and 5 years into the fu-

ture. Our choice of 10 years for the moving average filter 

was grounded on consideration of accuracy. A shorter band-

width gave unacceptable standard errors of the estimated 

local correlation coefficients while a larger bandwidth appar-

ently over-smoothed jumps and spikes in the correlation 

curve. Estimated correlation-curves are displayed in Fig. (7) 

for the same six examples used in Fig. (6). Estimated confi-

dence bands of 
   
±1. se ˆ

ii
j( )( )  conveys an impression of 

the precision of the localized correlation coefficient. Spikes 

and valleys interspersed by periods of near zero correlation 

coefficients are characteristic features of the correlation 

curves. The average of a correlation curve was, as a rule, 

20%-70% lower for region pairs with an observed correla-

tion in excess of 0.4. As expected, for weakly correlated re-

gions the average of a correlation curve matched closely 

  
ˆ

OBS
. To simulate the joint distribution of regional BA-

values with the TS procedure a random vector of regional 

BA-values was generated from a randomly selected year 

(
  
j*

= 1,..., 41). 
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BATS

*

= BATS1

*

,…, BATS 29

*

= F̂
1

z
TS

*
( )( ) , z

TS

* MVN 0, R̂
TS

j*
( )( )   (9) 

where 
   
R̂

TS
j*

( )  is a  29 29  matrix of estimates 
  
ˆ

ii
j*

( ) . 

Regional Independence (NULL) 

 A region-by-region simulation of BA-values via the em-

pirical regional quantile (percentile) functions ignores any 

correlation structure in the data by assuming that the BA-

values of a region are independent of the BA-values in all 

other regions. Simulations with the NULL model serve as a 

benchmark for assessing the impact of interregional correla-

tions on the distribution of sums of BA-values for groups of 

regions (e.g. MC, EC, CC, and WC) or the total of all re-

gions. To facilitate a direct comparison of NULL and MVN 

results, the generating algorithm for the NULL procedure 

was identical to that of MVN in (4) except for the replace-

ment of the correlation matrix   R̂  with the identity matrix (I) 

    

BA
NULL

*

= BA1

*

,…, BA29

*

= F̂
1

z
0

*
( )( ) , z

0

* MVN 0,I( )      (10) 

Assessment of Performance 

 Simulated data will not mirror historical data. We re-

quire, however, that important statistics pertaining to the 

marginal and joint distribution of simulated regional annual 

 

Fig. (5). Six (random) examples of the distribution of regional correlation coefficients (rounded to nearest 0.05) based on 10 randomly se-

lected years (1959-1999). The expected distribution based on the assumption of an underlying linear relationship with constant variance is 
shown by the full line. The means of the two distributions are indicated by vertical lines. 
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area burned in forest fires match the same statistics in the 

historic data. To this end, six statistics were computed for 

each simulation period of 41 years and compared to the cor-

responding statistics for the historic data [46]. A test of the 

null hypothesis of equality was performed for each statistic. 

The six statistics were: 1) the mean, 2) the variance, 3) the 

cumulative distribution function (CDF), 4) the first and last 

quartile (25 and 75 percentiles), 5) the skewness, and 6) the 

kurtosis. Comparisons were made at the regional, grouped-

regional, and combined regional levels. 

 

Fig. (6). Frequency distribution of differences between regional 

correlation coefficients (rounded to nearest 0.05) of BA computed 

from BA of 10 randomly selected years (1959-1999) and the corre-

lation coefficients based on observed 1959-1999 data. 

 Means were compared with a conventional t-test statistic 

with 39 degrees of freedom. Equality of empirical and simu-

lated CDF’s was tested via a Kolmogorov-Smirnov test of the 

maximum absolute difference [47]. Equality of variances was 

tested with an F-ratio test modified to account for skewness in 

the data [48]. Quartiles (0.25, 0.75) were compared by count-

ing the number of simulated BA-values below (above) the 

historic quartiles and assuming that this number is a random 

variable drawn from a binomial distribution with 41 trials and 

probability of success equal to 0.25 and 0.75, respectively. 

Differences in skewness and kurtosis were assessed with a 

permutation test [49] with 1000 realizations from the null dis-

tribution generated by a random re-assignment of 41 historic 

and 41 simulated BA-values to either historic or simulated 

data. 

 The 5% level of significance was used as the threshold for 

rejection of the null hypothesis of equality. Simulation methods 

(MVN, MVT,...,NULL) were ranked from worst to best by the 

number of rejections of the six null hypotheses. The ranking 

was done for results at the regional, the grouped regional, and 

combined regional levels. Rejections of the hypotheses of 

equality of means, variances, and CDFs were considered as 

more serious than rejections for any other hypothesis. Equality 

of the 25 and 75 percentiles was, however, deemed more im-

portant than equality of skewness and kurtosis. 

RESULTS 

 A summary of the forested areas burned annually be-

tween 1959 and 1999 in the 29 forest fire regions is in Table 

2. Area burned is expressed as a percentage (BA%) of the 

effective forest area with a minimum of one metric tonne of 

combustible forest biomass per ha [50]. The regional aver-

ages confirm a wide range from 0.01% in NS1 to 1.8% in 

MB1. Medians were much lower and had a narrower range 

(0.00%-0.60%). The minimum was close to 0% in every 

region while the regional maxima (mean = 4.7%) almost 

reached a catastrophic level in some regions. In all but a few 

regions the distribution of BA% was heavily right-skewed 

with a large standard deviation – typically two to three times 

the mean. (To qualify the large numbers from western Can-

ada it should be emphasized that they cover areas affected by 

a forest fire (perimeter), not necessarily equal to the area of 

forest destroyed by fire). 

Table 2. Summary Statistics of Percent Forest Area Burned 

Annually Between 1959 and 1999 in 29 Forest Fire 

Regions. Percentages are Computed as Area Burned 

Divided by the Forest Area with a Minimum of One 

Metric Tonne of Combustible Biomass Per Ha 

 

Region Mean Median Min Max Std. Dev. Skewness 

AB1 0.75 0.10 0.00 7.70 1.80 3.00 

AB2 0.40 0.10 0.00 5.30 0.97 3.66 

AB3 1.00 0.00 0.00 19.60 3.74 4.07 

AB4 0.03 0.00 0.00 0.10 0.05 0.91 

AB5 0.02 0.00 0.00 0.40 0.07 4.03 

BC1 0.22 0.10 0.00 1.80 0.38 2.50 

BC2 0.09 0.00 0.00 1.00 0.17 4.20 

BC3 0.01 0.00 0.00 0.10 0.03 2.31 

BC4 0.08 0.00 0.00 1.00 0.17 3.91 

BC5 0.13 0.00 0.00 1.40 0.30 2.97 

MB1 1.80 0.60 0.00 23.20 3.84 4.51 

MB4 1.01 0.10 0.00 15.7 3.05 4.08 

MB5 0.40 0.00 0.00 4.50 0.96 3.10 

NB1 0.02 0.00 0.00 0.70 0.11 5.67 

NF1 0.07 0.00 0.00 1.20 0.21 4.28 

NF2 0.30 0.00 0.00 8.10 1.29 5.64 

NS1 0.01 0.00 0.00 0.30 0.05 4.31 

NWT1 0.06 0.00 0.00 0.70 0.18 2.96 

NWT2 0.79 0.40 0.00 6.70 1.29 2.90 

NWT3 0.68 0.30 0.00 5.40 1.20 2.84 

ON1 0.05 0.00 0.00 0.50 0.11 2.97 

ON2 0.32 0.10 0.00 2.60 0.64 2.62 

PQ1 0.27 0.10 0.00 1.90 0.49 2.09 

PQ2 0.06 0.00 0.00 0.90 0.17 3.84 

PQ4 0.03 0.00 0.00 0.50 0.10 3.99 

SK2 0.91 0.10 0.00 10.00 1.92 3.36 

SK3 0.86 0.10 0.00 10.50 1.91 3.64 

SK4 0.19 0.00 0.00 2.80 0.56 3.51 

YK1 0.51 0.10 0.00 4.10 0.87 2.43 



46    The Open Forest Science Journal, 2008, Volume 1 S. Magnussen 

 All methods were, as expected, about equally good at 

reproducing the regional, grouped regional, and the com-

bined regional average of annual area burned during a period 

of 41 years. The rejection rate of the null hypothesis of 

equality between a simulated and historic mean was consis-

tently below 5%. 

 The variance of simulated regional BA-values was more 

likely to deviate significantly from the historic variance than 

the mean (Table 3). The maximum (regional) rejection rate 

of the null hypothesis was well above 5% for all simulation 

methods. The median rejection rate, however, was fairly 

close to the nominal 5% which suggests that the variance of 

simulated BA-values in about half the regions was not sig-

nificantly different from the observed variance. MVN, MVT, 

MIX, and NULL performed slightly better than BOOT, 

RND, and TS. In twelve regions the rejection rate for BOOT 

was over three times the expected rate of 5%. A large per-

centage (> 30%) of the BOOT simulated 41-year sequences 

had a variance that is either much larger or much smaller 

than the historic variance (Fig. 8) - a typical problem en-

countered in resampling from a heavily skewed and short 

sequence of data. Our stratified bootstrap procedure miti-

gated this problem but did not eliminate it. 

 At the grouped-regional and combined regional level the 

ability to reproduce the inter-annual variance in BA-values 

varied considerably among the methods. BOOT, MVN, 

 

Fig. (7). Six examples of temporal regional correlation curves (full line) with a (dashed) confidence band of 
  
±1. se ˆ year( )( ) . The correla-

tion coefficient estimated from the 1959-1999 data is indicated by the horizontal line. 
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MVT, and MIX performed best and NULL the worst (Table 

3). The poor performance of the NULL model is a clear indi-

cation of the significance of interregional correlations. Low 

variance in the NULL simulations caused the rejections 

(Figs. 9,10). For example, the observed variance in CC was 

2.3 times larger than in the NULL simulations - a result that 

agrees with an expectation of a ratio of 2.4 estimated from 

the average interregional correlation of 0.14 in CC [51]. 

NULL simulations for all regions combined were equally 

poor. Although the average regional correlation of BA-values 

is only 0.06 the impact on the variance of the regional total is 

an expected inflation of 280% over the expected variance 

with independent regions. The actual inflation (DATA / 

NULL) was 240%. 

 Cumulative distribution functions of simulated BA-values 

matched the historical CDFs quite well. The rate of rejec-

tions was consistently below 5% for all methods. A lack of 

statistical power [52] due to the sample size of 41 is consid-

ered to be the main cause of the poor discrimination between 

the methods. 

 First and last quartiles in 41 years of simulated regional 

BA-values were in general not significantly different from 

the historic quartiles. Methods like RND and TS performed 

poorly in regions AB5 and NB1 with unusually high rejec-

Table 3. The Relative Frequency (%) of Rejecting the Null Hypothesis (H0) of Equality Between Simulated and Observed Vari-

ance of Annual Area Burned During a 41 Year Period. Level of Significance = 5% 

 

 BOOT MVN MVT MIX RND TS NULL 

Regional (n = 29)  

Mean 

 
9.4 

 
6.7 

 
6.7 

 
6.3 

 
10.6 

 
9.5 

 
6.7 

Median 5.5 5.0 5.5 4.0 7.5 6.5 5.5 

Min 0.0 0.5 0.5 0.0 1.0 1.5 0.0 

Max 31.5 17.5 16.5 18.5 33.5 16.5 14.5 

Supra-regional (n = 4) 

Mean 

 
2.5 

 
4.9 

 
6.5 

 
5.3 

 
8.8 

 
11.4 

 
18.8 

Median 2.5 5.0 6.3 5.5 8.3 11.5 14.3 

Min 1.0 2.0 4.0 2.5 7.0 6.0 6.5 

Max 4.0 7.5 9.5 7.5 11.5 16.5 40.0 

All regions (n = 1) 0.5 5.0 4.5 4.5 7.5 12.0 61.2 

 

 

Fig. (8). Relative frequency distribution of the logarithm of the variance of bootstrap simulated area burned in four regions during a period of 

41 years. The four regions are regions in which the variance of bootstrap simulations deviates significantly from the observed value. The 
logarithm of the observed variance and its approximate 95% confidence interval is indicated by a vertical and a dashed line, respectively. 
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tion rates of the null hypothesis. For groups of regions or all 

regions combined, the NULL model is, however, again un-

acceptable with rejection rates well above 25%. 

 

Fig. (9). Relative frequency distribution of the logarithm of the 

variance of simulated annual forest area burned in grouped region 

“CC” during a period of 41 years. Model: regional independence 

(NULL). The logarithm of the observed variance and its approxi-

mate 95% confidence interval is indicated by a vertical and a 

dashed line, respectively. 

 

 

Fig. (10). Relative frequency distribution of the logarithm of the 

variance of simulated annual forest area burned in all regions com-

bined during a period of 41 years. Model: regional independence 

(NULL). The logarithm of the observed variance and its approxi-

mate 95% confidence interval is indicated by a vertical and a 
dashed line, respectively. 

 All methods were about equally good at reproducing the 

coefficient of skewness and kurtosis in the historic data. Re-

jection rates under the null hypotheses were - with two ex-

ceptions - well below the nominal 5% level. Exceptions were 

for skewness in BOOT (overestimation) and MVN (underes-

timation) simulations. Yet it is clear that a sample size of 41 

years is insufficient to detect even marked departures from 

historic values. 

 Overall MVT showed the most consistent performance at 

the grouped-regional and combined regional level. The er-

ratic variances of the BOOT simulations led us to reject this  

 

method. MVN and MIX were close contenders but MVT is 

slightly better at reproducing skewness and quartiles. RND 

and TS came up short against historic data. The implicit 

(RND) and explicit (TS) smoothing of interregional correla-

tions is the culprit. Yet a change in the simulation objectives 

or simulation period may improve their performance relative 

to the other methods. 

 A summary of MVT simulations for two randomly se-

lected regions, grouped region CC (the supra region with the 

strongest average correlation between member regions), and 

the regional total, are in Figs. (11-15). At the regional level, 

the MVT simulations generated 41-year sequences of BA-

values that resembled the historic sequence reasonably well, 

at least in terms of the six statistics considered. There was a 

small surplus of large 41-year averages (Fig. 11) due to the 

asymmetric scaling of the empirical quantile functions that 

generated a much larger extension of the maximum than 

reduction of the minimum. There is also a slight surplus of 

variances smaller than expected in the MVT simulations 

(Fig. 12), which challenge our assumption of a zero within-

regional temporal autocorrelation. If years are not independ-

ent, our simulations will underestimate the variance within a 

41-year sequence and overestimate the variance between 

periods of 41 years. 

 Shortcomings of the MVT simulations are of course most 

pronounced at the grouped regional and combined regional 

levels. For example, the number of simulated BA-values be-

low the first historic quartile matched the expected number 

although the distribution of this number was distinctly dif-

ferent from the expected binomial distribution (Fig. 15), a 

mismatch that became more pronounced for the third quar-

tile. A small surplus of sequences with inflated skewness and 

kurtosis coefficients is also apparent. 

DISCUSSION AND CONCLUSIONS 

 The joint simulation of area burned in Canada’s forest 

fire regions remains a complex and difficult task. Multivari-

ate simulations of highly skewed positive valued vectors 

with a dimension above three remains a challenge in the ab-

sence of a suitable transformation to a family of known pa-

rametric distributions. Candidate models are essentially lim-

ited to gamma-type or generalized lambda distributions [20, 

31, 53-55]. Our data did not fit any of the popular parametric 

distribution functions, which severely curtailed our options. 

Linking 29 different marginal distributions into a joint mul-

tivariate distribution using copula or related techniques [30] 

would be computationally infeasible. Even if we treated five 

of the regions as independent, the dimension of the problem 

would still be unmanageable. A hierarchical Bayesian 

Markov Chain Monte Carlo (MCMC) approach to the simu-

lation of complex multivariate latent processes has become 

popular [56] but we failed to detect any useful or consistent 

covariance pattern in our data that we could exploit within 

such a framework. The observed interregional correlation 

matrix was too irregular and patchy. 

 A joint simulation based on a mixture model [57] of, for 

example, multivariate gamma or log-normal distributions of  
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Fig. (11). Median of ranked (1,...,41) log-transformed annual area burned in MVT simulations (center line). Top and bottom lines demarcate 

the 95% simulation envelope in 200 replications. Observed (ranked) values are indicated by dots. Results are for two randomly selected re-

gions, one grouped region (“CC”) and all regions combined. 

 

 

Fig. (12). Histogram of log-transformed 41-year averages of area burned in 200 MVT simulations. The observed value is indicated by the 

full vertical line. An approximate 95% confidence interval of this mean is indicated by the dashed line. Results are for two randomly selected 
regions, one grouped region (“CC”) and all regions combined. 
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large and small BA-values might be an option for longer 

time-series of data. An observation period of 41 years is too 

short to allow a reliable estimation of mixture proportions 

and mixture components. Furthermore, combining marginal 

mixture models into a single joint simulation model would 

also lead to a MCMC approach. 

 

Fig. (13). Histogram of log-transformed 41-year variances of annual area burned in 200 MVT simulations. The observed log-transformed 

variance is indicated by the full vertical line. An approximate 95% confidence interval of this mean is indicated by a dashed line. Results are 
for two randomly selected regions, one grouped region (“CC”) and all regions combined. 

 

 

Fig. (14). Histogram of the number of MVT simulated values of annual area burned in a 41-year period that are smaller than the observed 

25% percentile. Expected value is indicated by the vertical line (full) and a 95% confidence interval of this expectation under the assumption 

of a binomial distribution (stars) is indicated by the horizontal (dashed) line. Results are for two randomly selected regions, one grouped 

region (“CC”) and all regions combined. 
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 The bootstrap procedure [43] is, in principle, ideally 

suited for joint simulation or recasting of historic data. To 

avoid a very jagged and irregular outline of the marginal 

bootstrapped distributions the data density must be quite 

high. In a 29-dimensional space a sample size of 41 years 

can only qualify as sparse [44]. Our stratified bootstrap pro-

cedure improved the situation but many marginal distribu-

tions of bootstrapped regional BA-values were still much 

more irregular than the historic distributions. 

 It was argued that regional BA-values from two distinct 

years could be regarded as independent. Support for a sig-

nificant temporal first-order autocorrelation was limited to 

three regions (AB1, AB2, and NWT2). In addition, even in 

these few cases a shift in the observational period could ei-

ther increase or decrease the correlation coefficient which 

suggests that temporal autocorrelations are unstable. A 

longer period of observation (> 50 yrs) would increase our 

power to detect evidence of a temporal autocorrelation dur-

ing years characterized as having an above-average or a be-

low-average fire-danger rating. Addition of a temporal di-

mension to the interregional correlations of BA-values 

would, of course, greatly complicate the task of finding a 

suitable model. A MCMC approach to the joint simulation 

would, again, be a natural framework for the simulations. 

 To use empirical distribution functions as the generator 

of the marginal distributions of regional area burned will 

satisfy the objective of a good fit between simulated and 

historic data, but only at the regional level. Yet the need to 

cap empirical distribution functions poses a nontrivial prob-

lem. In any event, the capping must be tailored to the simula-

tion objectives. Even for our simple objective of simulating a 

50-year sequence of regional BA-values that - in distribution 

- matches 41 historic records, the best choice of capping is 

not entirely clear. A much longer observational period is 

needed before use the observed minimum and maximum as 

caps would be justified. For a right-skewed distribution the 

expected maximum will increase more rapidly with sample 

size than the minimum is expected to decrease. Conse-

quently, capping an empirical distribution function derived 

from a relatively small sample leads to a built-in lack-of-fit 

to historic data. 

 We saw only one case (ON1) of a significant time-trend 

in the data. Otherwise the extreme temporal variability in 

BA-values in most fire regions in Canada may have masked 

any actual trend. Had there been more pronounced time 

trends they would have had to be incorporated into the simu-

lation process. A deterministic time-trend, however, would 

force the simulations to become year-specific stochastic pre-

dictions for either the period of years defined by the data or a 

future with predicted regional time trends. Trends would 

most likely differ between parts of Canada and greatly com-

plicate the simulation procedure [58]. 

 To satisfy simulation objectives pertaining to the joint 

distribution of regional BA-values, the choice of model for 

the generation of correlated uniformly distributed random 

variables on the unit interval (probits) becomes all-

important. Only a few choices are realistic and they are es-

sentially limited to the multivariate-normal and multivariate 

 

 

Fig. (15). Histogram of the number of MVT simulated values of annual area burned in a 41-year period that are under the observed 75% 

percentile. The expected value is indicated by the full vertical line and a 95% confidence interval of this expectation under the assumption of 

a binomial distribution (stars) is indicated by a dashed line. Results are for two randomly selected regions, one grouped region (“CC”) and all 
regions combined. 
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t-distributions. We confirmed Bradley’s experience with 

attenuated interregional correlations when a MVN distribu-

tion is used to generate correlated probits of non-Gaussian 

data. The attenuation problem is less severe in MVT simula-

tions, but adopting this distribution entails a stronger nega-

tive bias in weaker correlations (-0.2 to 0). On balance the 

MVT approach has more appeal than the MVN approach. 

The optimal degree of freedom for the t-distribution will 

have to be found by trial-and-error. 

 Our performance criteria for the simulations were limited 

to a comparison of statistics of the simulated and historic 

data. For a simulation of future BA-values the criterion 

would need to be revised. We therefore advocate a cautious 

interpretation of a historic correlation structure in regional 

BA-values. We saw how selecting 10 years at random could 

change a 10-year correlation pattern considerably. The ob-

served correlations may very well be unique to the years 

covered by the data. Attempts to obtain robust correlations 

[59] were discouraged by the non-Gaussian nature of the 

data. Adding a few more years of observations or dropping 

the most dated observations could change the correlation 

coefficients by non-trivial amounts. Our RND and TS proce-

dures were designed to make the results more robust against 

changes in the time support. Output from RND and TS con-

firmed a shrinking (smoothing) of interregional correlation 

coefficients. A similar shrinking effect could arise in a MVT 

procedure using a random draw from a scaled Wishart distri-

bution as the correlation matrix instead of   R̂.  On theoretical 

grounds, a simulation of future BA-values with RND or TS 

has appeal. Integrating them into an empirical Bayesian ap-

proach [60] with, for example, the first half of a historic re-

cord used to formulate priors on the model parameters and 

the second half used to compute a likelihood of a candidate 

model could be an interesting avenue of future research. 
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