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Abstract 

Science and reporting information needs for monitoring dynamics in land cover over 

time have prompted research, and made operational, a wide-variety of change detection 

methods utilizing multiple dates of remotely-sensed data. Change detection procedures 

based upon spectral values are common; however, landscape pattern analysis 

approaches which utilise spatial information inherent within imagery present 

opportunities for the generation of unique and ecologically important information. While 

the use of two images provides the means to identify trend, the use of multitemporal 

imagery for long-term monitoring affords the ability to identify a greater range of 

processes of landscape change. The main objective of this review is to investigate and 

summarize the methods and applications of land cover spatial pattern analysis using 

three or more image dates. The potential and the limitations of landscape pattern 

indices are identified and discussed to inform application recommendations. The 

second objective of this review is to make recommendations, including appropriate 

landscape pattern indices, for the application of landscape pattern analysis of a long 

time-series of remotely-sensed data to a case study involving the mountain pine beetle 

in British Columbia, Canada. The review concludes with recommendations for future 

research. 
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1. Introduction 

Land cover change may be the most significant cause of global environmental change 

(Skole et al., 1997). Land cover refers to the physical materials on the surface of a given 

tract of land (Treitz et al., 2004) such as fields, lakes, trees, or concrete. Impacts of land 

cover modification such as habitat loss and degradation are known to impair ecosystem 

function and reduce ecosystem services (Kerr et al., 2003). Balancing the human need 

for these ecological services (i.e., timber harvesting) while maintaining ecosystem 

function requires explicit knowledge about ecosystem responses to land cover change. 

The ability to monitor these trends at a variety of scales provides critical information 

required to assist in sustainable resource management decisions.  

 

With a growing understanding of the linkages between land use and land cover change 

and impacts upon populations, communities, and ecosystem and environmental 

processes, long-term monitoring over large areas is increasingly important. Because 

traditional field data are limited to a local extent and are not readily applicable to 

regional or global extents, remote sensing is considered an essential technology for 

ecological and conservation-related applications (Kerr et al., 2003). For many studies, it 

represents the only data source available for measuring habitat characteristics and for 

detecting and monitoring environmental change (Kerr et al., 2003; Turner et al., 2003; 

Wulder et al., 2004). The use of satellite-based remote sensing data has been 

determined to be a cost-effective approach to identifying change over large areas 

(Lunetta et al., 2004). Furthermore, remotely-sensed data can provide a synoptic record 

of land cover changes and may represent the only means to obtain multitemporal 
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datasets for some monitoring applications, particularly for those projects located in 

remote areas.  

 

Many satellite-based remote sensing platforms provide data at a spatial and temporal 

resolution that are suitable for detecting and monitoring land cover changes. For 

instance, the grain size (or spatial resolution) of the Landsat Thematic Mapper (TM) 

sensors allows for land cover characterization and change detection consistent with the 

grain of land management (Cohen et al., 2004). Furthermore, the orbital revisit period of 

16 – 18 days and an archive of over 30 years of imagery provide a rich context for land 

cover monitoring. As a result of the repeat imaging capabilities of many sensors, and 

the subsequent increase in multitemporal datasets in recent years, there is a growing 

need for multitemporal analysis methods.  

 

While the focus of many change detection studies is on the areal extent of landscape 

disturbance (Lunetta et al., 2006; Yen et al., 2005), recognizing that the terrestrial 

ecosystem is inherently heterogeneous and thus maintaining the existing mosaic in the 

size, shape, and distribution of patches within a landscape has important ecological 

implications (Riitters et al., 2000). This variability is considered a critical element which 

drives the flow of species and materials within a landscape (Southworth et al., 2002). 

Thus, in addition to calculating the amount of land cover change over time it becomes 

important to quantify changes in landscape spatial pattern.  
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The location and arrangement of vegetation across a landscape is an expression of 

varied ecological processes at work in the natural environment. Some of these 

ecological processes vary spatially and influence spatial patterns on the landscape. 

Landscape spatial pattern is the result of dynamic abiotic and biotic processes operating 

on the landscape over time. Consequently, existing and future landscape patterns are 

the manifestation of the processes that produced them and therefore, contain 

information related to these processes (Peterson, 2002). Both anthropogenic and 

natural disturbances lead to changes in landscape spatial pattern and these changes 

can be measured using landscape pattern indices, also referred to as landscape 

metrics. 

 

Ecological processes operate within various spatial and temporal scales (Turner et al., 

2001). Furthermore, structure in ecological systems is scale specific. While the spatial 

aspect of scale is often the focus in the field of landscape ecology, it is important to 

recognize that scale also has a temporal dimension and that the consideration of one 

without the other fails to describe the complete system (Gunderson et al., 2007). This is 

partly due to the relative lack of long-term datasets but is also driven by the ease with 

which spatial analysis can be performed using technologies such as geographic 

information systems (GIS) (Reynolds-Hogland et al., 2007). Reynolds-Hogland & 

Mitchell (2007) present a concept of designing ecological studies that integrates three 

axes: i) temporal resolution; ii) spatial resolution; and iii) the resolution of the ecological 

process under consideration. The authors suggest that ecological studies that fail to 

consider these three components can result in misleading results. Gunderson et al. 
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(2007) argue that landscape ecology and ecology in general will advance considerably 

when both spatial and temporal aspects of process and structure are analyzed 

simultaneously. 

 

The main objective of this paper is to review studies that have performed multitemporal 

landscape pattern analysis of ‘natural’ landscapes using three or more image dates. 

Studies based on the use of simulated landscapes or landscape models have been 

excluded in an effort to focus on ecological land cover monitoring applications. Using 

the information gained through the reviewed literature, recommendations of both 

suitable landscape pattern indices and analysis methods are applied to a case study 

involving the monitoring of spatial and temporal dynamics associated with the impacts 

of mountain pine beetle infestation on lodgepole pine forests in the central interior of 

British Columbia, Canada. 

 

2. Land cover change detection mapping 

Digital change detection is a method of identifying and quantifying differences in the 

state of an object or phenomenon from multi-date imagery (Singh, 1989), which is 

typically acquired from multispectral remote sensing platforms. Depending on the scale 

of the imagery utilized (Wulder et al., 2004), this approach to land surface monitoring 

provides an effective means of evaluating change at the landscape or regional scale by 

analysing an archive of remotely-sensed data (Cohen et al., 2004). Traditional field or 

aerial photo interpretation-based methods of monitoring generate empirical data to 

quantify land use and land cover change; however, extending fine-scale data methods 
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to a broader landscape or regional scale presents a number of methodological 

challenges. Furthermore, change detection methods based on the use of satellite 

imagery provide the ability to use consistent and repeatable procedures and to utilize 

the non-visible regions of the electromagnetic spectrum (Coppin et al., 2004). While a 

wide range of change detection approaches are possible (Collins et al., 1996; Lu et al., 

2004; Skole et al., 1997; Treitz et al., 2004), Coppin et al. (2004) present digital change 

detection approaches with an emphasis on ecosystem monitoring and describe two 

primary approaches based on spectral information from the visible and infrared domain: 

bi-temporal change detection and temporal trajectory analysis.  

 

Bi-temporal change detection utilizes the spectral differences between two images to 

identify change (Coppin et al., 2004). In essence, the differentiation of change and no-

change pixels depends on the pixel values of co-registered images representing the 

same area at different times (Liu et al., 2004; Singh, 1989). The selection of imagery 

acquisition dates is a critical component of bi-temporal change detection procedures. 

Both calendar acquisition dates and the image temporal interval are important 

considerations that will dictate the magnitude of change detectability. To minimize 

discrepancies in reflectance caused by differences in seasonal vegetation and sun 

angle, anniversary dates or anniversary windows are often used (Coppin et al., 2004).  

 

Temporal trajectory analysis involves the use of an image time-series to monitor 

indicators of land surface attributes (Coppin et al., 2004). The temporal frequency, 

linked to the process of interest, will dictate the spatial and temporal resolutions. For 
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instance, within-year trends to vegetation phenology over broad areas may be captured 

with coarse spatial resolution instruments that have short revisit intervals. Applications 

of the temporal trajectory approach are often based on daily image acquisitions 

provided by sensors such as the National Oceanic and Atmospheric Administration 

(NOAA) Advanced Very High Resolution Radiometer (AVHRR), Moderate-Resolution 

Imaging Spectrometer (MODIS), and Systeme Probatoire de l’Observation de la Terre  

(SPOT) VEGETATION (Coppin et al., 2004). The temporal frequency of available 

imagery using these sensors provides the means to compare seasonal profiles, thereby 

eliminating the issue related to the influence of phenology on change detection 

performance (Coppin et al., 2004). However, imagery available with fine temporal 

frequency is currently limited to coarse spatial resolution sensors, thereby restricting the 

types of land cover objects that can be detected with temporal trajectories. Thus, 

multitemporal change detection studies are typically applied at regional, continental, or 

global scales. 

 

More commonly, investigators are interested in capturing land dynamics at the 

landscape scale based on an annual time-step using moderate spatial resolution 

(approx. 10 – 100m spatial resolution) imagery such as Landsat, and in some cases 

SPOT (Systeme Pour l’Observation de la Terre). Data from Landsat TM imagery is most 

commonly utilized for trajectory-based analysis  

of land cover change over time due to the spatial and spectral qualities of the imagery 

and the long-term image archive (Goward et al., 2001). Further, the United States 

Geological Survey (USGS) (the agency that populates and maintains the Landsat 
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archive) is poised to reprocess the entire archive to new standards and to make the 

entire holdings of the archive available at no cost1. With cost limitations removed, 

applications with dense time-series of Landsat imagery are expected to proliferate. The 

Landsat TM and ETM+ (Enhanced Thematic Mapper Plus) series of sensors provide 

imagery from 1984 to present, with the MSS (Multispectral Scanner) sensor furthering 

the time-series to 1972 (Cohen and Goward 2004).  

 

Although the use of moderate spatial resolution imagery allows for the detection of 

objects that coarser resolution imagery does not, there are challenges in applying these 

data to the evaluation of spatial and temporal trends. For instance, obtaining cloud-free 

imagery for some areas of the Earth can be difficult even on an anniversary basis 

(Hansen et al., 2008). If the gap between sequential images is too long or there are not 

enough scenes available to represent the process under investigation, identifying 

disturbance events in time can be difficult. Thus, distinguishing discontinuities resulting 

from disturbance events from environmental variation may not be possible when there is 

a mismatch between the rate of change and the availability of imagery (de Beurs et al., 

2005).  

 

                                                        

 

 

 

1 http://landsat.usgs.gov/images/squares/USGS_Landsat_Imagery_Release.pdf 
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Another challenge that affects both bi-temporal and multitemporal change detection 

studies is determination of what constitutes significant change. Assumptions of 

stationarity, image quality, sensor noise, and the complexity of many change detection 

methods can lead to difficulties in distinguishing the influence of the signal from notable 

land cover change. Although a wide range of methods have been developed to detect 

and describe changes found in image time series, there remains a lack of general 

techniques to assess statistical significance of change (de Beurs et al., 2005).  

 

Multitemporal change detection procedures utilizing dense data stacks have been 

applied to a range of studies. Pax-Lenney et al. (1996) used ten Landsat-5 TM images 

with dates ranging from 1984 to 1993 to assess the status of agricultural lands in the 

Nile Delta and Western Desert of Egypt. Temporal changes in NDVI (Normalized 

Difference Vegetation Index) values were used to determine the presence and vigour of 

vegetation. Data were then classified into a number of land use categories and areal 

statistics were calculated to determine land cover dynamics over the spatial and 

temporal extent of the study area. Lawrence and Ripple (1999) used eight dates of 

Landsat TM imagery over a range of 11 years to analyse trends of vegetation recovery 

over the Mount St. Helens, Washington, volcano blast zone. The authors demonstrated 

the applicability of change curve analysis to extract specific change parameters 

including number of years to reach ten percent cover, greatest rate of cover increase 

during the study period, and time-integrated cover. Schroeder et al. (2007) utilized a 

time-series consisting of nineteen near-anniversary Landsat TM and ETM+ images to 

characterize forest regrowth patterns in Western Oregon, USA. Similar to Lawrence and 
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Ripple (1999), the authors used continuous spectral trajectories to obtain estimates of 

forest regrowth for five distinct cover classes. Kennedy et al. (2007) used a stack of 

eighteen Landsat TM images spanning a period of twenty years to test an automated 

trajectory-based change detection procedure that provided estimates of both 

discontinuous (i.e., stand replacing disturbance) and continuous phenomena (i.e., 

growth, recovery). 

 

Change detection of land cover features is an important application of remote sensing, 

providing critical information to make better informed decisions regarding resource 

management and predictions of future environmental conditions. However, typical 

change detection procedures are restricted in scope by solely relying on spectral 

information to identify and characterize change. Read and Lam (2002) outline three of 

the primary limitations related to exclusively relying on spectral data for land cover 

analyses: i) difficulty separating indistinct land covers and change classes; ii) resolving 

differences between change detection images for pixel by pixel comparisons; and iii) 

controlling for the changing spectral properties of land cover changes through time. 

Furthermore, the authors argue that pixel-by-pixel classifiers do not consider the spatial 

context of pixels and, therefore, fail to utilize all the information available in the data. By 

using the spatial arrangement of differences in pixel values to characterize a scene, the 

ability to detect change takes on an ecological element by incorporating the spatial 

pattern of landscape features. By identifying, measuring, and characterizing landscape 

pattern, insight into past, current, and future ecological conditions is possible. 

Integrating change detection with information regarding spatial pattern will provide a rich 
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context with which to interpret landscape change; whereby, change in pattern over time 

will inform the noted change with spatial context. 

 

3. Landscape ecology and spatial pattern 

Landscape patterns result from complex biotic and abiotic interactions operating at 

various spatial and temporal scales (Bolliger et al., 2007; Turner, 2005). The habitats 

occupied by various organisms are spatially structured at a range of scales, and the 

interaction of these organisms on patch and boundary features drives ecological 

processes such as population dynamics and community structure (Irish et al., 2006; 

Johnson et al., 1992). Landscape ecology has many definitions but the key concepts 

that seem to tie these interpretations together are spatial heterogeneity and how this 

influences ecological processes. Landscape ecology is principally concerned with the 

notion that landscape patterns influence ecological processes (McGarigal, 2002).  

 

A landscape can be defined from many points of view but typically refers to a land 

surface at a relatively large scale (hectares to square kilometres). Turner (2005) defines 

a landscape as “an area that is spatially heterogeneous in at least one factor of 

interest.” This broad definition encompasses a range of spatial scales from the domain 

of small organisms to the level of ecosystem and region.  

 

Since landscape ecology is concerned with the interaction between spatial pattern and 

ecological process, methods to describe and quantify spatial pattern are required 

(Turner et al., 2001). Landscape pattern indices are measures of landscape 
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composition and configuration. Indices of landscape composition measure which land 

use/land cover classes are present on the landscape and their relative amounts. These 

landscape pattern indices are thus aspatial but can provide important information 

related to the variety and abundance of patch types within the landscape (McGarigal et 

al., 2002). Spatial configuration refers to the arrangement, position, or orientation of 

patches within the landscape or within a given class (McGarigal, 2002). Landscape 

pattern indices that measure configuration attempt to quantify aspects of spatial 

distribution such as the location of patch types relative to other patches. These indices 

correspond to the recognition that organisms and ecological processes are affected by 

the overall configuration of patches and patch types within the landscape mosaic 

(McGarigal, 2002). 

 

Landscape pattern indices are commonly defined at three levels: i) patch-level; ii) class-

level; and iii) landscape-level. Patch-level indices are calculated for every patch in the 

landscape and characterize the spatial character and context of patches. Class-level 

indices represent an assimilation of all the patches of a given class. Landscape-level 

indices are measures of all patch types or classes over the full extent of the data 

(McGarigal, 2002).  

 

In the broad field of landscape monitoring, the most commonly applied landscape 

pattern indices are those that quantify edge and shape (Lausch et al., 2002). These 

indices measure the occurrence of ecotones and are often associated with patch area 

and fractal dimension. The number and size of patches are also often measured 
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(Lausch et al., 2002) and represent two commonly used indices to quantify 

fragmentation (McGarigal et al., 2002; McGarigal, 2002). 

 

4. Application of landscape pattern indices 

Landscape pattern analysis can help to explain relationships between ecological 

processes and spatial pattern. However, it is important to recognize that spatial pattern 

analysis is a tool used to accomplish specific objectives, rather than a goal of its own. 

These objectives must be specified prior to analysis and should include an ecological 

justification for the use of specific measures of spatial pattern (Turner, 2005).  

 

Since many landscape pattern indices are correlated and thus may not measure unique 

qualities of spatial pattern (McGarigal, 2002), it is desirable to use the least number of 

indices possible to characterize a landscape (Gergel, 2007; Turner et al., 2001). Hence, 

it is important to understand the theoretical and empirical relationships among pattern 

indices before choosing a set of landscape measures for a given application. 

Landscape pattern indices should be chosen which are relatively independent of each 

other and which are able to quantify ecologically meaningful information. Several 

authors have attempted to define the unrelated components and describe the major 

attributes of landscape structure (Cushman et al., 2008; Riitters et al., 1995), thereby 

eliminating the redundancy and difficulty in interpretation that plagues the common use 

of large sets of landscape pattern indices, but there is no consensus of an applicable 

minimum set. 
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A variety of issues and limitations related to the use and interpretation of landscape 

pattern indices are well understood (Gergel, 2007; Gustafson, 1998; Li et al., 2004; 

Turner et al., 2001). Li & Wu (2004) outline conceptual flaws in landscape pattern 

analysis that permit special consideration. These include i) unwarranted relationships 

between pattern and process; ii) ecological irrelevance of landscape indices; and iii) 

confusion between the scales of observation and analysis. The authors argue that the 

assumption that pattern and process are reciprocal is applied to most landscape 

ecological studies without a critical evaluation of the specific processes under 

investigation. Failure to recognize the existence of non-interactive relationships between 

pattern and process may result in conceptual flaws in landscape pattern analysis (Li et 

al., 2004). The use of landscape pattern indices is valid only if the indices are chosen 

according to their ecological relevance (Gergel, 2007). Furthermore, Li & Wu (2004) 

suggest that the indiscriminate use of pattern indices hinders efforts to establish 

associations between spatial pattern and process, particularly in correlation analysis. 

Understanding the role of scale in landscape pattern analysis requires distinguishing 

between the scale of observation and the scale of analysis (Gustafson, 1998; Li et al., 

2004). Once data are collected, the scale of observation is constrained by the data. The 

scale of analysis is determined by the original scale of observation and the methods of 

data transformation. Thus, landscape pattern indices should be computed at multiple 

scales in order to adequately quantify spatial pattern (Li et al., 2004). 

 

Another consideration is the criteria that will be used to determine whether a change in 

landscape pattern is significant or not. While statistical techniques can be used to detect 
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significant changes of a landscape pattern index with known variation, determining 

ecologically significant change is much more difficult (Gustafson, 1998). For example, 

the pattern / process relationship in some ecological systems is believed to be 

associated with critical thresholds in which small changes in spatial pattern produce 

abrupt shifts in ecological response (Fahrig, 2002; Folke et al., 2004; Peterson, 2002; 

With et al., 1995). Thus, without a thorough understanding of the ecological system and 

the historical variability of landscape pattern determining significant change can be 

challenging.  

 

5. Multitemporal spatial pattern analyses 

There are many examples of change detection applications using spatial pattern based 

on two dates of imagery (Franklin et al., 2003; Sachs et al., 1998; Stueve et al., 2007; 

Wang et al., 2005; Yang et al., 2005). These typically involve pairwise comparisons of 

landscape pattern indices derived from thematic maps representing a beginning, or 

reference point in time, and an end point in time. Where two sampling dates may allow 

for the evaluation of change, multiple dates permit the evaluation of trend. Thus, the use 

of multitemporal data for long-term monitoring of landscape spatial pattern can provide 

the means to identify a greater range of processes of landscape modification. 

Furthermore, a more complete multitemporal image sequence consisting of consecutive 

time steps allows for a more inclusive and informative trajectory of change.  

 

Advances in spatio-temporal analysis are critical in order to gain insights and to develop 

a mature ecological understanding of spatial and temporal dynamics (Fortin et al., 
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2005). Gustafson (1998)argues that it is essential to any study investigating the link 

between spatial pattern and ecological process to recognize the temporal dynamics of 

pattern and to understand that a range of pattern conditions may be identified. A 

number of works identify the need for further research to develop tools that will 

effectively characterize spatio-temporal patterns based on an image time series (Fortin 

et al., 2005; Henebry et al., 2002; Lausch et al., 2002; Wagner et al., 2005). Although a 

multitemporal approach to landscape pattern analysis presents considerable challenges 

in data processing, analysis, and interpretation, it provides an opportunity to 

characterize and quantify the complexity of spatial and temporal patterns and 

processes.  

 

A review of the literature shows that a variety of multitemporal change detection 

methods based on spatial pattern utilizing three or more time steps have been applied 

at a range of scales (Table 1: please see end of document). The majority of these 

studies are concerned with land use and land cover change and typically employ the 

use of three or four images. Many of these studies involve either monitoring changes in 

forest cover or land use and land cover dynamics as a result of urbanization. The spatial 

extent of the studies reviewed ranges from 16 km2 to over 7,600 km2. Studies operating 

at a fine scale typically used aerial photography and GIS to conduct spatial pattern 

analysis, while those studies concerned with landscape or regional scales used satellite 

imagery, typically with Landsat as the primary data source. 
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The conversion of agricultural lands for other land uses is an important subject in many 

areas of the world. Hietala-Koivu (1999) used a series of four digitized black and white 

aerial photographs spanning a period of 39 years to describe structural changes in a 24 

km2 agricultural landscape in southwest Finland. Using ARC/INFO GIS software, were 

rectified and then digitized according to an existing classification scheme. In addition to 

the percentage of the total area occupied by each of the classes through the time 

series, changes at the class and landscape level were assessed using the 

FRAGSTATS*ARC program (Berry et al., 1998). By using a suite of five landscape 

pattern indices (landscape percentage, mean patch size, patch density, mean shape 

index, and total edge length) it was concluded that the study area has become more 

homogenous through the intensification of agriculture. 

 

Using a suite of landscape pattern indices to characterize changes in forest cover is a 

common application. For instance, Dodds et al. (2006) used annual aerial detection 

survey data to examine spatial patterns of Douglas-fir beetle infestations in northern 

Idaho, USA over a 13-year period. The authors concluded that pattern analysis can 

provide information that is relevant to forecasting Douglas-fir beetle related forest 

damage. Using a series of Landsat MSS and ETM+ images from 1973, 1987, and 1999, 

Fuller (2001) characterized spatial and temporal patterns of forest fragmentation in 

Virginia, USA. Changes in forest area and spatial patterns were quantified using a set of 

four pattern indices and their relationship to radiance values of the Landsat thermal 

band was examined. Southworth et al. (2002) also used Landsat data but based their 

time series on three Landsat TM images spanning a nine-year period to monitor forest 
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cover change in the mountains of western Honduras. Seven pattern indices were used 

to describe changes in spatial pattern, and these trends were explained using 

biophysical environmental parameters and socio-economic data. The authors employed 

techniques which provided linkages between land cover, land use, and biophysical 

structure, thereby permitting an analysis that related pattern and process. In a study 

based in northeast Turkey, Çakir et al. (2008) used Landsat MSS, TM, and ETM+ 

satellite imagery to monitor forest cover change. The use of three images covering a 

temporal range of 25 years provided the basis to classify the imagery at the 1975, 1987, 

and 2000 timesteps and to evaluate both spatial and temporal trends in forest cover. 

 

Monitoring changes in land use and land cover is a common theme of the reviewed 

literature. For example, Narumalani et al. (2004) used a variety of data types to quantify 

changes in land cover / land use and to monitor the ecological impacts of these 

changes at the Effigy Mounds National Monument, Iowa, USA. A post-classification 

change detection algorithm was used to determine pixel-by-pixel differences between 

the three periods (1940s, 1960s, 1990s). In order to identify changes in the geometry 

and fragmentation of land cover classes, four pattern indices were used and were 

examined in three-dimensional landscape pattern space in an attempt to assess the 

direction and magnitude of change through time. Similarly, Zhou et al. (2004) 

investigated land use and land cover changes but used five image dates consisting of 

Landsat MSS, TM, ETM+ and SPOT 1 HRV data over a 27 year period in China. The 

authors used a post-classification change detection approach and then derived class 

area statistics and temporal trajectories. In addition, a set of five pattern indices were 
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used to evaluate changes in spatial pattern associated with land use and land cover 

trends. Likewise, Griffith et al. (2003) used four Landsat MSS and TM images covering 

a range of 20 years to evaluate temporal trends in landscape patterns resulting from 

changes in land cover and land use in the Middle Atlantic Coastal Plain Ecoregion of the 

USA. Data were classified and a set of six pattern indices were selected to describe the 

number, size, shape and spatial relationship of patches of land cover types. A repeated 

measures analysis was then applied to determine whether there were statistically 

significant trends in the indices over time. Results indicated that all pattern indices 

showed evidence of a trend toward an increasingly fine-grained landscape, and 

statistically significant trends were detected in five of the six indices.  

 

The monitoring of changes in rangeland vegetation has also been conducted using a 

multitemporal landscape pattern approach. Kepner et al. (2000) monitored changes in 

rangeland vegetation cover in a semi-arid region of southeast Arizona, USA and 

northeast Sonora, Mexico. Using Landsat MSS data covering an area of approximately 

7,600 km2, three periods (1973-1986, 1986-1992, 1973-1992) were utilized to assess 

changes in four pattern indices in an effort to document land cover changes and 

determine ecosystem vulnerability. Also focussing on an area of southeast Arizona, 

Wallace et al. (2003) used Landsat MSS, TM, and ETM+ imagery to evaluate rangeland 

conditions over a period of 26 years. The authors examined the utility of remote sensing 

as a tool for ecological assessment by quantifying land use and land cover change and 

evaluating the spatial arrangement and complexity of landcover types. 
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Another common application of multitemporal landscape pattern analysis is to evaluate 

changes in land cover due to urbanization. Many of these studies are focussed on 

urban growth and development in China. For example, in an effort to gain an 

understanding of changes in urban green space in Jinan, China, Kong and Nakagoshi 

(2006) used both gradient analysis and landscape pattern indices to evaluate trends 

over a period of 15 years. The authors relied on SPOT and Landsat imagery collected 

for three image dates (1989, 1996, 2004) to create categorical urban green space 

maps. Ancillary data included a topographic map and census data. A set of eight class 

and landscape-level indices were used to generate curves based on an eight-direction 

gradient from the urban center of the study area. By using a ``moving window`` method, 

the authors attempted to provide a more informative link between pattern and process. 

Yu and Ng (2006) used four Landsat TM images spanning a period of 14 years to 

evaluate the impacts of urbanization on land cover in Panyu, Guangzhou, China. By 

using a set of ten class and landscape-level indices, the authors analyzed aspects of 

landscape heterogeneity and fragmentation with respect to urbanization. Similarly, 

Schneider et al. (2003) used eight image dates of Landsat MSS, TM, and ETM+ 

spanning 24 years to monitor urban growth in Chengdu, China. The authors used a 

decision tree change detection method to map land use trends and then quantified the 

density and pattern of land use over space and time using a combination of pattern 

indices and gradient analysis. Focussing on a 16 km2 study area centred on 

Butterworth, Malaysia, Rainis (2003) used a set of pattern indices to quantify spatial and 

temporal trends of urban land use. The author utilized aerial photographs and GIS data 

to develop land use classes for three timesteps (1974, 1982, and 1990) over a period of 
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16 years. Land use statistics and pattern indices were used as an urban land use 

monitoring tool. The author concluded that while the use of landscape pattern indices 

can provide information related to land use structure, their meaning and interpretation in 

the urban planning context requires further research. 

 

Several studies employed an experimental approach to multitemporal landscape pattern 

analysis. For instance, Lausch and Herzog (2002) used a variety of vector and raster 

data from a range of sources including digital maps, aerial photos, prospective planning 

materials, and SPOT-XS imagery to monitor land-use changes in a region of eastern 

Germany where open cast coal mining has resulted in far-reaching environmental 

changes. Using a time-series of four classified maps for each of two independent study 

areas, the applicability of pattern indices for landscape monitoring was evaluated. For 

the two study areas the authors used 24 and 27 indices, respectively, and confirmed the 

findings of Riitters et al. (1995) and Cain et al. (1997) that there are many redundancies 

among landscape pattern indices and that relatively few indicators are required to 

capture landscape pattern. Read and Lam (2002) used three unclassified Landsat TM 

images spanning 11 years to investigate the performance of a set of spatial statistics 

and pattern indices as techniques for land cover discrimination and change detection for 

a lowland tropical site in north-eastern Costa Rica. Their results indicated that the fractal 

dimension (based on calculations using the triangular prism surface area method) and 

measures of spatial autocorrelation were useful for distinguishing differing quantities of 

spatial complexity, while standard landscape pattern indices were not particularly useful 

for this application. Frohn and Hao (2006) used six Landsat TM images centered on a 
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deforested area in Rondonia, Brazil spanning a period of 17 years to evaluate the 

performance of sixteen pattern indices with respect to spatial aggregation. Their 

research built on prior work related to the influence of scale on pattern indices by using 

two different spatial aggregation methods and assessing the sensitivity of indices under 

these different data representations.   

 

Fragmentation is a complex process that is both a consequence of habitat loss and an 

independent process in and of itself. In the case of a continuous matrix, the 

fragmentation process begins with a reduction in habitat area and an increase in the 

proportion of edge habitat (Neel et al., 2004). The majority of habitat will initially be 

connected but will increasingly become perforated and incised. When sufficient habitat 

is lost, or when the initial continuous matrix appears as a patch mosaic (~ 50 – 60% of 

the landscape), remaining habitat often becomes detached into isolated patches 

(Jaeger, 2000).  

 

The significance of landscape and habitat fragmentation is a prominent ecological issue 

(Hargis et al., 1998; Riitters et al., 2000; Trani et al., 1999; Wickham et al., 2007; Wilcox 

et al., 1985; With et al., 1995; With et al., 1999). Thus, many of the landscape pattern 

indices employed in the reviewed literature were used to measure aspects of 

fragmentation. The indices which were most commonly used in the reviewed literature 

are shown in Table 2. Of the 17 articles reviewed, 11 used mean patch size (MPS) and 

10 used number of patches (NP). Landscape fragmentation is commonly characterized 

using pattern indices such as number of patches (NP), mean patch size (MPS), the 
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distance between patches, and measures of edge habitat (Langford et al., 2006). NP 

and MPS are often used complementary since high NP and low MPS values support an 

interpretation of fragmented landscape conditions (Matsushita et al., 2006). Largest 

patch index (LPI) was used in seven of the articles. When used at the class level this 

landscape pattern index represents a measure of dominance as it quantifies the 

percentage of total landscape area comprised by the largest patch (Weng, 2007). Edge 

density (ED) and mean shape index (MSI) were each used in six of the studies. Edge 

density (ED) is calculated as the length of all borders between different classes in a 

reference area divided by the total area of the reference unit and is a measure of the 

complexity of the shapes of patches and an indicator of the spatial heterogeneity of a 

landscape. Mean shape index (MSI) is also used as a fragmentation index (Young et 

al., 2006) as it denotes the average patch shape, or average perimeter-to-area 

proportion for all patches in a landscape. Class area (CA), patch density (PD), and 

landscape shape index (LSI) were each used in five of the studies. Class area (CA) 

equals the sum of the areas of all patches of the corresponding patch type. Patch 

density (PD) is also considered a fragmentation index (Trani et al., 1999). Patch density 

(PD) increases with a greater number of patches and serves as an indication of the 

extent to which a landscape is fragmented. Landscape shape index (LSI) provides a 

standardized measure of total edge or edge density and can be interpreted as a 

measure of patch aggregation or disaggregation (McGarigal et al., 2002). 

 

Table 2. The most commonly used landscape pattern indices in the reviewed literature. 
Landscape pattern index (LPI) Number of times used 
Mean patch size 11 
Number of patches 10 
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Largest patch index 7 
Edge density 6 
Mean shape index 6 
Class area 5 
Patch density 5 
Landscape shape index 5 

 

6. Case study 

6.1 The mountain pine beetle 

Major transformations of forest ecosystems at global, regional, and local scales are 

occurring with increasing frequency and, in many cases, result in losses in timber 

values along with a reduction in biodiversity (Hoekstra et al., 2005; Laurance, 1999; 

Simberloff, 2000). Thus, ecological applications of remote sensing involving land cover 

are often associated with forest management and conservation. Changes in forest cover 

resulting from both anthropogenic and natural causes are increasingly important and 

remote sensing represents an effective means of monitoring these dynamics (Aplin, 

2005).  

 

The mountain pine beetle (Dendroctonus ponderosae Hopkins) is a native insect to the 

pine forests of western North America. As a result of anthropogenic and environmental 

influences on the lodgepole pine ecosystem, such as forest wildfire suppression and a 

moderating trend in temperature extremes, mountain pine beetle populations in the 

central interior of British Columbia, Canada have reached epidemic proportions. The 

current beetle epidemic is the province’s leading cause of tree mortality (Westfall, 2007) 

and represents the largest insect infestation on record in British Columbia. Due to the 

broad spatial extent of the current infestation, remotely-sensed data provide 
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opportunities to effectively monitor and evaluate the impacts of the mountain pine beetle 

(Wulder et al., 2006b).  

 

Mountain pine beetles attack in large numbers (mass-attack) to overcome the defensive 

system of a healthy tree. Once the tree is killed but still has green foliage it is referred to 

as being in the green-attack stage. The foliage gradually changes colour and after a 

twelve-month period following attack over 90% of killed trees will have red needles (red-

attack stage). The grey-attack stage is characterized by the loss of needles which 

occurs in most trees after a three-year period following attack (Wulder et al., 2006). 

Given the distinct changes in spectral reflectance from green to red, the majority of 

remote sensing applications utilize the red-attack stage for identifying and monitoring 

the impacts of mountain pine beetle (Wulder et al., 2005). 

 

Monitoring the magnitude and tracking the leading edge of MPB infestation is critical to 

forest resource managers. Due to the broad scale of the current epidemic, monitoring 

strategies utilizing remotely-sensed data have been developed and successfully applied 

(Coops et al., 2006; Wulder et al., 2005; Wulder et al., 2006a; Wulder et al., 2006). The 

Landsat TM and ETM+ sensors have proven to be useful for several MPB red-attack 

mapping applications (Franklin et al., 2003; Skakun et al., 2003; Wulder et al., 2005). 

The spectral resolution of these sensors is sufficient to detect a range of radiation levels 

allowing for the differentiation of red-attack crowns from healthy trees and other stages 

of MPB-related tree mortality. Furthermore, there have been a number of studies which 

have relied on time-series analysis to identify spatial and temporal trends of infestation 
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(Aukema et al., 2006; Goodwin et al., (In Press); Nelson et al., 2003; Skakun et al., 

2003). A developing approach for the mapping and characterization of MPB red-attack 

is landscape spatial pattern analysis. Since the impacts of MPB infestation are 

expressed at both a spatial and temporal scale and are inherently linked to ecological 

processes, this natural disturbance agent represents an excellent candidate for 

monitoring via multitemporal spatial pattern analysis.  

 

6.2 Multitemporal spatial pattern analysis 

As a landscape disturbance agent, mountain pine beetle-induced tree mortality leads to 

habitat fragmentation at both a landscape and local scale depending on the severity and 

extent of infestation. This has important ecological implications related to habitat 

abundance, biodiversity, and the influence that changes in spatial pattern have on a 

variety of ecological processes. For instance, population dynamics of many species are 

influenced by not only the amount of available habitat but also on the spatial 

arrangement of habitat (Hughes et al., 2006). In a forested landscape, fragmentation 

can be quantified as a reduction in the average size of forest patches, an increase in the 

distance between patches, and an increase in the ratio of edge to interior (Allan et al., 

2003). Fragmentation of previously continuous forest can result in a reduction of 

species diversity in remnant forest patches (Allan et al., 2003). Some species in 

landscapes with low forest cover experience increases in stress and a greater risk of 

predation while gaining access to food (Belisle et al., 2001). Likewise, many avian 

species have a high propensity to utilize forest edges but may also be reluctant to move 

among forest patches which are surrounded by open area (Bélisle, 2005) . 
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While the mountain pine beetle represents a contagious disturbance agent that can 

contribute to forest fragmentation, operational and salvage logging play an important 

role as well. For instance, the removal of dead trees which represent potential nest sites 

for woodpeckers will limit the distribution of this effective mountain pine beetle predator. 

Likewise, extensive logging at the regional level would be expected to result in a 

systematic fragmentation of forested landscapes and may disrupt or destabilize other 

forest processes in unpredictable ways (Franklin et al., 1987) which could potentially 

result in outbreaks of other insects or other unforeseen and undesirable effects (Hughes 

et al., 2006).  

 

In order to monitor the rate and magnitude of landscape fragmentation and loss of 

connectivity resulting from both mountain pine beetle disturbance and operational and 

salvage logging, a number of key landscape pattern indices will be applied to the time 

series (Table 3). The pattern indices in Table 3 were chosen to represent key aspects of 

landscape fragmentation which include changes in composition, shape, and 

configuration of patches as well as loss of area (Harrison et al., 1999; Olff et al., 2002; 

Saunders et al., 1991). Furthermore, these indices were selected in an effort to assess 

ecosystem integrity, rather than a single species with specific habitat needs. Thus, 

these select pattern indices represent measures of quantifiable landscape changes 

associated with habitat fragmentation: reduced habitat area, increased edges, reduced 

interior area, patch isolation, and increased number of patches (Davidson, 1998).  
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Table 3. Landscape pattern indices selected to measure aspects of habitat fragmentation for the case study. 
Name Symbol Description Interpretation Reference(s) 
Number of 
patches 

NP Number of 
patches of a 
particular class 

Higher values 
indicate more 
fragmentation  

(McGarigal et 
al., 2002; 
Turner et al., 
1989) 

Area-weighted 
mean patch 
size 

AWMPS Measures 
patch area 
multiplied by 
proportional 
abundance of 
the patch (or 
patch type) 

Lower values 
indicate more 
fragmentation  

(McGarigal et 
al., 2002) 

Fractal 
dimension 

FD Measures 
patch shape 
complexity 

Higher values  
indicate an 
increase in 
shape 
complexity 

(McGarigal et 
al., 2002) 

Edge density ED Ratio of total 
edges (number 
of cells at 
patch 
boundary) and 
total area (total 
cells) 

Higher values 
indicate more 
fragmentation  

(Hargis et al., 
1998; Li et al., 
2005; 
McGarigal et 
al., 2002) 

Patch richness 
density 

PRD Patch richness 
expressed as 
the number of 
patch types per 
unit area 

Used to 
compare patch 
richness among 
different 
landscapes 

(McGarigal et 
al., 2002) 

Mean proximity 
index 

MPI At class level, 
measures the 
degree of 
isolation and 
fragmentation 
of the 
corresponding 
patch type 

Lower values 
indicate an 
increase in patch 
isolation and/or 
patch size  

(Gustafson et 
al., 1994; 
McGarigal et 
al., 2002) 
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Interspersion / 
juxtaposition 

IJI Measures the 
degree of 
aggregation or 
‘clumpiness’ of 
a map based 
on adjacency 
of patches 

Lower values 
characterize 
landscapes in 
which the patch 
types are poorly 
interspersed 
(i.e., 
disproportionate 
distribution of 
patch type 
adjacencies) 

(McGarigal et 
al., 2002) 

 

 

To measure changes in landscape composition, number of patches (NP) and area-

weighted mean patch size (AWMPS) will be used. Number of patches functions as both 

a landscape level and class level index and is often used in habitat analysis (Li et al. 

2005). An increase in the number of patches of a given land cover type may indicate 

progression towards a more fragmented landscape. Area-weighted mean patch size is 

ecologically important because it quantifies the fragmentation levels of a variety of 

landscapes and can be used to compare measurements of different classes (Li et al. 

2005). Because this landscape pattern index is spatially explicit at the level of the 

individual patch, it should provide a measure of the progression of disturbance resulting 

from both MPB infestation and salvage logging. Patch richness density (PRD) is also a 

measure of landscape composition but will be used to measure the proportional 

abundance of mountain pine beetle infestation and logging to provide us with an 

indication of the relative impacts of these classes to landscape fragmentation and 

connectivity. Patch richness density quantifies the number of different patch types within 

a landscape boundary divided by the total landscape area. PRD standardizes patch 

richness (the number of patch types present) to a per area basis that facilitates 
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comparison among landscapes (McGarigal et al., 2002). Patch richness is a key 

component of landscape structure because the variety of landscape elements present in 

a landscape can have an important influence on a range of ecological processes 

(McGarigal et al., 2002).  

 

 

Shape indices attempt to measure patch complexity, which can be important for 

different ecological processes (Rutledge, 2003). Fractal dimension (FD) measures the 

degree of shape complexity with values ranging from 1, which indicates relatively simple 

shapes such as squares, to 2, which indicates more complex shapes (McGarigal et al., 

2002). To quantify changes in patch shape, fractal dimension will be used. 

 

 

Measures of landscape configuration that will be used for these analyses include edge 

density (ED), mean proximity index (MPI), and interspersion / juxtaposition (IJI). Edge 

density quantifies the amount of edge between landscape elements and may be 

important as a measure of fragmentation in terms of the movement of organisms or 

material across ecotones (Turner 1989) with increases in edge density suggesting 

greater complexity of patches. Total edge density provides an indication of the 

fragmentation level of either an entire landscape or a class (Li et al. 2005). Mean 

proximity index measures the degree of patch isolation and fragmentation; it is equal to 

0 if all patches of the corresponding patch type have no neighbours of the same type 

within the specified search radius; it increases as patches become less isolated and the 
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patch type becomes less fragmented in distribution (McGarigal et al., 2002). The 

interspersion / juxtaposition index measures the extent to which patch types are 

interspersed; higher values result from landscapes in which the patch types are well 

interspersed (i.e., equally adjacent to each other), whereas lower values characterize 

landscapes in which the patch types are poorly interspersed (i.e., disproportionate 

distribution of patch type adjacencies). The interspersion / juxtaposition index is 

calculated in percentage units and approaches 100% when all classes are equally 

adjacent to all other classes, and approaches zero when patch adjacency becomes 

uneven (McGarigal et al., 2002). 

 

6.3 Hypotheses 

Due to the severity and extent of mountain pine beetle infestation in the study area, it is 

expected that the relative impact on fragmentation and connectivity from logging is less 

than that of the mountain pine beetle. However, the combination of these two landscape 

disturbances is expected to result in a heavily fragmented landscape with a significantly 

reduced degree of connectivity.  

 

For example, Figure 1 illustrates a landscape trajectory based on the landscape pattern 

index number of patches (NP) for the above scenario. Early in the time series it is 

expected that the matrix will consist of a mostly contiguous forest comprised of large 

patches of continuous, non-infested trees. Beetle-infested forest patches are expected 

to be few and distributed across the landscape in small patches. As the mountain pine 

beetle infestation progresses, the number and size of infested forest patches increases 



 

 33 

across the landscape. While the non-forest class consisting of logging clearcuts and 

roads (and other non-vegetated features) begins as a relatively stable trajectory, the 

number of non-forest patches also increases in response to beetle-impacted timber 

salvaging. Both mountain pine beetle-induced tree mortality and logging contribute to 

the fragmentation of the forested matrix and an increase in the number of forest 

patches. Eventually, infested forest patches expand in size and coalesce to form larger 

patches which are indicated by a reduction in the number of patches. At the peak of 

mountain pine beetle infestation, the number of patches of forest would be expected to 

level off as most pine trees have been killed and remaining conifers are non-target 

species such as spruce and fir. 

 

 

Figure 1. Expected results for number of patches (NP) landscape trajectory of non-forest, infested forest, and 
non-infested forest classes. 
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Figure 2 shows a hypothesised landscape trajectory based on edge density (ED) for 

non-forest, infested forest, and non-infested forest. Initially the impacts of the mountain 

pine beetle are limited to small infested forest patches scattered throughout the 

landscape represented by a slightly higher edge density value than the continuous, non-

infested forest. Non-forest has a relatively high ED value due to the presence of linear 

features such as roads. As the impacts of the beetle progress, the amount of edge 

relative to area increases significantly for both infested forest and non-infested forest. 

This is due to an increase in the number of infested patches and the fragmentation of 

continuous forest into a number of forest patches with complex and irregular edges. As 

efforts to salvage standing dead timber increase, ED values for non-forest also increase 

due to additional road building and clearcuts on the landscape. At the peak of mountain 

pine beetle infestation, large contiguous patches on infested forest will result in a 

decrease in ED values. Edge density values for non-infested forest will be high due to 

the large number and complex shape of patches. 
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Figure 2. Expected results for edge density (ED) landscape trajectory of non-forest, infested forest, and non-
infested forest classes. 
 

7. Conclusion 

While various change detection methods based on spectral information from remotely-

sensed imagery have been developed as landscape monitoring applications, landscape 

pattern analysis provides an ecological context for spatial and temporal analysis. 

Extensive research has been conducted into the use of landscape pattern indices to 

assess and monitor changes in land cover. The focus of most of this work has been on 

the comparison of reference conditions to those at a later date. While the comparison of 

landscape pattern between two dates provides the means to detect change, 

incorporating a more complete time sequence allows for the investigation of trends.  
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Landscape patterns result from complex biotic and abiotic interactions and influence 

ecological processes. This relationship is the basis of landscape ecology and has led to 

the development of methods to describe and quantify spatial pattern. Landscape pattern 

indices measure landscape composition and configuration of classified data and provide 

the means to interpret spatial pattern in an ecologic context. However, it is important to 

recognize that the use of landscape pattern indices requires specific research objectives 

with ecological significance. Thus, the selection of measures of spatial pattern must 

have ecological relevance in order to be meaningful in an ecological context. 

Furthermore, since many measures of spatial pattern are correlated, it is desirable to 

use the least number of landscape pattern indices possible. 

 

The current mountain pine beetle epidemic in British Columbia, Canada, provides a 

contemporary example of a massive ecological disturbance which has resulted in 

significant changes to forest structure and is expected to have far-reaching ecological, 

environmental, and economic ramifications. Due to the broad spatial extent of the 

current infestation, remotely-sensed data provide opportunities to monitor the impacts of 

the mountain pine beetle. By monitoring changes in spatial pattern using a time-series 

of remotely-sensed data, insights into past, present, and future ecological conditions 

can be derived. For instance, by focussing on the relative impacts of mountain pine 

beetle-induced tree mortality and logging on forest fragmentation and connectivity, an 

understanding of landscape integrity can be gained.  
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Future multitemporal landscape pattern analysis research should focus on the 

interpretation of landscape pattern indices and the linkages to temporal change. 

Cushman & McGarigal (2007) emphasized the importance of incorporating temporal 

variability into ecological studies by using landscape trajectories to measure landscape 

pattern dynamics over time. The authors compared the impacts of different simulated 

forest harvest regimes on the extent and configuration of American marten habitat 

through time by assessing the displacement, divergence, velocity, and acceleration of 

landscape change. The forest harvest regimes included both differences in harvest 

rotation scenarios and cutting pattern/intensity. Their unique approach provided the 

means to not only quantify the impacts of different cutting regimes compared to initial 

conditions and relative to each other, but also the rates and directions of changes in 

landscape structure. By doing so, the authors argue that these measures can be used 

for linking patterns of change to mechanistic drivers as well as for revealing ecological 

thresholds. 

 

With growing availability of archives of remotely-sensed data and an increasing need for 

long-term monitoring strategies, the development of reliable and repeatable change-

detection analysis methods will continue to gain importance. The use of multitemporal 

data sets to conduct landscape pattern analysis represents an exciting opportunity to 

not only conduct change-detection analysis, but to advance the disciplines of both 

landscape ecology and remote sensing. 



 

 38 

Acknowledgements 

This project is funded by the Government of Canada through the Mountain Pine Beetle 

Initiative, a six-year, $40 million program administered by Natural Resources Canada, 

Canadian Forest Service. Additional information on the Mountain Pine Beetle Initiative 

may be found at: http://mpb.cfs.nrcan.gc.ca 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 39 

References  

Allan, B. F., Keesing, F., & Ostfeld, R. S. (2003). Effect of forest fragmentation on lyme 
disease risk. Conservation Biology, 17, 267-272.  

Aplin, P. (2005). Remote sensing: Ecology. Progress in Physical Geography, 29, 104-
113.  

Aukema, B. H., Carroll, A. L., Zhu, J., Raffa, K. F., Sickley, T. A., & Taylor, S. W. (2006). 
Landscape level analysis of mountain pine beetle in british columbia, canada: 
Spatiotemporal development and spatial synchrony within the present outbreak. 
Ecography, 29, 427-441.  

Bélisle, M. (2005). Measuring landscape connectivity: The challenge of behavioral 
landscape ecology. Ecology, 86, 1988-1995.  

Belisle, M., Desrochers, A., & Fortin, M. (2001). Influence of forest cover on the 
movements of forest birds: A homing experiment. Ecology, 82, 1893-1904.  

Berry, J. K., Buckley, D. J., & McGarigal, K. (1998). Fragstats*arc: Integrating ARC-
INFO with the FRAGSTATS landscape analysis program.  

Bolliger, J., Wagner, H., & Turner, M. (2007). Identifying and quantifying landscape 
patterns in space and time. In: F. Kienast, S. Ghosh & O. Wildi (Eds.), A changing 
world: Challenges for landscape research(pp. 177-194). Springer Netherlands.  

Cain, D. H., Riitters, K., & Orvis, K. (1997). A multi-scale analysis of landscape 
statistics. Landscape Ecology, 12, 199-212.  

Çakır, G., Sivrikaya, F., & Keleş, S. (2008). Forest cover change and fragmentation 
using landsat data in maçka state forest enterprise in turkey. Environmental 
Monitoring and Assessment, 137, 51-66.  

Cohen, W. B., & Goward, S. N. (2004). Landsat's role in ecological applications of 
remote sensing. Bioscience, 54, 535-545.  

Collins, J. B., & Woodcock, C. E. (1996). An assessment of several linear change 
detection techniques for mapping forest mortality using multitemporal landsat TM 
data. Remote Sensing of Environment, 56, 66-77.  



 

 40 

Coops, N. C., Wulder, M. A., & White, J. C. (2006). Integrating remotely sensed and 
ancillary data sources to characterize a mountain pine beetle infestation. Remote 
Sensing of Environment, 105, 83-97.  

Coppin, P., Jonckheere, I., Nackaerts, K., Muys, B., & Lambin, E. (2004). Digital change 
detection methods in ecosystem monitoring: A review. International Journal of 
Remote Sensing, 25, 1565-1596; 1565.  

Cushman, S. A., McGarigal, K., & Neel, M. C. (2008). Parsimony in landscape metrics: 
Strength, universality, and consistency. Ecological Indicators, In Press, Corrected 
Proof  

Cushman, S., & McGarigal, K. (2007). Multivariate landscape trajectory analysis. In: 
Temporal dimensions of landscape ecology(pp. 119-140).  

Davidson, C. (1998). Issues in measuring landscape fragmentation. Wildlife Society 
Bulletin, 26, 32-37.  

de Beurs, K. M., & Henebry, G. M. (2005). A statistical framework for the analysis of 
long image time series. International Journal of Remote Sensing, 26, 1551-1573; 
1551.  

Dodds, K. J., Garman, S. L., & Ross, D. W. (2006). Landscape analyses of douglas-fir 
beetle populations in northern idaho. Forest Ecology and Management, 231, 119-
130.  

Fahrig, L. (2002). Effect of habitat fragmentation on the extinction threshold: A 
synthesis. Ecological Applications, 12, 346-353.  

Folke, C., Carpenter, S., Walker, B., Scheffer, M., Elmqvist, T., Gunderson, L., & 
Holling, C. S. (2004). Regime shifts, resilience, and biodiversity in ecosystem 
management. Annual Review of Ecology, Evolution and Systematics, 35, 557-581.  

Fortin, M. J., & Dale, M. R. T. (2005). Spatial analysis: A guide for ecologists. 1st edn. 
Cambridge, UK: Cambridge University Press.  

Franklin, S. E., Betts, M. G., & Taylor, R. G. (2003). Interpretation of landscape pattern 
and habitat change for local indicator species using satellite imagery and 
geographic information system data in new brunswick, canada. Canadian Journal of 
Forest Research, 33, 1821-1831.  



 

 41 

Franklin, J. F., & Forman, R. T. T. (1987). Creating landscape patterns by forest cutting: 
Ecological consequences and principles. Landscape Ecology, 1, 5-18.  

Franklin, S. E., Wulder, M. A., Skakun, R. S., & Carroll, A. L. (2003). Mountain pine 
beetle red-attack forest damage classification using stratified landsat TM data in 
british columbia, canada. Photogrammetric Engineering & Remote Sensing, 69, 
283–288-283.  

Frohn, R. C., & Hao, Y. (2006). Landscape metric performance in analyzing two 
decades of deforestation in the amazon basin of rondonia, brazil. Remote Sensing 
of Environment, 100, 237-251.  

Fuller, D. O. (2001). Forest fragmentation in loudoun county, virginia, USA evaluated 
with multitemporal landsat imagery. Landscape Ecology, 16, 627-642.  

Gergel, S. E. (2007). New directions in landscape pattern analysis and linkages with 
remote sensing. In: W. M. A., & S. E. Franklin (Eds.), Understanding forest 
disturbance and spatial pattern: Remote sensing and GIS approaches(pp. 173-
208). Boca Raton, FL: Taylor and Francis.  

Goodwin, N. R., Coops, N. C., Wulder, M. A., Gillanders, S., Schroeder, T. A., & Nelson, 
T. ((In Press)). Estimation of insect infestation dynamics using a temporal sequence 
of landsat data. Remote Sensing of Environment,  

Goward, S. N., Masek, J. G., Williams, D. L., Irons, J. R., & Thompson, R. J. (2001). 
The landsat 7 mission: Terrestrial research and applications for the 21st century. 
Remote Sensing of Environment, 78, 3-12.  

Griffith, J. A., Sohl, T. L., Loveland, T. R., & Stehman, S. V. (2003). Detecting trends in 
landscape pattern metrics over a 20-year period using a sampling-based monitoring 
programme. International Journal of Remote Sensing, 24, 175-181.  

Gunderson, L., Allen, C. R., & Wardwell, D. (2007). Temporal scaling in complex 
systems. In: J. A. Bissonette, & I. Storch (Eds.), (pp. 78-89). Springer.  

Gustafson, E. J., & Parker, G. R. (1994). Using an index of habitat patch proximity for 
landscape design. Landscape and Urban Planning, 29, 117-130.  

Gustafson, E. J. (1998). Minireview: Quantifying landscape spatial pattern: What is the 
state of the art? Ecosystems, 1, 143-156.  



 

 42 

Hansen, M. C., Roy, D. P., Lindquist, E., Adusei, B., Justice, C. O., & Altstatt, A. (2008). 
A method for integrating MODIS and landsat data for systematic monitoring of 
forest cover and change in the congo basin. Remote Sensing of Environment, 112, 
2495-2513.  

Hargis, C. D., Bissonette, J. A., & David, J. L. (1998). The behavior of landscape 
metrics commonly used in the study of habitat fragmentation. Landscape Ecology, 
13, 167-186.  

Harrison, S., & Bruna, E. (1999). Habitat fragmentation and large-scale conservation: 
What do we know for sure? Ecography, 22, 225-232.  

Henebry, G. M., & Goodin, D. G. (2002). Landscape trajectory analysis: Spatio-temporal 
dynamics from image time series.4, 2375-2378.  

Hietala-Koivu, R. (1999). Agricultural landscape change: A case study in ylane, 
southwest finland. Landscape and Urban Planning, 46, 103-108.  

Hoekstra, J. M., Boucher, T. M., Ricketts, T. H., & Roberts, C. (2005). Confronting a 
biome crisis: Global disparities of habitat loss and protection. Ecology Letters, 8, 
23-29(7).  

Hughes, J., Fall, A., Safranyik, L., & Lertzman, K. (2006). Modeling the effect of 
landscape pattern on mountain pine beetles.64; 1, 1.  

Irish, R. R., Barker, J. L., Goward, S. N., & Arvidson, a. T. (2006). Characterization of 
the landsat-7 ETM automated cloud-cover assessment (ACCA) algorithm. 
Photogrammetric Engineering & Remote Sensing, 72, 1179–1188-1179.  

Jaeger, J. A. G. (2000). Landscape division, splitting index, and effective mesh size: 
New measures of landscape fragmentation. Landscape Ecology, 15, 115-130.  

Johnson, A., Wiens, J., Milne, B., & Crist, T. (1992). Animal movements and population 
dynamics in heterogeneous landscapes. Landscape Ecology, 7, 63-75.  

Kennedy, R. E., Cohen, W. B., & Schroeder, T. A. (2007). Trajectory-based change 
detection for automated characterization of forest disturbance dynamics. Remote 
Sensing of Environment, 110, 370-386.  



 

 43 

Kepner, W. G., Watts, C. J., Edmonds, C. M., Maingi, J. K., Marsh, S. E., & Luna, G. 
(2000). A landscape approach for detecting and evaluating change in a semi-arid 
environment. Environmental Monitoring and Assessment, 64, 179-195.  

Kerr, J. T., & Ostrovsky, M. (2003). From space to species: Ecological applications for 
remote sensing. Trends in Ecology & Evolution, 18, 299-305.  

Kong, F., & Nakagoshi, N. (2006). Spatial-temporal gradient analysis of urban green 
spaces in jinan, china. Landscape and Urban Planning, 78, 147-164.  

Langford, W., Gergel, S., Dietterich, T., & Cohen, W. (2006). Map misclassification can 
cause large errors in landscape pattern indices: Examples from habitat 
fragmentation. Ecosystems, 9, 474-488.  

Laurance, W. F. (1999). Reflections on the tropical deforestation crisis. Biological 
Conservation, 91, 109-117.  

Lausch, A., & Herzog, F. (2002). Applicability of landscape metrics for the monitoring of 
landscape change: Issues of scale, resolution and interpretability. Ecological 
Indicators, 2, 3-15.  

Lawrence, R. L., & Ripple, W. J. (1999). Calculating change curves for multitemporal 
satellite imagery: Mount st. helens 1980-1995. Remote Sensing of Environment, 67, 
309-319.  

Li, H., & Wu, J. (2004). Use and misuse of landscape indices. Landscape Ecology, 19, 
389-399.  

Li, X., He, H. S., Bu, R., Wen, Q., Chang, Y., Hu, Y., & Li, Y. (2005). The adequacy of 
different landscape metrics for various landscape patterns. Pattern Recognition, 38, 
2626-2638.  

Liu, Y., Nishiyama, S., & Yano, T. (2004). Analysis of four change detection algorithms 
in bi-temporal space with a case study. International Journal of Remote Sensing, 
25, 2121-2139.  

Lu, D., Mausel, P., Brondizio, E., & Moran, E. (2004). Change detection techniques. 
International Journal of Remote Sensing, 25, 2365-2401.  



 

 44 

Lunetta, R. S., Johnson, D. M., Lyon, J. G., & Crotwell, J. (2004). Impacts of imagery 
temporal frequency on land-cover change detection monitoring. Remote Sensing of 
Environment, 89, 444–454-444.  

Lunetta, R. S., Knight, J. F., Ediriwickrema, J., Lyon, J. G., & Worthy, L. D. (2006). 
Land-cover change detection using multi-temporal MODIS NDVI data. Remote 
Sensing of Environment, 105, 142-154.  

Matsushita, B., Xu, M., & Fukushima, T. (2006). Characterizing the changes in 
landscape structure in the lake kasumigaura basin, japan using a high-quality GIS 
dataset. Landscape and Urban Planning, 78, 241-250.  

McGarigal, K., Cushman, S. A., Neel, M. C., & Ene, E. (2002). Fragstats: Spatial pattern 
analysis program for categorical maps. computer software program produced by 
the authors at the university of massachusetts, amherst, USA.2008  

McGarigal, K. (2002). Landscape pattern metrics. In: A. H. El-Shaarawi, & W. W. 
Piegorsch (Eds.), Encyclopedia of environmentrics(pp. 1135-1142). Sussex, 
England: John Wiley & Sons.  

Narumalani, S., Mishra, D. R., & Rothwell, R. G. (2004). Change detection and 
landscape metrics for inferring anthropogenic processes in the greater EFMO area. 
Remote Sensing of Environment, 91, 478-489.  

Neel, M. C., McGarigal, K., & Cushman, S. A. (2004). Behavior of class-level landscape 
metrics across gradients of class aggregation and area. Landscape Ecology, 19, 
435–455-435.  

Nelson, T., Boots, B., & Wulder, a. M. A. (2003). Spatial-temporal analysis of mountain 
pine beetle infestations to characterize pattern, risk, and spread at the landscape 
level., 164-173; 164.  

Olff, H., & Ritchie, M. E. (2002). Fragmented nature: Consequences for biodiversity. 
Landscape and Urban Planning, 58, 83-92.  

Pax Lenney, M., Woodcock, C. E., Collins, J. B., & Hamdi, H. (1996). The status of 
agricultural lands in egypt: The use of multitemporal NDVI features derived from 
landsat TM. Remote Sensing of Environment, 56, 8-20.  



 

 45 

Peterson, G. D. (2002). Estimating resilience across landscapes. Conservation Ecology, 
6, 17-1.  

Rainis, R. (2003). Application of GIS and landscape metrics in monitoring urban land 
use change. In: N. M. Hashim, & R. Rainis (Eds.), Urban ecosystem studies in 
malaysia-A study of change(pp. 267-278). Florida: Universal Publishers.  

Read, J. M., & Lam, N. S. N. (2002). Spatial methods for characterising land cover and 
detecting land-cover changes for the tropics. International Journal of Remote 
Sensing, 23, 2457-2474.  

Reynolds-Hogland, M. J., & Mitchell, M. S. (2007). Three axes of ecological studies. In: 
J. A. Bissonette, & I. Storch (Eds.), (pp. 174-194).  

Riitters, K., Wickham, J., O'Neill, R., Jones, B., & Smith, E. (2000). Global-scale 
patterns of forest fragmentation. Conservation Ecology, 4, 1-22.  

Riitters, K. H., O'Neill, R. V., Hunsaker, C. T., Wickham, J. D., Yankee, D. H., Timmins, 
S. P., Jones, K. B., & Jackson, B. L. (1995). A factor analysis of landscape pattern 
and structure metrics. Landscape Ecology, 10, 23-39.  

Rutledge, D. (2003). Landscape indices as measures of the effects of fragmentation: 
Can pattern reflect process?DOC Science Internal Series 98, 1.  

Sachs, D. L., Sollins, P., & Cohen, W. B. (1998). Detecting landscape changes in the 
interior of british columbia from 1975 to 1992 using satellite imagery. Canadian 
Journal of Forest Research, 28, 23-36; 23.  

Saunders, D. A., Hobbs, R. J., & Margules, C. R. (1991). Biological consequences of 
ecosystem fragmentation: A review. Conservation Biology, 5, 18-32.  

Schneider, A., Seto, K. C., & Woodcock, C. E. (2003). Spatial and temporal patterns of 
land cover change in chengdu, china, 1978-2002. Geoscience and Remote Sensing 
Symposium, 2003 IGARSS '03 Proceedings 2003 IEEE International, 5, 3365-3367.  

Schroeder, T. A., Cohen, W. B., & Yang, Z. (2007). Patterns of forest regrowth following 
clearcutting in western oregon as determined from a landsat time-series. Forest 
Ecology and Management, 243, 259-273.  

Simberloff, D. (2000). Global climate change and introduced species in united states 
forests. The Science of the Total Environment, 262, 253-261.  



 

 46 

Singh, A. (1989). Digital change detection techniques using remotely-sensed data. 
International Journal of Remote Sensing, 10, 989-1003.  

Skakun, R. S., Wulder, M. A., & Franklin, S. E. (2003). Sensitivity of the thematic 
mapper enhanced wetness difference index to detect mountain pine beetle red-
attack damage. Remote Sensing of Environment, 86, 433–443-433.  

Skole, D., Justice, C., Townshend, J., & Janetos, A. (1997). A land cover change 
monitoring program: Strategy for an international effort. Mitigation and Adaptation 
Strategies for Global Change, 2, 157-175.  

Southworth, J., Nagendra, H., & Tucker, C. (2002). Fragmentation of a landscape: 
Incorporating landscape metrics into satellite analyses of land-cover change. 
Landscape Research, 27, 253-269; 253.  

Stueve, K. M., Lafon, C. W., & Isaacs, R. E. (2007). Spatial patterns of ice storm 
disturbance on a forested landscape in the appalachian mountains, virginia. Area, 
39, 20.  

Trani, M. K., & Giles, J. R. H. (1999). An analysis of deforestation: Metrics used to 
describe pattern change. Forest Ecology and Management, 114, 459-470.  

Treitz, P., & Rogan, J. (2004). Remote sensing for mapping and monitoring land-cover 
and land-use change--an introduction. Progress in Planning, 61, 269-279.  

Turner, M. G. (2005). Landscape ecology: What is the state of the science? Annual 
Review of Ecology, Evolution and Systematics, 36, 319-344; 319.  

Turner, M. G., O'Neill, R. V., Gardner, R. H., & Milne, B. T. (1989). Effects of changing 
spatial scale on the analysis of landscape pattern. Landscape Ecology, 3, 153-162.  

Turner, M. G., Gardner, R. H., & O'Neill, R. V. (2001). Landscape ecology in theory and 
practice: Pattern and process. New York: Springer.  

Turner, W., Spector, S., Gardiner, N., Fladeland, M., Sterling, E., & Steininger, M. 
(2003). Remote sensing for biodiversity science and conservation. Trends in 
Ecology and Evolution, 18, 306-314.  

Wagner, H. H., & Fortin, M. (2005). Spatial analysis of landscapes: Concepts and 
statistics. Ecology, 86, 1975-1987.  



 

 47 

Wallace, O. C., Qi, J., Heilma, P., & Marsett, R. C. (2003). Remote sensing for cover 
change assessment in southeast arizona. Journal of Range Management, 56, 402-
409; 402.  

Wang, S. Y., Wang, G. Q., & Chen, Z. X. (2005). Study on landscape pattern change of 
soil erosion in yellow river basin, china. Geoscience and Remote Sensing 
Symposium, 2005 IGARSS '05 Proceedings 2005 IEEE International, 8, 5390-5393.  

Weng, Y. (2007). Spatiotemporal changes of landscape pattern in response to 
urbanization. Landscape and Urban Planning, 81, 341-353.  

Westfall, J. (2007). 2006 summary of forest health conditions in british columbia.15, 64.  

Wickham, J. D., Riitters, K. H., Wade, T. G., & Coulston, J. W. (2007). Temporal change 
in forest fragmentation at multiple scales. Landscape Ecology, 22, 481–489-481.  

Wilcox, B. A., & Murphy, D. D. (1985). Conservation strategy: The effects of 
fragmentation on extinction. The American Naturalist, 125, 879-887.  

With, K. A., & Crist, T. O. (1995). Critical thresholds in species' responses to landscape 
structure. Ecology, 76, 2446-2459.  

With, K. A., & King, A. W. (1999). Extinction thresholds for species in fractal landscapes. 
Conservation Biology, 13, 314-326.  

Wulder, M. A., & Dymond, C. C. (2004). Remote sensing technologies for mountain pine 
beetle surveys.  

Wulder, M. A., Dymond, C. C., & White, J. C. (2005). Remote sensing in the survey of 
mountain pine beetle impacts: Review and recommendations.67; 1, 1.  

Wulder, M. A., White, J. C., Bentz, B., Alvarez, M. F., & Coops, N. C. (2006a). 
Estimating the probability of mountain pine beetle red-attack damage. Remote 
Sensing of Environment, 101, 150–166-150.  

Wulder, M. A., White, J. C., Bentz, B. J., & Ebata, a. T. (2006b). Augmenting the 
existing survey hierarchy for mountain pine beetle red-attack damage with satellite 
remotely sensed data. The Forestry Chronicle, 82, 187-202; 187.  



 

 48 

Wulder, M. A., White, J. C., Coops, N. C., Han, T., & Alvarez, M. F. (2005). A protocol 
for detecting and mapping mountain pine beetle damage from a time-series of 
landsat TM or ETM+ data.70; 1, 1.  

Wulder, M. A., Dymond, C. C., White, J. C., Leckie, D. G., & Carroll, A. L. (2006). 
Surveying mountain pine beetle damage of forests: A review of remote sensing 
opportunities. Forest Ecology and Management, 221, 27-41.  

Wulder, M. A., Hall, R. J., Coops, N. C., & Franklin, S. E. (2004). High spatial resolution 
remotely sensed data for ecosystem characterization.54, 511-521.  

Yang, X., & Liu, Z. (2005). Quantifying landscape pattern and its change in an estuarine 
watershed using satellite imagery and landscape metrics. International Journal of 
Remote Sensing, 26, 5297-5323.  

Yen, P., Ziegler, S., Huettmann, F., & Onyeahialam, A. I. (2005). Change detection of 
forest and habitat resources from 1973 to 2001 in bach ma national park, vietnam, 
using remote sensing imagery. International Forestry Review, 7, 1-8; 1.  

Young, J. E., Sanchez-Azofeifa, G. A., Hannon, S. J., & Chapman, R. (2006). Trends in 
land cover change and isolation of protected areas at the interface of the southern 
boreal mixedwood and aspen parkland in alberta, canada. Forest Ecology and 
Management, 230, 151-161.  

Yu, X., & Ng, C. (2006). An integrated evaluation of landscape change using remote 
sensing and landscape metrics: A case study of panyu, guangzhou. International 
Journal of Remote Sensing, 27, 1075-1092.  

Zhou, Q., Li, B., & Zhou, C. (2004). Detecting and modelling dynamic landuse change 
using multitemporal and multi-sensor imagery. International Archives of 
Photogrammetry Remote Sensing and Spatial Information Sciences, 35, Part 2, 
697-702.  

 

 

 

 



 

 49 

 

 


