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Forests
tems, an important component of the terrestrial carbon cycle, has become a focus
of research over recent years, as global warming is about to increase the frequency and severity of natural
disturbance events. Remote sensing offers unique opportunities for detection of forest disturbance at
multiple scales; however, spatially and temporally continuous mapping of non-stand replacing disturbance
remains challenging. First, most high spatial resolution satellite sensors have relatively broad spectral ranges
with bandwidths unsuitable for detection of subtle, stress induced, features in canopy reflectance. Second,
directional and background reflectance effects, induced by the interactions between the sun-sensor
geometry and the observed canopy surface, make up-scaling of empirically derived relationships between
changes in spectral reflectance and vegetation conditions difficult. Using an automated tower based
spectroradiometer, we analyse the interactions between canopy level reflectance and different stages of
disturbance occurring in a mountain pine beetle infested lodgepole pine stand in northern interior British
Columbia, Canada, during the 2007 growing season. Directional reflectance effects were modelled using a
bidirectional reflectance distribution function (BRDF) acquired from high frequency multi-angular spectral
observations. Key wavebands for observing changes in directionally corrected canopy spectra were identified
using discriminant analysis and highly significant correlations between canopy reflectance and field
measured disturbance levels were found for several broad and narrow waveband vegetation indices (for
instance, r2NDVI=0.90; r2CHL3=0.85; pb0.05). Results indicate that multi-angular observations are useful for
extraction of disturbance related changes in canopy reflectance, in particular the temporally and spectrally
dense data detected changes in chlorophyll content well. This study will help guide and inform future efforts
to map forest health conditions at landscape and over increasingly coarse scales.

© 2008 Elsevier Inc. All rights reserved.
1. Introduction

Disturbance of forest ecosystems including harvesting, fire, insect
infestations, diseases,windfall, and die-back is an important component
of the terrestrial carbon cycle (Houghton 1999; Kurz et al., 2008a;Masek
et al., 2008; Pacala et al., 2001). Disturbance events emit carbon to the
atmosphere through oxidation and decomposition of dead organic
matter, while, conversely, recovery from past disturbance tends to
sequester carbon from the atmosphere, often over much longer time
periods (Masek et al., 2008). Study of the interactions between
disturbance and carbon cycling has become of particular interest over
recent years, as global warming is predicted to increase the frequency
and severity of natural disturbance events (Chapin et al., 2008; Kurz
et al., 2008a; Soja et al., 2007; Westerling and Bryant 2008).
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Owing at least partially to favorable climatic conditions, the
current epidemic of mountain pine beetle (Dendroctonus ponderosae
Hopk.) in western Canada has reached an order of magnitude greater
than any previous outbreak (Kurz et al., 2008a) with currently more
than 10.1 million ha of pine forest being affected (Westfall 2007). The
estimated cumulative emission of this disturbance event alone is
about 270 mega-tonnes of carbon (Kurz et al., 2008a). While
significance of forest disturbance for the terrestrial carbon cycle has
been acknowledged in general (Kurz and Apps 1994; Kurz et al.,
2008b; Margolis et al., 2006; Thornton et al., 2002), the spatio-
temporal patterns of large epidemics like these remain only poorly
understood (Masek et al., 2008; Pacala et al., 2001). First, insect
epidemics may interact with other disturbance events in complex
ways to produce multi-scale habitat diversity, from microhabitats to
landscape patterns (Jogiste et al., 2007; Lerzman and Fall 1998), and
second, population dynamics make accurate mapping over larger
areas challenging (Aldrich 1975).
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Remote sensing offers unique opportunities to identify land cover
change (Ghitter et al., 1995; Lambin and Strahler 1994) and forest
disturbance in general (Collins and Woodcock 1996; Hall et al., 1991;
Olsson 1994; Palmier and Ansseau 1992; Spanner et al., 1989; Wulder
et al., 2004a), and various efforts have been made to map disturbance
events at regional and national scales (Cayuela et al., 2006; Chastain
et al., 2008; Masek et al., 2008; Sader and Legaard 2008; Wulder et al.,
2004a). Most studies, however, have been focusing on stand-clearing
events, such as clear-cuts or fires (Masek et al., 2008), while
disturbances that leave intact substantial portions of the forest
canopy, such as insect outbreaks, are much more difficult to quantify
(Jin and Sader 2005; Lunetta et al., 2004; Masek and Collatz 2006;
Masek et al., 2008; Wulder et al., 2005). These disturbances often
cause slow die-back of individual or small clusters of trees over
multiple months or years (Wulder et al., 2006) and changes in broad
band canopy reflectance are only apparent as the disturbance
aggregates or its magnitude increases. Difficulties in using space
borne sensors to capture these more subtle changes in foliar
conditions may be attributed to the relatively broad spectral and
spatial ranges at which most satellite sensors operate, as the observed
pixels are usually an amalgamation of disturbed and healthy tree
crowns, background and shadow (Lefsky and Cohen 2003). While
these limitations can be partially overcome by a higher spatial
resolution which effectively reduces the number of elements
contained in a pixel (Coops et al., 2006), high spatial resolution
instruments generally lack the coverage required for mapping larger
disturbance events.

Recently, the advent of fine spectral resolution sensors has offered
new possibilities for quantifying changes in canopy conditions using
narrow waveband reflectance (Ollinger et al., 2002; White et al.,
2007a,b). While not yet fully operational from space, narrow
waveband remote sensing holds promise to greatly enhance our
capability for mapping canopy conditions as it allows to identify even
subtle changes in the biochemical composition of plant foliage (Cheng
et al., 2006; Curran 1989; Datt 1998; Fuentes et al., 2006; Hall et al.,
2008). High spectral resolution remote sensing is therefore a
potentially powerful tool for accurate mapping of vegetation condi-
tions; extraction of physiologically relevant information, however, is
not trivial (Asner 1998; Hilker et al., 2008b). For instance, investiga-
tion of stand level conditions requires consideration of the canopy
structure (Gao and Schaaf 2003; Myneni et al., 1992) and this
information is not easily being obtained from nadir measurements
alone (Chen et al., 2003a; Strahler and Jupp 1990). Concurrent multi-
angular observations can provide valuable information that charac-
terize the structure of vegetated surfaces (Chen et al., 2003b; Gao and
Schaaf 2003) at stand, local and regional scales (Hilker et al., 2008a).
These multi-angular observations are, however, subject to directional
and background reflectance effects (Li and Strahler 1985,1992), which,
driven by the interactions of the sun-sensor geometry and the canopy
surface (Wanner et al., 1997), alter the observed reflectance of a given
Fig. 1. Photographs of the research site taken on April 25 (A), June 26 (B) and October 17 (C). T
during late May through early June. The health status of the canopy declined further throu
object, thereby confounding the desired signal used for extraction of
canopy information (Hilker et al., 2008b; Los et al., 2005).

The objective of this study was to assess the potential of multi-
angular, high spectral resolution remote sensing to discriminate subtle
changes in foliage conditions in a mountain pine beetle infested forest
stand in the northern interior part of British Columbia, Canada. Using
an experimental tower-based radiometer set-up, designed to sample
canopy spectra with high temporal, spatial, and spectral resolution
and under multiple view and sun-angles (Hilker et al., 2007), we
develop an approach to separate changes in canopy reflectance
induced by bark beetle disturbance from directional and background
reflectance effects (Hilker et al., 2008b; Los et al., 2005). Key
wavebands are identified using stepwise forward and normal
discriminant analysis and compared to field observations. Our
findings have significant implications for future research as they
demonstrate a potential way to accurately map foliage conditions and
vegetation disturbance using airborne or spaceborne sensors.

2. Methods

2.1. Research site

The focus of this study is an 80-100-year-old, 15-m tall lodgepole
pine (Pinus contorta Dougl. ex. Loud var. latifolia Engl.) stand near
Mackenzie, British Columbia, Canada (55.111944° N, 122.839722° W;
Elevation: 740 m above sea level). The forest stand is part of the sub-
boreal spruce bio-geoclimatic zone and receives an annual average
precipitation of about 655 mm. The stand structure is open and has a
basal area of about 60m2 ha−1 and an average stocking density of about
1500 stems per ha. The understorey is sparse and consists of various
mosses and a few low shrubs and pine seedlings. The site was initially
infested by mountain pine beetle in August 2006. A second attack
following in the summer of 2007 resulted in an additional infestation
of the study area. Fig. 1A–C shows a series of photographs of the stand
taken at the beginning of the experiment (April 25) and during two
field assessments made in June and October 2007, respectively. The
canopy was still largely green in late April with most of the attacked
trees turning red during late May through early June and a continued
decline of the health status of the canopy through to October.

2.2. Mountain pine beetle

Lodgepole pine (Pinus contorta Dougl. ex. Loud var. latifolia Engl.) is
the primary host of mountain pine beetle in British Columbia. The
beetle typically emerges in late July/early August. Once a suitable host
is found, large numbers of beetles may overwhelm the defences of a
given host and proceed to bore through the bark, burrow horizontal
galleries, laying eggs as they excavate. When the eggs hatch, the larvae
begin to feed around the stemperpendicular to themain gallery, also a
fungus inoculated into the phloem and sapwood by attacking beetles
he canopy was still largely green in late April with most of the attacked trees turning red
gh to October and more foliage turned red.
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provides nutrients to feeding larvae. The combination of gallery
construction and the growth of fungal hyphae clog the phloem leading
to limited translocation and eventually halt the transport of nutrients
from roots to foliage. As a result, the foliage of a successfully mass-
attacked tree will fade from green through shades of yellow to red,
finally to be shed once sufficiently dry (see Wulder et al., 2006 for
details on the link between foliar fading and remote detection). The
change in foliage color typically occurs at the beginning of the next
vegetation period (spring of the year following the attack), as the
nutrient transport is cut off shortly before the attacked trees go
dormant over the winter period. Typically, foliage fades over a period
of 12 months, but can begin to fade shortly after attack, fading is more
obvious in the proceeding spring and summer, so that foliage on trees
attacked in the previous year appears red (Carroll and Safranyik 2003).
The time period between the attack and the change of color in the
foliage is referred to in here as green attack stage, which is followed by
the red attack stage, defined as the time period after which the foliage
has faded to red as a result of the attack (Fig. 2). Gray attack describes
the final stage at which the tree has no needles left, usually after 2–
3 years (Wulder et al., 2006).

2.3. Acquisition of remote sensing data

Canopy spectra were observed from an automated multi-angular
spectroradiometer platform (AMSPEC), mounted at a height of 30.5 m
on a 1.5 m×2.1 m (5′×7′) scaffold tower (Fig. 2A, B) which has been
installed at the site as part of the Canadian Carbon Program to measure
the CO2 fluxes using the eddy covariance technique. AMSPEC was
designed for high-frequency observations of canopy reflectance (Hilker
et al., 2007). The instrument features a motor-driven probe that allows
observations in a 290° view area around the tower (the 70° that cannot
be observed are due to obstruction by the tower). The probe rotates in
11.5° intervals every 30 s, completing a full rotation every 15 min. The
exact position of the probe is determined using a potentiometer
attached to the shaft of themotor. At the endof each sweep, the sensor is
returned to its original position. The spectroradiometer used is a
Unispec-DC (PP Systems, Amesbury,MA, USA) featuring 256 contiguous
bands with a nominal band spacing of 3 nm and a nominal range of
operation between 350 and 1200 nm (Hilker et al., 2007). To allow
sampling under varying sky conditions, canopy reflectance is obtained
from simultaneous measurements of solar irradiance and radiance,
sampled every 5 s from sunrise to sunset. The upward looking probe is
equipped with a cosine receptor (PP-Systems) to correct sky irradiance
measurements for varying solar altitudes. The downward looking probe
measures canopy radiance at a zenith angle of 62° to account for canopy
Fig. 2. A: Photograph of the towermounted radiometer platform (AMSPEC) used to observed
AMSPEC. The footprint observed varies slightly with individual tree height and differences in
(diameter), the instrument is installed about 18m above the canopy. The 70° area located in th
clumping (Chen and Black 1991) and to minimize background
reflectance effects. The probe's instantaneous field of view (IFOV) is
20°, or approximately 33×7 m at canopy height. The instrument's
footprint results from its setup geometry and comprises an outer
diameter of about 116 m while the inner diameter is about 46 m. A
complete technical description of the instrument its software, setup and
calibration can be found in Hilker et al. (2007). The instrument was
installed on April 25 at the site and spectra were sampled continuously
through October 17, 2007.

2.4. Filtering data acquired under sunny sky conditions

AMSPEC data were filtered for clear sky observations to eliminate
expected changes in canopy reflectance as a function of cloudiness
(Hilker et al., 2008b) and also because it was anticipated that optimal
results for the modeling of BRDF would be achieved under clear sky
conditions with directional reflectance effects being predominant
(Hilker et al., 2008b). Furthermore, clear sky conditions show a more
representative subset of datawhen comparing thesemeasurements to
airborne or spaceborne data. Sky conditions for each sampled
spectrum were identified by modeling clear sky solar irradiance as a
function of the solar azimuth using a 2nd degree polynomial function
derived from a subset of radiometer irradiance observations obtained
for 4 completely clear days, selected in approximately evenly
distributed intervals throughout the observation period. Measured
solar irradiance from the radiometer was then compared to modelled
clear sky solar radiation and spectral observations were rejected when
their irradiance component deviated by more than a given threshold
(5%) from the modelled clear sky irradiance.

2.5. Field based assessment of canopy conditions

Field data were collected on June 26, 2007 within a ring-shaped
plot around the flux-tower, defined using the inner and outer
diameter of AMSPEC's set-up geometry. The health status of each
tree within the plot was determined by visually assessing the canopy
condition and searching the bark for boreholes. Each tree was then
classified into one of four classes: “healthy” (if the canopy was green
and no boreholes were found), “green attacked” (if the canopy was
green, but boreholes were found), “red attacked” (if the canopy was
red), or “without needles”. AMSPEC observes reflectance as aggregate
of all tree crowns lying within a radiometer observed view area
(segment). Consequently, the health conditions of trees observed
within the plot had to be aggregated to make them comparable to
radiometer observed reflectance values. Using a differentially
canopy reflectance changes due tomountain pine beetle attack. B: Setup and footprint of
terrain height. The vertical zenith angle is 62°, the approximate footprint size is 116 m
e radiometer's blind spot on the south side of the towerwas excluded from the analysis.



Fig. 4. Health status observed by field measurements on June 28 and October 17. The
health status of each tree was assessed visually and trees were classified as either
healthy (code=2), green attacked (code=3), red attacked (code=4) or gray attack
(=without needles) (code=5).
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corrected GPS (Ranger Pro XT, Trimble, Sunnyvale, California), the plot
was first subdivided into 23° segments, each of which covered the
approximate view area of two probe positions of AMSPEC (23°
segments were chosen tomake the fieldmeasurementsmore spatially
representative). A coded value was then assigned to each tree
according to its field assessed class (code for “healthy”=2, “green
attacked”=3, “red attacked”=4, “without needles”=5) and the average
disturbance per segment was calculated using the arithmetic mean of
the health conditions assigned to the individual trees within a
segment. Since the GPS measured corner locations of each segment
are only an approximation of the radiometer observed field of view,
the overlapping area fractions between field observed segments and
radiometer observed segments were determined in a post-processing
step and the health status of the field data was linearly interpolated
using these overlapping area fractions to spatially match the radio-
meter observations.

The progression of the mountain pine beetle attack throughout the
vegetation period was determined from re-assessing the health status
of each individual tree on October 17, 2007 to represent the status
after the second attack during late summer 2007. The aggregated
health status per segment was compared in the described way.
Additionally, the health status for April (before the trees faded from
green to yellow to red) was predicted from June data, making the
assumption that all red attacked trees observed in June were at the
green attack stage in April, as during the installation of AMSPEC no red
tree crowns had been observed.

2.6. Isolating disturbance related changes in spectra using BRDF

Optical remote sensing is governed by shadowing and scatterer-
specular reflectance effects (Privette et al., 1996), which results in
spectral observations appearing brighter or darker as a result of the
interaction of solar irradiance with a given surface and sun-observer
geometry (Roujean et al., 1992). One possible way tomodel directional
reflectance effects is using a BRDF, which describes how land surface
reflectance varies with view zenith, solar zenith and azimuth angle
(Barnsley and Kay 1990; Gao and Schaaf 2003; Wanner et al., 1995a).
Among the most commonly applied BRDF models is the semi-
empirical kernel driven representation (Roujean et al., 1992), which
describes BRDF as a linear superposition of a set of basic BRDF shapes
based on relative sun position and simple measures of the canopy
structure (Wanner et al., 1995a). The common application is related to
simplicity of model specification that allows acquisition of model
parameters from mathematical inversion of relatively few multi-
angular reflectance observations, thereby facilitating applications over
a wide range of spatial scales. A series of different mathematical
kernels can be selected to optimize BRDF models for various kinds of
Fig. 3. Example of the clear sky filtering algorithm for two given days. The red dots show t
observations, the green dots show the observed and rejected radiometer observations. DOY 137
vegetation cover. In temperate climatic zones and when observing
discontinuous, stacked canopies (e.g., conifer stands), the bidirectional
reflectance distribution is most commonly represented by the so
called the Li-Sparse (LS) and Ross-Thick (RT) kernels (Wanner et al.,
1995b), based on a geometric-optical approach (Li and Strahler 1985)
and the radiative transfer theory (Ross 1981):

ρ θv ; θs ;Δ/ð Þ = ki + kgKL θv; θs ;Δ/;
h
b
;
b
r

� �
+ kv;KR θv ; θs ;Δ/ð Þ ð1Þ

where ki, kg and kv are the isotropic, geometric and volumetric
scattering components and KL and KR are the Li-Sparse and Ross-Thick
kernels, respectively. θv, θs and Δ represent view zenith, solar zenith
and the relative azimuth angle between the sun and the observer,
whereas h

b and b
r describe crown relative height and crown relative

shape, in here defined as constant values of 1 and 2, respectively
(Wanner et al., 1995a). ρ describes the reflectance of a given
wavelength.

While the Li-Sparse and Ross-Thick kernels can be used to assess
directional reflectance under the assumption of homogenous surfaces,
he modeled clear sky PAR values, the black dots the observed and accepted radiometer
was a clear day until about 10 a.m. (A), whereas DOY 144wasmostly clear throughout (B).



Fig. 5. Segment aggregated health status as determined by field measurements for GPS measured segments (left column, A,C, and E) and radiometer observed segments (right
column, B,D, and F) for the month of April, June and October, respectively. The health status shown for the radiometer segments (Fig. 5 B, D and F) was used as a basis to stratify the
spectral observations into the eight different levels with separate BRDF models being computed for each strata and 14 day interval.
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Fig. 6. A–H: Time series of BRDF corrected surface reflectance for the eight infestation levels (A–H) shown in Fig. 5 between DOY 130 and DOY 228. Reflectances derived from inverse
and forward modeling of the BRDF using the stratified spectra as inputs. The result is one standardized spectrum per strata and time interval. (No BRDF corrected spectrum is shown
in panel D for DOY 228 as for this specific canopy location and time period there were not enough clear sky observations with sufficient variability in the sun-observer geometry to
derive a stable BRDF model from mathematical inversion).
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reflectance values observed by AMSPEC were expected to vary not
only as a function of BRDF, but also because of spatial and temporal
differences in disturbance intensity observed over time. Hilker et al.
(2008b) demonstrated that observations of heterogeneous surfaces
can be isolated from BRDF effects (Strahler and Jupp 1990) when
stratifying spectra into homogeneous subsets of observations with
respect to the changing surface condition (in this case foliage
conditions are changing over space and time) and subsequently
fitting individual BRDF models to each of these strata.

In the spatial domain, field-based assessment of disturbancewas used
to stratify the canopysegments into eightdifferent stratawithinwhich the
spectral variation related to forest disturbance was expected to be
negligible. In the temporal domain, separate BDRF models were fitted to
spectral observations in 14-day time intervals, since the progressing
disturbance was expected to change the canopy reflectance over time.

Once a BRDF model is established from a series of multi-directional
measurements, reflectance canbeestimated foranypossible sun-observer
geometry (Hilker et al., 2008b; Wanner et al., 1995a), thereby allowing
direct inter-comparison of multi-angular observations. This is accom-
plished by normalizing reflectance measurements to one common sun
observer geometry (in this case sunpositionwas selected to be that at the
summer solstice,with theobservingprobe lookingnorth),which results in
one modeled and representative reflectance value per stratum and time
interval (Hilker et al., 2008b). Since scattering and directional reflectance
effects will vary with wavelengths, separate BRDFmodels also need to be
derived for each waveband under investigation. In this study we



Fig. 7. A: Location of themost significant wavebands for identifying disturbance levels in 14-day intervals as identified by stepwise forward and normal discriminant analysis. Spectral
separability of disturbance levels for the marked wavebands was significant at an a-level of 0.05 with pb0.001, using Wilks' Lambda test. The squares identify the location of the
wavebandwithin the electromagnetic spectrum, the colors correspond to the different 14-day intervals. The grey bars highlight waveband regions for which disturbance levels where
significantly separable for four or more 14 day periods. B: Number of wavebands that showed a significant spectral separability of disturbance levels over time. The time period with
most the wavebands suitable for detection of foliage conditions was around DOY 186.
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conducted a full spectral analysis of all 3-nmwavebands between400 and
950nmandcompared themto thedifferent levels of infestationover time.

2.7. Identifying key wavebands using discriminant analysis

Keywavebands for determination of foliage conditions over timewere
identified from BRDF-corrected spectra using stepwise forward and
normal discriminant analysis. Daily BRDF models were established and
spectra were normalized and grouped according to the field observed
infestation levels in 14-day time steps. Spectra were smoothed using a
Gaussian filter function and the curve shape of each spectrum was
determined using its first numerically derived derivative (van Aardt and
Wynne 2001). To decrease the number of independent spectral wave-
bands, a stepwise discriminant procedure was applied first, based on the
Table 1
Description of vegetation indices used for determination of mountain pine beetle infestatio

Index name Definition Related wavebands

Normalized difference
vegetation index NDVI

= ρNIR−ρRed
ρNIR + ρRed

ρNIR=mean ρ between 800-900 nm wavelength
ρRed=mean ρ between 600-670 nm wavelength

Chlorophyll 1 index CHL1 =
1

ρgreen
− 1
ρNIR

1
ρgreen

+ 1
ρ

ρgreen=mean ρ between 525-555 nm wavelengt

Chlorophyll 2 index CHL2 =
1

ρ595−725
− 1
ρNIR

1
ρ595−725

+ 1
ρNIR

ρ595-725=mean ρ between 595-725 nm wavelen

Chlorophyll 3 index CHL3 = P694−P760
P694 + P760

Ρ694=mean ρ between 694-760 nm wavelength
ρ760=mean ρ between 694-760 nm wavelength

Ratio vegetation index RVI = ρ800−ρ680
ρ800 + ρ680

ρ800=ρ at 800 nm wavelength ρ680=ρ at 680 nm

Red green index RGI = Pgreen−Pred
Pred + Pgreen

ρgreen=mean ρ between 540-600 nm ρred mean
ρ between 600-670 nm
definitions of van Aardt andWynne (2001). This procedure was followed
by a normal discriminant analysis to identify those bands that showed the
highest separabilitywith respect tofield-measured disturbance levels and
the accuracy of the normal discriminant analysis was assessed using a
cross-validation approach (van Aardt and Wynne 2001).

2.8. Assessing canopy health status from spectral vegetation indices

Based on the results of the discriminant analysis, a number of
narrow and broader band vegetation indices were identified and
tested for their ability to distinguish different levels of mountain pine
beetle infestation at the research site. Vegetation indices were
selected so that the detection band of each index falls approximately
within the spectral zones found to be significantly related to
n, their primary absorption feature and reference source.

Major application References

. Detection of vegetation greenness. (Myneni and Williams, 1994;
Sellers, 1985; Tucker, 1979)

h. Detection of chlorophyll contents (Gitelson et al., 2003)

gth. Detection of chlorophyll contents (Gitelson et al., 2003)

Used for detection of vegetation stress (Carter and Miller, 1994)

wavelength Detection of vegetation stress and
chlorophyll.

(Pearson and Miller, 1972)

Detection of mountain pine beetle
red attack

(Coops et al., 2006)
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mountain-pine-beetle-induced disturbance levels by the discriminant
analysis.

Computation of directionally-corrected spectral vegetation indices,
such as a normalized-difference reflectance of two wavebands, can be
achieved by correcting both directionally-corrected wavelengths
separately before computing the normalized difference. A BRDF of a
spectral vegetation index (SVI) can, however, also be obtained for a
normalized-difference index by applying a mathematical inversion
directly (Hilker et al., 2008b; Los et al., 2005). This approach has the
advantage that the residual errors are directly minimized with respect
to the index observed (Los et al., 2005).

3. Results

Fig. 3 shows an example of the filtering technique applied to
identify clear sky situations by comparing the radiometer measured
photosynthetically active radiationwith modelled clear sky irradiance
on a daily basis. For day of year (DOY) 137, as shown in Fig. 3A, skies
were clear until about 10 AM, measurements after this time were
rejected due to increasing cloudiness, evident by the reduction in
measured sky irradiance. For the second example, almost all
measurements were accepted as DOY 144 was a completely clear
day (Fig. 3B).
Fig. 8. A–F: BRDF surfaces determined for the examined vegetation indices (A) NDVI, (B) CHL1
within a subfigure represents a different infestation class (bottom=least damaged, top=mos
the z-axis is showing the corresponding index-value.
A total of 1022 trees were found within the radiometer footprint
(Fig. 2B). In June, about 43% of these trees were healthy, 10% were in a
green attack state, 36% were red attacked and 11% had no foliage on
them. The re-assessment of the disturbance conditions in October
yielded a 25% decrease in healthy trees (total healthy trees: 28%), 19%
of the trees were green-attacked while 41% were in a red-attack state
(Fig. 4). Fig. 5 shows the spatial distribution of mountain pine beetle
infestation assessed from field data observed in June (C and D) and
October (E and F) 2007 and predictions made for April (A and B). The
figures in the left column (A,C,E) represent the infestation rates per
GPSmeasured field segment, the figures on the right (B,D, and F) show
the field measured infestation rates transferred to the radiometer
observed field of view. The colors in the figure correspond to 8
different levels of infestation. Using field observations, disturbance
was found to be highest in the area north of the towerwithmost of the
trees being either at the red attack stage or without needles; whereas,
infestation rates were lowest in the south east.

The change of the BRDF corrected spectra between 400 and 950 nm
wavelengths over time and for the different infestation classes observed
is shown in Fig. 6. Fig. 6A–H correspond to the eight different infestation
levels from the least infested (6A) to themost severely damaged stratum
(6H). The most apparent change in spectra considering all strata is the
decrease in green and near infrared reflectance over time (Curran et al.,
, (C) CHL2, (D) CHL3, (E) RVI (F)RGI for the example of DOY 144–158. Each surface shown
t damaged). The x and y axis is showing the distance in meters from the tower (center),
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1991;Horler et al.,1983;Miller et al.,1991)which is evident especially at
the higher levels of infestation. Additionally, the reflectance in the green
band decreases over time over all infestation levels as the foliage turns
fromgreen toyellow to redwith changes in reflectancebeingvisible on a
14-day basis. No clear sky observations were made after DOY 228.

The spectral regions suitable for detection of foliage conditions
varied over time, however, the wavebands at approximately 490 nm,
560 nm, and 780 nm seemed most suitable for discriminating the
difference disturbance throughout the observation period (Fig. 7a).
The squares identify the location of the most significant wavebands
within the electromagnetic spectrum; the colors correspond to the 14-
day intervals. Spectral regions that showed the highest degree of
discrimination with respect to field measured disturbance conditions
over time are highlighted in grey. Fig. 7B shows the variation of the
number of spectral bands suitable for detection of foliage conditions
induced by mountain pine beetle infestation with the examined 14-
day intervals. Generally, the number of significant wavebands for
discriminating foliage conditions was higher towards the end of the
vegetation period when changes in canopy appearance were more
apparent. The number of wavebands for discriminating foliage
conditions was largest for the 14-day time period near DOY 186 but
was significantly reduced during the transition period from green to
red attack in early June (DOY 158) as well as during the second
mountain pine beetle attack period in late July (DOY 200) (Fig. 7B).
Fig. 9. A–F: Relationship between BRDF corrected vegetation indices (A) NDVI, (B) CHL1, (C) CHL
example of DOY 144–158 (p for all indicesb0.05). Note that slope of the CHL3 index differs in i
Table 1 shows an overview of the spectral vegetation indices
selected for description of mountain pine beetle induced disturbance
levels. Fig. 8A–F shows a stack of BRDF models derived for these
vegetation indices using a single 14-day interval as an example (DOY
144–158). Each BRDF surface represents the modelled reflectance of a
specific health stratum as determined from field-based observations.
The x- and y-axis show the distance (in m) from the tower, the z-axis
shows the reflectance values for each SVI; the colors are used to
emphasize the changes in observed reflectance with the view angle.
While the radiometer observes spectra at a fixed radius around the
tower, BRDF can be used to model reflectance values for any off-nadir
direction. For most of the indices shown in Fig. 8, the BRDF surfaces
are clearly distinct from each other as a result of field observed
differences in disturbance.

Fig. 9A to F shows the relationship between the BRDF corrected
SVIs and field measured disturbance for the example of one 14-day
period (DOY 144–158, corresponding to Fig. 8). Each sub-figure
represents one SVI (as indicated in the figure captions), each data
point per sub-figure represents the BRDF-normalized reflectance
value for a given health stratum. During the time period shown in this
example, most of the indices examined in this study were able to
describe spatial changes in canopy health conditions well, with best
results found for NDVI and CHL3, respectively (r2=0.90 and 0.87 for
NDVI and CHL3, respectively (pb0.05)).
2, (D) CHL3, (E) RVI (F)RGI andfield observedmountainpine beetle infestation levels for the
ts tendency from the other indices as a result of its definition (the index is negative).



Fig. 10. A–F: Time series of the coefficient of determination observed for the relationship between different BDRF corrected reflectance indices and field observed infestation levels at
DOY 130 and 228 (The coefficients of determination shown for 144–158 correspond to the values shown in Fig. 9; pb0.05) .
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The coefficients of determination for the relationship between the
BRDF corrected SVIs and field-observed infestation levels (correspond-
ing to Fig. 9) are presented in Fig.10A–F for all 14-day intervals between
DOY 114 to DOY 228. The relationship is based on the simplifying
assumption that the relative health status of the segments with respect
to each other stays approximately constant between April to May, June
tomid July and then through to October, based on the attack cycle of the
mountain pine beetle (Carroll and Safranyik 2003 and Wulder et al.,
2006). As a result, disturbance observations made in June 2006 were
assumed to be representative of all 14 day periods betweenDOY144 and
199, the assessments made in April and October were assumed to be
representative of all 14-day intervals before and after this period,
respectively. The disturbance-related differences between the indivi-
dual segments were best described by NDVI and CHL3 throughout the
entire vegetation period, with high coefficients of determination found
even for those 14-day intervals during which the stand was still in a
green attack stagewith no apparent visible changes in leaf color (see Fig.
1A). The RGI used in previous studies to detect mountain pine beetle
infestation (Coops et al., 2006), as well as the RVI, showed low
performance during the beginning of the vegetation period, with only
a minor ability to distinguish between different levels of green attack,
but showed significantly enhanced abilities after the needles turned red
duringmid to late-May. The chlorophyll-sensitive CHL1 andCHL2 indices
were able to distinguish the different levels of infestation well in the
beginning and the end of the growing season with lower performance
shown between DOY 144 and DOY 200.

Fig. 11 shows the slope of the relationship between the BRDF
corrected SVIs and field-observed infestation levels (corresponding to
Fig. 9) for all 14-day intervals between DOY 114 to DOY 228. Significant
and consistent changes in slope through time were found for all
indices with decreasing slopes in the positive indices (NDVI, CHL1,
CHL2, RGI, RVI) and increasing slopes from 0.04 to 0.17 in the negative
index (CHL3) as the foliage faded from green to yellow to red and then
into the second green attack stage beginning in August 2007 (DOY
200–214).

4. Discussion

This study investigated the interactions between canopy reflec-
tance and disturbance-induced changes in foliage conditions for a
mountain pine beetle infested lodgepole pine stand in northern
British Columbia, Canada. The field observations taken in June and
October yielded a high spatial variability of levels of infestation around
the tower, with overall levels of disturbance increasing from April to
June to October. Averaging the coded health status of the individual
trees within each segment was a simple yet successful method to
describe the health status of the field observed segments. It has to be
noted, however, that a change from green to red is unable to be



Fig. 11. A–F: Development of the slope of the relationship between different BDRF corrected reflectance indices and field observed infestation levels at DOY 130 and 228. The slope of
the relationship between field observations and reflectance signal is expected to change gradually over time as the health status of the trees is declining (The slopes shown for the
different indices for DOY 144–158 correspond to the slopes seen in Fig. 9).
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differentiated from a change from red to gray and as a result, the
method is limited to situations where no or only little changes in gray
attack are occurring over the observation period (Fig. 7). Additionally,
this simple method yields no absolute measure of disturbance, but
only provides a means by which the disturbance found in different
radiometer observed segments can be quantified with respect to each
other.

Clear sky observations were effectively identified by comparing
measured solar irradiance to a simple polynomial model, thereby
eliminating changes in spectral reflectance due to different states of
cloudiness (Hilker et al., 2008b). Stratification of these clear sky
observations with respect to disturbance and fitting different BRDF
models to each stratum was a successful approach for separating
directional and disturbance related changes in canopy level reflectance
thereby confirming findings of previous studies (Hilker et al., 2008b; Los
et al., 2005). This is an important result as it underlines the capability of
this approach to apply bi-directional reflectance distribution models to
various kinds of heterogeneous canopy surfaces, whether they originate
from different disturbance levels or other sources such asmixed species
composition or physiological states (Hilker et al., 2008b). The Ross-Thick
and Li-Sparse kernels (Roujean et al., 1992) were successfully used to
normalize stratified observations to a common sun-observer geometry,
thereby facilitating a direct comparison between observations taken in
different directions from the tower and over different 14-day intervals
throughout the vegetation period of 2007. The results shown in Fig. 6
and 7 demonstrate the capacity of multi-angular observations for
predicting changes in canopy health, with differences in reflectance
being visible as the foliage of the infested trees faded from green to
yellow to red. As opposed to previous studies using broader band
satellite observations (Coops et al., 2006; Wulder et al., 2004b; Wulder
et al., 2006), multi-angular radiometer observations were not only able
to identify both red and green attack, but it was also possible to quantify
subtle differences in disturbance levels using spectral reflectance. The
results shown in Fig. 7 alsogive anexplanationwhybroader bands in the
green and near infrared region were most successful in determining
mountain pine beetle red attack, since they contain most of the
significantwavebands identifiedusingdiscriminant analysis. Changes in
canopy reflectance over timeweremost apparent at the higher levels of
infestation (Figs. 6E–H, 7B), for which the foliage appearance also
underwent the most dramatic changes. Fig. 7A demonstrated that the
disturbance-sensitive wavebands vary with the time interval observed,
which could be explained by the different attack stages (green attack,
red attack and second attack in August 2007, around DOY 200) the
foliage underwent throughout the vegetation period. Despite this
variation however, Fig. 7 confirmed that the green and near infrared
regions were most suitable for detection of mountain pine beetle
induced disturbance over time, with the highest number of bands found
in the near infrared region. The results shown in Fig. 7B have important
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implications for the selection of the time period chosen for observation
of mountain pine beetle disturbance with remote sensing instruments,
as a notable variation was found in the number of wavebands suitable
for detection of disturbance levels over time. As a result, not all
wavebands are useful for detection of pine beetle disturbance through-
out the entire observation periods, and the indices used for detection of
disturbance need to be adapted to the stage of disturbance. Especially
during the transition periods from green- to red-attack and the new
green attack, fewerwavebandswere able to distinguish between foliage
conditions, while the results shown in Fig. 7B suggest that the time
period between early- to mid-July is most suitable for detecting
mountain pine beetle induced disturbance, especially when using
broader band satellite instruments.

Discriminant analysis successfully identified wavebands that were
able to distinguish disturbance-induced changes in canopy reflectance
at a statistically significant level (pb0.05). The results of the
discriminant analysis were confirmed by the results shown in
Figs. 10 and 11. It can be seen from Fig. 10 that most of the multi-
angular vegetation indices, even when sampled over broader spectral
ranges (Fig. 10a), were able to clearly detect subtle changes in
disturbance levels when comparing the reflectance values of the
different segments around the tower. This important result underlines
the increased potential of multi-angular observations for detecting
changes in canopy reflectance compared to nadir looking instruments.
These results also confirm findings of previous studies undertaken in
different contexts (Chen et al., 2003a; Chen et al., 2005; Goel and Grier
1988; Hilker et al., 2008b; Strahler and Jupp 1990).

Figs. 10 and 11 reveal that especially the multi-angular NDVI and
CHL3 indices were able to predict infestation levels from canopy
reflectance not only during the summer periods when changes
reflectance were readily apparent, but also when the infested trees
were still at the green attack stage. The coefficient of determination
between field and reflectance observed disturbancewas N0.6 for NDVI
and CHL3 throughout the observation period and, additionally,
changes in slope of reflectance observed between different segments
over time shows that the progression in disturbance is being reflected
in the spectral observations. The fact that even the broad band multi-
angular NDVI showed high correlations to the field-observed health
status throughout the year is encouraging, as it suggests that subtle
changes in forest health may be observable from currently available
broader band multi-angular satellite sensors such as the multi-angle
imaging spectroradiometer (MISR) on board NASA's EOS-1 spacecraft
TERRA. Confounding issues related to signal-to-noise, spatial resolu-
tion, and atmospheric conditions, among others, are expected
challenges for utilization of space-borne instrumentation for detec-
tion of mountain pine beetle infestation conditions (see White et al.,
2007a,b). The RGI, which was successfully used in previous studies
(Coops et al., 2006) for mapping mountain pine beetle red attack
showed good correlations to field observations only after the majority
of attacked trees turned red and changes in canopy reflectance
became readily apparent. This result is consistent with Fig. 7, which
suggests that changes in canopy spectra were first visible in the near
infrared and a few narrow wavebands in the green region of the
spectrum.While this study has shown the limitation of the RGI, which
largely fails to predict mountain pine beetle disturbance during its
earlier phases, the high coefficients of determination found during the
second half of the vegetation period underlines the potential of the
RGI for measuring more severe disturbance levels, thereby confirming
the findings of previous studies (Coops et al., 2006).

The slopes of the regressions between the BRDF corrected SVIs and
field-observed infestation (Fig. 11) revealed a consistent decrease for
the positive vegetation indices (NDVI, CHL1, CHL2, RGI, RVI) and a
consistent increase for the CHL3 over the period of observation. This
result is expected as the health condition of the segments observed by
the radiometer is constantly declining thereby leading to more
dramatic changes in spectral variation over time. These findings also
underline the results shown in Fig. 10 confirming the potential of the
examined vegetation indices to predict disturbance at the study site.

The off-nadir viewing direction helped mitigating background
reflectance effects by looking at stacks of multiple canopies. Further
research will be required to examine the impact of background and
other reflectance altering considerations such as atmospheric effects
and fine-scale changes in the landscape pattern. This study provided
an analysis of spectral reflectance properties at a canopy scales;
however, additional research will be required to confirm the findings
of this study over larger areas and at the landscape level. For instance,
the empirically derived relationships between the field-observed
disturbance levels and spectral vegetation indices are likely to change
with species composition and stand properties such as nutrient and
water supply.

Extensive field work was required to allow stratification of the
observed canopy surface into homogenous areas, which may limit the
applicability of this study over larger areas. This issue could possibly
overcome by defining representative (non-infested) training areas for
which the BRDF is known. Multi-angular observations of a similar, but
infested stands can then be used to determine the level of infestation
from applying this BRDF to the data and looking remaining difference
in reflectance observed at multiple view angles (similar to Fig. 11).

The study area for which this multi-angular technique has been
demonstrated is relatively small and, as a result, the findings of this
research can not easily be generalized across the landscape. For
instance, further research will be required to investigate the impact of
species composition, understory and stand structure on broad scaled
multi-angular observations. As a result, the findings of this study are
more of theoretical nature and were intended to show the potential of
high resolution, multi-angular observations for the determination of
fine scale changes in canopy disturbance. Our findings can help
guiding the application of spectral vegetation indices for determining
canopy disturbance at different stages and will also have possible
implications for the design of future airborne observations or satellite
missions.

While the approach introduced in this study is in its current form
not practically applicable over large areas, our results have demon-
strated the potentials of multi-angular narrowwaveband observations
to continuously detect and quantify subtle changes in canopy stresses
and non-stand replacing disturbance events. Future satellite sensors
can help overcome some of the technical limitations inherent to this
approach in its current form, thereby helping to facilitate accurate
mapping of landscape level vegetation disturbance from space with
potential implications for forest management, forest health monitor-
ing and development of mitigation strategies. The technique intro-
duced in this study has further demonstrated that the challenge of
temporally continuous mapping of canopy disturbance can be over-
come when separating physiologically and directionally induced
changes in canopy reflectance for instance using a simple stratification
approach. The results found in this study therefore underline the
usefulness of multi-angular remote sensing for assessing subtle
changes in foliage conditions and demonstrate their potential for
characterizing subtle changes in disturbance.

5. Conclusions

• Multi-angular observations of canopy reflectance are a powerful tool
for quantifying subtle changes in canopy health conditions, such as
originating from bark beetle induced disturbance events.

• Disturbance induced changes in canopy reflectance of heteroge-
neous stands can be isolated from other effects by stratifying multi-
angular spectra into homogeneous subsets of observations and
subsequently fitting BRDF models to each stratum.

• The most disturbance-sensitive wavebands in this study varied with
the stage ofmountainpinebeetle attack, and asa result, not all spectral
vegetation indices were useful for year round determination of
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mountain pine beetle disturbance. Best results were achieved using
multi-angular observations of NDVI and CHL3 indices.

• The period between early- to mid-July was found to bemost suitable
for detecting mountain pine beetle induced disturbance events, as
during this time the largest number of disturbance sensitive
wavebands has been identified.
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