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ABSTRACT  

In this paper we investigate the relative predictive power of a number of remote 

sensing-derived environmental descriptors of land cover and productivity to predict 

species richness of breeding birds in Ontario, Canada. Specifically, we first developed a 

suite of environmental descriptors (productivity, land cover, and elevation). These 

descriptors were based on readily available data, including the MODerate-resolution 

Imaging Spectroradiometer (MODIS) onboard the Terra and Aqua satellites and terrain 

data from Shuttle Radar Topography Mission (SRTM). We then assessed the capacity 

of the environmental descriptors, using a decision tree approach, to estimate species 

richness of all breeding birds, and of groups of bird species based on habitat and 

nesting groupings, using data summarized from the Ontario Breeding Bird Atlas. 

Results indicated that the variance in the distributions of total bird species richness, as 

well as richness of habitat and nesting groups, were well predicted by the environmental 

descriptors (with variance explained ranging between 47 to 75 %) with the predictions 

clearly related to both habitat (as modeled by land cover and land cover diversity) and 

vegetation productivity. Modeling demonstrates that initial partitioning is most often 

based on land cover class, indicating it may be the driving variable of bird species 

richness; however, information on vegetation productivity and energy were then critical 

in defining how many species occur in each habitat type. The results indicate that 

remotely sensed environmental descriptors can provide an effective tool for predicting 

breeding bird species richness at regional scales. 
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1. INTRODUCTION 

Understanding the factors that drive patterns of species diversity across large areas is 

important for predicting how species will respond anthropogenic influences and 

changing climate (Orme et al. 2005). At the global scale, species richness is most 

commonly explained by a latitudinal gradient effect, which predicts richness of most 

taxa to increase towards the tropics (Rosenzweig 1995). At continental and regional 

spatial extents, however, it is more likely that a series of factors combine to influence 

species diversity (Kerr and Packer 1997).  In cold or temperate terrestrial regions, such 

as Canada, the role of climate, in particular heat, becomes increasingly important 

(Currie and Paquin 1987). Additionally local factors such as topography, disturbance, 

water movement, and species competition have all been demonstrated as important 

drivers at finer grains and over smaller extents (Daubenmire 1974; Moore et al. 1993; 

Virkkala et al. 2005). Given likely changes in climate, and disturbance regimes, 

predicted to occur across Canada (Flannigan et al. 2005, Kurz et al. 2008), it is 

becoming critically important to better understand the link between these factors and 

species richness and map current patterns so any likely changes in species richness 

can be anticipated and where possible adapted for.   

 

Understanding the factors which influence the species richness of breeding birds 

provides an excellent case study as avian species differ significantly in their migratory 

behavior, nesting requirements, feeding and mating habits, and other aspects of specific 

life histories. For example, permanent residents do not migrate at all, while Neotropical 

migrants nest in North America and then fly to wintering habitat in Mexico, Central or 
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South America (McLoughlin et al. 2000). These complexities make broad patterns of 

bird biodiversity difficult to predict and often necessitate datasets covering large spatial 

areas. Fortunately, data on breeding bird richness is common and often readily 

available with studies carried out at a national level in a number of countries such as on 

a 5-km (in the Netherlands) and 10-km grid (in the United Kingdom, Bibby et al. 1992), 

and across South Africa with a quarter degree grid (Githaiga-Mwicigi et al. 2002).  

 Within North America the breeding bird survey (BBS) and Christmas bird count (CBC) 

surveys are normally undertaken by thousands of amateur ornithologists (Venier et al. 

2004). Similarly, the Ontario Breeding Bird Atlas (Cadman et al. 2007) is a volunteer-

based project which gathers data on the breeding distribution of all the bird species in 

Ontario. The 10 x 10 km OBBA gridded dataset provides information on the distribution 

and relative abundance of 286 bird species throughout the province. Ontario offers an 

ideal study area to investigate the relationship between breeding bird species richness 

and physical and environmental conditions.  

 

Larger than many nations, the Canadian province of Ontario occupies an area of 

approximately 1 million km2 covering a wide range of land uses and ecological 

conditions. The terrestrial ecozones of Canada (Wiken 1986) define four broad 

ecozones that are encompassed by the province, ranging from wetland dominated 

lowlands through boreal forests to mixed forests dominated by anthropogenic activities.  

 

The goal of this research is to explore the capacity of a number of remote sensing-

derived environmental descriptors to predict the variance in bird diversity patterns over 
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the province of Ontario, Canada. To meet this goal we first gathered or calculated a 

number of descriptors (land cover, productivity, and topography) based on readily 

available satellite data acquired from either MODerate-resolution Imaging 

Spectroradiometer (MODIS) or the Shuttle RADAR Topography Mission (SRTM). We 

then assessed the predictive capacity of these descriptors, via a decision tree 

methodology, to estimate species richness of all breeding birds, and of groups of bird 

species aggregated by habitat associations and nesting behaviors using data 

summarized from the OBBA.  

 

2. BACKGROUND 

MacArthur (1972) postulated that biodiversity patterns respond to three major 

descriptors; climatic stability, productivity, and habitat structure – with empirical 

evidence demonstrating that each of these descriptors plays an important role in 

biodiversity variations. As a result, bioclimatic models are often applied to estimate the 

distribution of species at broad scales (Guisan & Zimmermann 2000; Rahbek & Graves 

2001; Willis & Whittaker 2002). At more local scales, however, bioclimatic models may 

produce poorer predictions due to the exclusion of important local factors (Iverson & 

Prasad 1998; Thuiller et al. 2003) such as land cover and disturbance, particularly those 

due to human influences (Thuiller et al. 2004). For example, Kerr et al. (2001) examined 

the relationship between butterfly species richness across Canada in 2 – 5 º latitude grid 

with habitat heterogeneity data acquired from remote sensing and climate information 

from meteorological datasets. They found that habitat heterogeneity explained the most 

variability in species richness, with secondary contributions from climatic factors.  
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Likewise, Hurlbert and Haskell (2003), using remotely sensed estimates of productivity 

(through the normalized difference vegetation index (NDVI)) and spatial data describing 

biomes and topography to predict avian species richness. The authors found habitat 

heterogeneity was important for predicting avian species richness at coarse spatial 

grains with descriptors such as temperature, evapo-transpiration, or vegetation 

productivity important at finer spatial scales grains among species that specialize on 

different habitat types.  

 

These, and other studies, demonstrate that remote sensing offers an ideal technology to 

develop a range of variables to not only predict species richness at a point of interest, 

but also to monitor and assess changes in biodiversity at a variety of spatial and 

temporal scales (Link & Sauer 1997). Monitoring these factors through time has the 

potential to provide for continental and/or national stratifications of biodiversity – 

indicating areas where potential changes impacting biotic diversity may be occurring. 

This type of information is critical for conservation planning, priority setting, designing 

future surveys and to facilitate monitoring (Venier et al., 2004). In a recent review of the 

potential of remote sensing technology to provide explanatory variables to predict 

species richness, Duro et al. (2007) proposed broad categories which capture previous 

and current research trends. These categories, described in detail below, include 

measures of: (i) the physical environment, such as topography, (ii) indicators of 

vegetation productivity and (iii) habitat suitability, with respect to its spatial arrangement 



 7 

and structure (Table 1). Importantly, all of these factors can be described at a similar 

grain (1 km) using remote sensing technology.  

 

Table 1: Description of  the remotely sensed datasets used in this study. 

 Topography Productivity Land cover  

Image spatial 

resolution / grain 

90 m < 60° N 

1000 m > 60°N 

 

1000 m 1000m 

Image extent Canada Wide All vegetated areas Global 

Type of remotely 

sensed data 

RADAR MODIS fPAR AVHRR Land cover 

 

Platform Shuttle Terra / Aqua AVHRR / MODIS 

Temporal Capacity Single  Monthly / Annual Once  

Ownership / cost Free Free Free 

Size of Dataset 250 MB 100 MB 300 MB 

Processing strategy Coefficient of 

Variation (COE) 

Dynamic Habitat 

Index (DHI) 

Image classification, 

Pattern indices 

Processing strategy 

references 

Wilson and Gallant 

(2000) 

Mackey et al. (2004), 

Coops et al. (2008) 

Hansen et al. (2000) 
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2.1 Topography 

While elevation is a relatively static variable compared to other biophysical factors such 

as climate, its function as a key driver of biodiversity has been well documented 

(Rosenzweig 1995). For example, in the tropics, unimodal shaped patterns have been 

developed to explain species diversity, with the highest species diversity often occurring 

at mid-elevations (as summarized in Rosenzweig 1995) partially explained by mid-

domain effects. Similarly Patterson et al. (1998) showed a decreasing trend in bat and 

bird species richness as elevation increased.  

 

2.2 Vegetation productivity 

A number of hypotheses have been suggested to explain the positive correlation 

between species richness and productivity (Evans et al. 2005). Theories such as ”more 

trophic levels“ (Evans et al. 2005) hypothesize a direct correlation between productivity 

and species richness whereby areas of high productivity have more resources to 

partition among competing species, thus supporting a greater number of species and 

larger populations than areas with lower productivity (Walker et al. 1992). Contemporary 

thought is that the ”more individual hypothesis” (Wright 1983) explains the positive 

correlations between species richness and productivity. This is due to the availability of 

more resources resulting in more individuals with the subsequent larger populations 

reducing the extinction risk, therefore increasing the number of species present in an 

area at any one time. However direct evidence to support this hypothesis is difficult to 

develop (Mason et al. 2008).  
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Remotely sensed data offers a capacity to estimate vegetation productivity through 

relationships with standing biomass, leaf area index (LAI), tree volume, or canopy light 

absorption which can be associated with species richness. The relationship between 

avian species diversity and annual vegetative biomass for example, was successfully 

applied in Senegal using broad scale information on vegetation greenness (Jorgensen 

& Nohr 1996). Skidmore et al. (2003) predicted mammalian and avian species richness 

using 1-km scale predictions of vegetation greenness, however they noted that, in 

general, climatic layers were better predictors of richness than the greenness 

observations alone. Bonn et al. (2004) applied a similar approach to study the 

relationship between the species richness of birds in Southern Africa and productivity, 

and found that increased productivity lead to increased species richness. More recently 

Nilsen et al. (2005) linked landscape greenness with fauna diversity to test the 

hypothesis of Harestad and Bunnell (1979) that species home ranges should be 

inversely related to productivity. The results indicated that the inclusion of satellite data 

increased the predictive accuracy of 8 of the 12 examined carnivore species. Waring et 

al. (2006) utilized satellite data over the conterminous United States to predict woody 

species richness, as measured using Forest Inventory and Analysis data (of the United 

States Department of Agriculture Forest Service) and found significant relationships 

between total species richness at the ecosystem level and maximum annual greenness.  

 

2.3 Land cover 

While climate and productivity have been linked to broad global patterns of biodiversity 

(Willig et al. 2003; Hawkins et al. 2003), finer scale spatial patterns such as land use 
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and land cover, forest structural stage, and their associated spatial patterns, are 

increasingly being investigated as potential predictors of species diversity (Fahrig 2003). 

Land cover maps, in particular, depicting individual or assemblages of land cover types 

or species are critical to biodiversity assessments as they represent a “first-order” 

analysis of species occurrence (Turner et al. 2003). Luoto et al. (2004) used land cover 

type, fragmentation and topographic metrics, at 30 m spatial resolution, to predict bird 

species richness in the boreal agricultural-forest mosaics in Finland. Their habitat-

composition model explained 61 % of the variation in species richness, but the variance 

explained decreased to 48 % when applied to the model test area. In contrast, the 

habitat-structure model explained 59 % of the variation in species richness, which then 

increased to 62 % when applied more broadly. In Ontario, Smith (2007) found that 

vegetation type was the best explainer of winter bird species richness in urban 

environments with natural vegetation and size of area more important than similarly 

sized patches of managed, horticultural parkland, within urban natural areas. 

 

3. METHODS 

3.1 Study area and data  

3.11 Breeding bird surveys 

To quantify avian biodiversity we used atlas data provided by the OBBA (version 2; 

available at: www.birdsOntario.org; described at: Bird Studies Canada, 2006a, 2006b). 

For atlas data collection, the province was tessellated into a grid of 10 km cells on a 

Universal Transverse Mercator (UTM) projection. In southern areas of the province the 

tessellation was surveyed in a spatially continuous manner; in northern areas with 
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limited population base and road access, a minimum of one 10 x 10 km cell for every 

100 x 100 km area was surveyed resulting in a total of 5555 surveyed cells. Point 

counts by experienced birders were collected to generate estimates of abundance. 

Additional information was collected through the use of nest record cards detailing 

information for any nests found. For our analysis, we calculated total bird species 

richness and richness for six species groupings based on nesting and habitat 

preferences: woodland species, successional-scrub species, wetland, urban, and 

grassland species, with remaining species grouped as non-specialists. Our species 

group definitions followed those of the Canadian Wildlife Service Canadian bird trends 

species habitat groups (Downes & Collins 2007). 

 

3.12 Remotely Sensed Data: Topography 

In 2000, NASA and the United States National Imagery and Mapping Agency (NIMA) 

launched the SRTM on the Space Shuttle. The SRTM mission obtained data for 80 % of 

the land surface between ± 60º latitude which provides previously unavailable 

consistent elevation data over the global land base at 90 m spatial resolution, with 

vertical resolution of ≈ 5 m (Farr & Kobrick 2000). We obtained SRTM version 2 data for 

Ontario and, in order to describe variation in topography at the OBBA scale, we 

computed the topographic coefficient of variation as the mean of the elevation within a 

10 km window divided by its standard deviation.  

 

3.13 Remotely Sensed Data: Productivity 
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A key metric of vegetation productivity from satellite imagery is the prediction of the 

fraction of photosynthetically active radiation (fPAR) intercepted by vegetation, which is 

analogous to greenness cover (Knyazikhin et al. 1998) and ranges from zero (on barren 

land) to one (for dense vegetation cover). In theory, the higher the average fPAR level 

observed over the course of a seasonal plant growing cycle, the more dense the green 

leaf cover, the higher the productivity, and the less disturbed the vegetation cover. In 

order to condense the time series of fPAR we implemented a Dynamic Habitat Index 

(DHI) proposed by Mackey et al. (2004) and Berry et al. (2007) and applied to Canada 

by Coops et al. (2008), which utilizes time series of satellite observations of greenness 

to derive three descriptors of the underlying vegetation dynamics: the total annual 

productivity, the minimum level of perennial cover, and the degree of vegetation 

seasonality. We utilized data from both MODIS sensors TERRA and AQUA, launched in 

2000 and 2002 respectively, which provided imagery at 1 km spatial resolution in 36 

spectral bands (Heinsch et al. 2006). To minimize the influence of cloud cover, 

atmospheric variation, and other confounding environmental conditions, the maximum 

daily fPAR was selected for each 8-day period. These 8-day composites were combined 

into monthly maximum fPAR products and mapped at a spatial resolution of 1 km. 

Global fPAR monthly images from 2000 – 2005 were accessed from Boston University 

(http://cliveg.bu.edu). From these data we computed the three DHI components:  (i) 

annual primary productivity, (ii) seasonal greenness, and (iii) annual minimum cover.  

 

Annual primary productivity can be expressed as the integrated (or summed) greenness 

over an entire year. This annual index of productivity has a strong theoretical base 
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(Goward et al. 1985), as well as empirical justification for forests (Coops et al. 1999), 

grasslands (Wang et al. 2004), and crops (Groten 1993).  

In this study annual primary productivity was derived by summing monthly fPAR 

observations for each year, from 2000-2005 and then averaged over the 6 years.  

 

Annual minimum cover relates the potential of the landscape to support populations 

throughout the year (Schwartz et al. 2006). Locations bereft of significant snow cover 

following summer often maintain greenness into winter, and fPAR remains above 0. In 

areas where snow covers the vegetation, fPAR equals or approaches 0. The annual 

minimum value of fPAR was therefore derived by calculating the annual minimum 

monthly fPAR observation for each year, from 2000-2005 and averaged over the 6 

years . 

 

Seasonal variation in greenness is an integrated measure of climate, topography, and 

land use. To assess variation in the fPAR throughout the year, we computed the 

standard deviation of monthly values for each cell, and then divided that value by the 

mean annual fPAR to attain the coefficient of variation (CV). High CV values signified 

seasonal extremes in climatic conditions or limited periods with agricultural productivity, 

whereas sites with low coefficient of variation typically represented irrigated pasture, 

barren land, or evergreen forests (with additional trends and distribution detailed in 

Coops et al. 2008). The three annual DHI composite were then averaged over the 6 

years to provide a long term average DHI descriptor for this study.  
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As befitting such a large and geographically diverse region, Ontario has marked 

differences in productivity largely expressed along a latitudinal gradient. The highest 

annual seasonality in Ontario is found in the northern portions of the province where the 

vegetation is largely characterized by open fens and bogs with dry ground cover 

dominated by lichens. Some forest species exist in small patches, including trebling 

aspen (Populus tremuloides), poplar (Populus sp), and white birch (Betula papyrifera). 

This region experiences extensive snow cover in the winter months resulting in 

significant phenological change with greening of the fens and bogs in summer. The 

combined DHI response in this region therefore shows a highly seasonal landscape, low 

in productivity, and low apparent minimum cover. Moving southward into more central 

Ontario, the landscape has an increasingly variable topography  with coniferous and 

evergreen boreal forest species and a mosaic of forest conditions resulting from 

harvesting activities (Wulder et al. 2007). The area also experiences less snow cover, 

persisting for a shorter time, and is combined with evergreen vegetation. The result is 

the seasonality component of the DHI being low, with higher productivity and minimum 

cover components. In the southern areas of Ontario,  greater land cover diversity is 

found over mild topography and warmer temperatures making the area suitable for 

agriculture that has reduced forests to small isolated woodlots. The combined DHI 

indicates higher vegetation productivity, low seasonality, and high levels of minimum 

cover. The intensive agriculture practices throughout this mosaic act to create patches 

of higher seasonality and low minimum cover.  

 

Visualizing the three components of the DHI in a single combined color composite 
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highlights locations where the environmental descriptors are correlated or otherwise 

(Figure 1, a-d). Figure 1(d) was created by assigning the annual integrated greenness 

to the green band, the minimum cover to the blue band, and the seasonality to the red 

band. Bright red areas have low annual mean fPAR, low annual minimum fPAR and 

high seasonal variability. Thus, bright red areas indicate locations where the small of 

amount of primary productivity was evident for only part of the year. Bright cyan areas 

have a high mean, a high minimum and low variability, which represent locations with 

vegetation that was consistently productive throughout the year. Darker blue indicates 

landscapes with a low mean, a high minimum, and low variability. Orange areas indicate 

moderately productive vegetation that varied in productivity throughout the year. Green 

areas are high annual productivity, a high annual minimum productivity and low 

seasonality. 

 

A 
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B  

 

C 



 17 

 

D 

Figure 1: Individual components of the Dynamic Habitat Index (DHI): (a) annual production, (b) seasonality, 

(c) annual minimum cover averaged over the 6 years of observations and the combined dynamic habitat 

index derived from 2000 – 2005 MODIS data.  

3.14 Remotely Sensed Data: Land Cover 

Information on current land cover is available at a 1 km grain from the University of 

Maryland (UMD) land cover classification (Hansen et al. 2000). The classification allows 

a comparison of the behavior of the DHI components stratified by land cover class. The 

dataset was derived using MODIS and AVHRR satellite data and was developed using 

a classification tree approach based on individual spectral bands as well as spectral 

indices that enhance vegetation greenness. The UMD classification utilizes a hierarchy 

of vegetation forms similar to that discussed by Running et al. (1994) and defines 14 
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land cover classes, including evergreen needle leaf, evergreen broadleaf, deciduous 

needle-leaf forest, deciduous broadleaf forest, and a mixed forest. The remaining 

classes include 2 classes each for shrub and woodland complexes grassland, cropland, 

bare ground, urban, and water. For our analysis we used information on the land cover 

of individual pixels as well as changes in the pattern of the UMD land cover 

classification assessed at the 10 km grain size. Within each 10 km window, the 

dominant land cover class, the land cover dominance (calculated as the proportion of 

the area covered by the dominant land cover class), and the richness of land cover 

classes (calculated as the total number of land cover classes within the 1 km cell) were 

calculated following methods of Hill and Smith (2005).  

 

3.15 Statistical Analysis  

The environmental descriptors were re-sampled to a 10  x 10 km cell to match the 

OBBA using simple averaging in the case of continuous input variables or using a 

majority filter for the land cover classification. A suite of regression trees (developed in 

Decision Tree Regression (DTREG, Sherrod, 2008) were then developed by relating the 

OBBA species richness with the coincident remotely sensed descriptors of each 

sampled cell.  

 

Before model development we assessed the inter-correlations of the DHI components 

to ensure that unique information was being provided by model co-variates. We then 

examined the variation in the productivity related remote sensed descriptors in relation 

to land cover class. In order to assess the utility of the remotely sensed descriptors to 
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explain the variance observed in the total bird species richness data and richness of the 

six focus species groups, we utilized a non-parametric data-mining approach using 

regression trees. Regression tree analysis is a modelling technique that splits 

dependent variables using optimal predictor variables based on least squares 

(Melendez et al. 2006) and can be considered as a sequence of binary queries 

partitioning a dependent variable into homogeneous sets of responses. Each node in 

the tree braches to two other nodes or to a final response which corresponds to a 

labeled predictor variable (terminal node). Regression trees are increasingly applied in 

ecological research (e.g., De’ath et al. 2000; Schwalm et al. 2006) as they can be 

applied independent of statistical distributions and are suitable for dealing with collinear 

datasets, potentially insignificant predictors, and outliers (Melendez et al. 2006; 

Schwalm et al. 2006, Goetz et al. 2007). Single trees for the total bird species richness, 

and the focus species groups were developed using a 10 fold cross validation 

technique, similar to a “jackknifing” procedure, which randomly partitions the dataset 

into 10 equally sized groups (or folds). One set is held in reserve, while the other nine 

are pooled and a model developed. The accuracy of the model is assessed using the 

remaining 10 % of the data which was not used in model development. This process is 

then repeated 10 times, resulting in ten different test trees and ten different accuracy 

assessments determined in reference to success in predicting species richness using 

the remaining 10 % of the referenced dataset. The decision rules of the 10 models were 

then merged and pruned to produce a final classification tree with the optimum number 

of nodes and an overall accuracy accessed by averaging the independent results of the 

10 simulations (Breiman et al. 1984).  
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In addition to the models for the total bird species richness and the focus group species 

richness, we assessed the relative importance of land cover and productivity related 

remote sensed descriptors when predicting species richness.  

 

4. RESULTS 

Correlation analysis confirmed that the three DHI components were providing redundant 

data with R ≤ 0.80 in all cases. The highest observed correlation was between DHI 

productivity and seasonality, with the lowest correlation between layer productivity and 

minimum apparent cover. The variation in the three DHI components stratified by land 

cover class is shown in Figure 2.  

 

The DHI productivity related remotely sensed descriptors, when stratified by land cover, 

indicate deciduous broadleaf and mixed forest in Ontario typically had the highest levels 

of productivity, followed by evergreen needle leaf forest.  Grass and shrub dominated 

land cover had the highest seasonality and forest land cover, apart from the deciduous 

needleleaf class, had the lowest levels of seasonality. Grass and shrub land cover also 

had low levels of apparent minimum cover.  
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Figure 2: Mean and standard deviation of DHI cells stratified by dominant land cover class. 
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4.1 Breeding Bird Habitat Groups 

The grassland species decision tree explained 75 % of the variance observed in the 

dataset (original variance = 11.8, with unexplained 2.8) (Table 2). The model also ranks 

input descriptors based on the variance explained and in this particular model the 

highest ranked descriptor was dominant land cover. The second most significant 

explanatory descriptor of grassland birds was the apparent minimum cover derived as 

part of the DHI (annual minimum fPAR), which provided 15 % of the total explanatory 

power. The other descriptor in the final model was DHI seasonality. The terrain and DHI 

productivity descriptors explained no additional variance in the grassland bird species 

richness model.  

Table 2: Description of the developed decision tree models for total species richness and the groupings 

based on nesting and habitat preferences.  

BBS Grouping % Variance Explained Nodes 

Grassland birds 75 24 

Succession or Scrub birds 61 25 

Woodland birds 47 31 

Non-Specialists 66 29 

Urban birds 74 25 

Wetland birds 49 31 

All birds 61 24 

The model for urban bird species richness produced similar results to that of the 

grassland model with a large amount of the total variance (74 %) explained by the 
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decision tree model and the dominant land cover class explaining the majority of the 

variance in the model. The second most significant descriptor was DHI seasonality, 

followed by DHI minimum cover. Again, the remaining variables offered no additional 

explanation of variance. Figure 3 provides a basic schematic of the upper levels of the 

decision tree model for the urban bird species richness and shows that cells dominated 

by the land cover classes: forest, shrubs, grass, and crops, had the lowest levels of 

urban bird species richness. By comparison, cells with land cover dominant by bare 

ground, urban,  and deciduous broadleaf vegetation had the highest species richness of 

urban bird species. Overall, the model indicated that land cover explained the majority 

of the variation, and DHI seasonality explained some additional variance within each 

land cover type.  

 

 

Figure 3 
 
Generally, models for wetland and woodland bird species richness explained less 

variance than the other models, explaining 47 and 49 % of the variance in the total 
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dataset respectively. In both of these cases, land cover explained the most variance, 

followed by DHI minimum cover and DHI seasonality explaining between 20 and 40 % 

of the variance in the case of woodland and wetland bird species richness, respectively. 

The model for total bird species richness explained 61% of the observed variance, and 

like the other models, land cover described the most variance in species richness.  

 

Figure 4 provides a schematic of the upper levels of the total bird species richness tree 

and shows that most forest (except deciduous broadleaf), shrub, grass and crop land 

cover types had lower levels of bird species richness when compared to the other land 

cover types. DHI minimum cover and DHI seasonality played secondary roles providing 

a stratification within each land cover class to refine the total bird species richness. 

Overall, land cover was the most utilized descriptor with land cover dominance, rather 

than richness, the second most important land cover descriptor. Maps of the observed 

total, and grassland, species richness, and that predicted using the decision tree 

models, are shown in Figure 5. 
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Figure 4: Upper levels of the total bird species richness decision. Forest land cover classes (except 

deciduous broadleaf forest (DBF), shrub, grass, and crop land cover types in general had lower levels of bird 

species richness than the other land cover classes.  

 

A  
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B  
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D  

Figure 5: 

Figure 5: Maps of the observed and predicted (a, b) grassland, and (c, d) total species.  

 

Figure 6 provides a summary of the variance explained by the environmental 

descriptors in the respective datasets. The addition of topographic variation into the 

models explained less than  1 % of the model variance. The addition of the DHI 

components, however, explained between 3 % and 10 % of the model variance. Models 

where the inclusion of the DHI information explained the greatest amount of variance 

were wetland, woodland, and total bird species. Grassland bird species richness, in 

particular, did not benefit from the inclusion of DHI information. 
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Figure 6: Percent cumulative variance explained by the remote sensing derived environmental descriptors.  

 
5. DISCUSSION 

Our results indicate that a combination of remote sensing-derived environmental 

descriptors can explain, in most cases, a major proportion of the variance in bird 

species richness over the Province of Ontario. The models of total species richness and 

richness for six species groupings based on nesting and habitat preferences all made 

initial splits of variance based on land cover followed by more refined splits principally 

based on one of the three remote sensing-derived environmental descriptors contained 

in the DHI. These results follow the observations of Hurlbert and Haskell (2003), who 

postulated that broad scale patterns of habitat heterogeneity are responsible for the 
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distribution of species that specialize on different habitat types, with climatic and 

productivity changes affecting how many species occur in each habitat type.  

 

It is important to note that breeding bird surveys do contain biases, including observer 

experience, which may cause a positive bias in the estimation of population changes 

over time (Link & Sauer 1997). One advantage of the approach used in this study 

however is that total species richness, rather than numbers of individuals are used.  

 

Our results demonstrate that out of the three DHI descriptors apparent minimum cover 

was selected most often. This index is highly related to the presence of snow or 

exposed soil on the landscape for some period of the year due to either a phenological 

responses (such as deciduous vegetation, grass and crops) or  cold climates. The 

second most often used DHI descriptor was seasonality, which captures the change in 

the vegetation phenology signal throughout the year. Stands of evergreen boreal forest 

maintain a lower seasonality than deciduous vegetation which varies from leaf-off to 

leaf-on conditions through the year. The use of seasonality, which is designed to 

capture this variation, as opposed to long term climate means, is an important benefit of 

the DHI approach.  

 

Seasonality and minimum cover variables explained more variance in woodland and 

wetland species richness groups whereas land cover explained more variance in the 

grassland and shrub species models. The finding that both the DHI components and the 

dominant land cover class both figured highly in the decision tree models confirms that 
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these factors all convey different, and potentially complementary, information in relation 

to species richness. The small number of models which utilized the DHI productivity 

component may be due to its higher correlation with other DHI components.  

 

Thuiller et al. (2004) found that within cell habitat heterogeneity was a crucial factor 

predicting species occurrences. In this research, and similar work of Virkkala et al. 

(2005), who used a 10 x 10 km window to calculate richness and evenness, neither of 

these variables provided any explanatory power.  

 

All of the environmental descriptors used in this study were derived from remote 

sensing technology, are available to users at no cost, and are readily available at 1 km 

spatial resolution. The decision tree models used in this study could be applied to data 

at finer scales to produce finer scale models of bird species richness. Within Canada, 

for example there is fine spatial land cover information (25 m) derived from circa 2000 

Landsat Enhanced Thematic Mapper (ETM+) imagery available over forested regions 

from the Canadian Forest Service and Canadian Space Agency Earth Observation for 

Sustainable Development of Forests (EOSD) project (Wulder et al. 2003, 2008). 

Likewise a number of global fPAR datasets are becoming available at finer spatial 

scales than 1km such as a 300m product from the MERIS sensor on Envisat. As a 

result finer spatial grain predictions should be possible in the future. 

 

While satellite derived estimates of vegetation productivity have been shown to be 

useful indicators of species richness,  we acknowledge that there are some limitations 
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to explaining the mechanisms behind these patterns. As discussed by Hurlbert and 

Haskell (2003) for example, resources available in areas with harsh winters (e.g., seeds, 

dead arthropods) are not specially related to winter foliage. The resources present 

during the winter likely reflect, to some extent, productivity earlier in the year. Such a 

"storage effect" would predict higher winter richness in areas with greater summer 

productivity given equal levels of winter productivity.  The complexity of these types of 

interactions is not directly accounted for in the three DHI components.  

 

The growing body of literature on the effect of climate variation on natural ecosystems 

confirms that future impacts on bird communities and distribution are likely (Lennon et 

al. 2000; Austin & Rehfisch 2003; Julliard et al. 2004). The fact that many of the 

developed models in this study utilized information of the DHI apparent minimum cover 

and seasonality highlights that bird species richness in Ontario may be additionally 

sensitive to these changes, as changes in snowfall and vegetation seasonality are 

predicted as likely to occur in this region of Canada.  
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