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ARTICLE INFO ABSTRACT
Articlf? history: Wildfire is an important disturbance agent in Canada's boreal forest. Optical remotely sensed imagery (e.g.,
Received 17 November 2008 Landsat TM/ETM+), is well suited for capturing horizontally distributed forest conditions, structure, and
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change, while Light Detection and Ranging (LIDAR) data are more appropriate for capturing verticall
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distributed elements of forest structure and change. The integration of optical remotely sensed imagery and
LIDAR data provides improved opportunities to characterize post-fire conditions. The objective of this study

I]_(I%IXV; rds: is to compare changes in forest structure, as measured with a discrete return profiling LIDAR, to post-fire
Landsat conditions, as measured with remotely sensed data. Our research is focused on a boreal forest fire that
Forest occurred in May 2002 in Alberta, Canada. The Normalized Burn Ratio (NBR), the differenced NBR (dNBR), and
Segmentation the relative dNBR (RANBR) were calculated from two dates of Landsat data (August 2001 and September
Fire 2002). Forest structural attributes were derived from two spatially coincident discrete return LIDAR profiles
Burn severity acquired in September 1997 and 2002 respectively. Image segmentation was used to produce homogeneous
Post-fire effects spatial patches analogous to forest stands, with analysis conducted at this patch level.

g?:j:;;;‘izmre In this study area, which was relatively homogenous and dominated by open forest, no statistically

Recovery significant relationships were found between pre-fire forest structure and post-fire conditions (r<0.5;
NBR p>0.05). Post-fire forest structure and absolute and relative changes in forest structure were strongly
dNBR correlated to post-fire conditions (r ranging from —0.507 to 0.712; p<0.0001). Measures of vegetation fill
RANBR (VF) (LIDAR capture of cross-sectional vegetation amount), post-fire and absolute change in crown closure
(CC), and relative change in average canopy height, were most useful for characterizing post-fire conditions.
Forest structural attributes generated from the post-fire LIDAR data were most strongly correlated to post-fire
NBR, while dNBR and RANBR had stronger correlations with absolute and relative changes in the forest
structural attributes. Absolute and relative changes in VF and changes in CC had the strongest positive
correlations with respect to dNBR and RANBR, ranging from 0.514 to 0.715 (p<0.05). Measures of average
inter-tree distance and volume were not strongly correlated to post-fire NBR, dNBR, or RANBR. No marked
differences were found in the strength or significance of correlations between post-fire structure and the
post-fire NBR, dNBR, RANBR, indicating that for the conditions present in this study area all three burn
severity indices captured post-fire conditions in a similar manner. Finally, the relationship between post-fire
forest structure and post-fire condition was strongest for dense forests (>60% crown closure) compared to
open (26-60%) and sparse forests (10-25%). Forest structure information provided by LIDAR is useful for
characterizing post-fire conditions and burn induced structural change, and will complement other attributes
such as vegetation type and moisture, topography, and long-term weather patterns, all of which will also
influence variations in post-fire conditions.
Crown Copyright © 2009 Published by Elsevier Inc. All rights reserved.

1. Introduction plant reproduction (Johnstone & Kasischke, 2005; Johnstone &

Chapin, 2006), forest succession (Harper et al., 2005; Lecomte et al.,

Wildfire events play an integral role in the ecological functioning of 2006), wildlife habitat quality (Dawson & Bartolotti, 2006), hydrology

Canadian boreal forests (Bergeron et al., 2004; Parisien et al., 2006), (Yoshikawa et al., 2003), and soil nutrient cycling (Zasada et al., 1992).

impacting carbon emissions (Amiro et al., 2001; Stocks et al., 2002), Researchers have hypothesized the existence of a positive feedback

loop between global warming and forest fires: global warming will

extend the fire season in the boreal forest, increasing the likelihood of
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Climate change scenarios produce an expectation of an increased
likelihood of longer fire seasons with more frequent large, high
intensity fire events (Flannigan et al., 2005a; Tymstra et al., 2007). It
has been projected that increasing concentrations of CO, in the
atmosphere could result in a 74-118% increase in the average annual
area burned in Canada by the end of the 21st century (Flannigan et al.,
2005b). Bond-Lamberty et al. (2007) assert that the impacts of climate
change have yet to be realized in Canada's boreal forest region.
Existing data indicates that the number of forest fires recorded in
Canada have increased steadily over the past eight decades to
approximately 8000 fires per annum in the 1990s, while the annual
area burned has fluctuated substantially over this same time period
(Stocks et al., 2003). Average fire suppression costs in Canada range
from $300 to $500 million dollars annually (Flannigan et al., 2005b).

Due to broad ecological, social, and economic implications, there is
much interest in characterizing forest fire fuels (Arroyo et al., 2008;
Mutlu et al., 2008), forest fire behaviour (Pastor et al., 2003), and post-
fire recovery (Shatford et al., 2007) for forest fire management. Post-
fire conditions are often described in the context of fire intensity and
fire or burn severity (Lentile et al., 2006a). Fires burn with varying
intensities (i.e., energy released per unit length of flame front, per unit
time), depending on fuel load, fuel moisture, wind speed, and
topographic constraints (i.e., slope steepness and aspect) (Wright &
Bailey, 1982). Fire or burn severity are measures used to characterize
the degree to which the ecosystem is impacted by a fire (DeBano et al.,
1998; Neary et al., 2005; Ryan, 2002) and incorporate both short- and
long-term effects (Key, 2006; Key & Benson, 2006; Lentile et al.,
2006a). To date, relatively few studies have used remotely sensed
data, specifically LIDAR and optical imagery, to directly investigate the
impact of wildfire on vertical forest structure (French et al., 2008).

The goal of this study was to relate variations in remotely sensed
measures of post-fire effects to measures of pre- and post-fire vertical
forest structure. The first objective was to evaluate whether LIDAR can be
used to detect changes in vertical forest structural characteristics
associated with wildfire. The second objective was to characterize the
relationships between the vertical forest structural information afforded
by discrete return profiling LIDAR data collected pre- and post-fire, with
the horizontal information on pre- and post-fire vegetation location,
type, and post-fire effects provided by Landsat Thematic Mapper (TM)
and Enhanced Thematic Mapper Plus (ETM+ ) imagery acquired pre-
and post-fire. This included examining post-fire forest structure, as well
as absolute and relative changes in forest structure in the context of
varying post-fire effects. The third objective was to determine the
influence of pre-fire forest structure on post-fire effects.

2. Background
2.1. Post-fire effects

No common definition of fire or burn severity exists (Jain et al., 2004;
Key & Benson, 2006) and both terms have been used interchangeably in
the literature. Lentile et al. (2006a) suggest the use of the more generic
term “post-fire effects” and distinguish between fire and burn severity
as a function of time: fire severity is a measure of immediate post-fire
effects such as direct vegetation consumption and mortality as a result of
the fire, whereas burn severity is a measure of the longer term
consequences of fire. There is often temporal overlap between these two
assessments of severity (Lentile et al., 2006a).

For a given area, variation in vertical and horizontal forest structure
and composition, and the attendant variation in fire intensity, result in
variations in post-fire effects. Post-fire effects can range from partial
consumption of vegetation cover with little soil exposure and, or light
char/ash deposition, to complete consumption of vegetation cover with
high soil exposure and heavy char/ash deposition (Rogan & Franklin,
2001; White et al., 1996). Severity can be a qualitative or quantitative
assessment of the ecological effects of a fire that integrates the various

phenomenological characteristics of a fire-altered landscape (ie., the
physical, biological, and chemical manifestations of combustion on
vegetation) (Pyne et al., 1996). Knowledge of severity provides a vital
source of information to understand the impact of fire on ecological
functions and as a means to characterize the intensity of past, current,
and future fire events (Epting et al.,, 2005; van Wagtendonk et al., 2004).

The assessment of post-fire effects considers ecosystem conditions
prior to the fire, and the amount of aboveground vegetation and forest
floor fuel consumed by the fire. Ecosystem conditions prior to the fire
are characterized by vegetation type and structure, and by forest floor
composition, with the latter being influenced by soil type, depth, bulk
density, and inorganic content. The amount of fuel consumed (above-
ground vegetation and forest floor) is dependent on fuel characteristics
such as fuel load, bulk density, horizontal and vertical distribution of
vegetation, fuel moisture, and weather. Wildfires are typically more
severe when temperatures, wind speeds, and fuel loads are high, and
humidity and fuel moisture are low. Post-fire effects can differ for
aboveground vegetation and soil/forest floor. In boreal forests, a low
intensity surface fire can create high soil/forest floor burn severity if a
large amount of surface fuels have accumulated and are consumed,
while a high intensity crown fire in an area with moist soil/ forest floor
conditions can lead to a high aboveground burn severity, but to a low
soil/forest floor burn severity (DeBano et al., 1998; Dahlberg, 2002;
Graham et al., 2004). Thus different soil surface burn severity levels can
occur in combination with different aboveground vegetation burn
severity levels, rendering the application of a composite burn severity
index challenging under certain conditions (Kasischke et al., 2008).

Forest structural attributes such as canopy bulk density and canopy
base height are associated with aboveground vegetation burn severity.
Tree canopy base height has been highlighted as one of the most
important factors for crown fire initiation in conifer forests in the
inland western United States (Jain & Graham, 2007). Information on
vertical forest structure is therefore important when studying above-
ground burn severity, because vertical continuity and bulk density of
fuels from the ground to the crown increases the likelihood of crown
fire occurrence and spread rate, respectively (Monleon et al., 2004);
however, high canopy bulk densities and low canopy base heights
alone do not necessarily lead to a fast spreading crown fire with a high
aboveground burn severity (Hall & Burke, 2006).

Mapping of post-fire effects is necessary for management of post-fire
recovery and timber salvage (Miller & Yool, 2002) and aids in predicting
and understanding rehabilitation and succession processes (Turner
et al.,, 1998). Assessment of post-fire effects in the field is a subjective
process using tools such as the Composite Burn Index (CBI) field
protocol (Key & Benson, 2006) which was designed to be correlated
with remotely sensed estimates of burn severity (Lentile et al., 2006a).
The CBI protocol is used to calibrate and validate burn severity maps
produced from remotely sensed data (Hall et al.,, 2008; Key & Benson,
2006) and assesses average post-fire effects (quantity of fuel consumed,
degree of soil charring, degree of vegetation rejuvenation) over a square
30 m by 30 m plot, which is then matched to the severity measured from
remotely sensed data. Burn severity is typically classified into broad
damage classes (e.g., low, moderate, high) (Diaz-Delgado et al., 2004;
DeBano et al., 1998; Isaev et al., 2002; Mitri & Gitas, 2008; Patterson &
Yool, 1998; Robichaud, 2000), although there is an important variation
in these classifications across regions and vegetation types (Lentile et al.,
2006a). Assessment of post-fire effects using remotely sensed data are
dependent on spatial, temporal, and radiometric considerations, and the
complex interactions of these factors (Key, 2006).

2.2. Normalized Burn Ratio (NBR), delta NBR (dNBR), and Relative dNBR
(RANBR)

A wide variety of remotely sensed data sources have been used to
map areas impacted by fire at regional (Roder et al., 2008), national
(Goetz et al., 2006), continental (Masek et al., 2008; Pu et al., 2007), and
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Fig. 1. Study area and perimeter of the House River fire. The post-fire Landsat Thematic Mapper image was acquired on September 11, 2002 (shown as a standard band 5, 4, 3
composite). The LIDAR data was acquired in September 1997 (pre-fire) and September 2002 (post-fire).

global scales (Chuvieco & Martin, 1994; Giglio et al., 2005, 2006; Roy
et al, 2005). Remotely sensed data have also been proposed for
capturing the variability in fire severity within burn perimeters (Duffy
et al., 2007; Epting et al., 2005; Mitri & Gitas, 2008; Robichaud et al.,
2007; van Wagtendonk et al,, 2004; White et al., 1996), as well as post-
fire recovery (Diaz-Delgado et al., 2004; Henry & Hope, 1998; Roder
et al, 2008; Viedma et al,, 1997; van Leeuwen, 2008). Operationally,
satellite-derived maps of burn severity are generated by the Burned Area
Emergency Response (BAER) Imagery Support program, and these
products, the Burned Area Reflectance Classification (BARC), are
generated primarily from the dNBR and are used as inputs for final
severity maps (Safford et al.,, 2008).

Key and Benson (2006) introduced the use of a scaled spectral
index, the Normalized Burn Ratio (NBR), to map burn severity using
Landsat TM/ETM+ data. The NBR s calculated using TM/ETM+ bands
4 and 7, each of which have differing spectral responses to fires (Miller

& Yool, 2002). Band 4 is sensitive to chlorophyll content in live
vegetation and spans the electromagnetic wavelengths in the near-
infrared (0.76-0.90 pm), while band 7 is located in the middle-infrared
(2.08-2.35um) and is sensitive to the water content in vegetation. The
NBR is calculated as follows:

NBR = (B4 — B7)/ (B4 + B7). (1)

The NBR has been used to map burn severity in a variety of forest
biomes (Cocke et al., 2005, Epting et al., 2005; Lentile et al., 2006a;
Miller & Yool, 2002; Stow et al., 2007; van Wagtendonk et al., 2004;
Wimberly & Reilly, 2007). The NBR is often used in change detection
whereby post-burn NBR is subtracted from the pre-burn NBR to
produce a delta Normalized Burn Ratio (dNBR) image:

dNBR = (PreFireNBR — PostFireNBR). (2)
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The dNBR is intended to normalize for spatial variation in pre-fire
vegetation cover. Several studies have identified the dNBR as an accurate
and repeatable tool for detecting burn severity (Key & Benson, 2006; van
Wagtendonk et al., 2004); however, the relationship between dNBR and
field measures of severity, specifically the Composite Burn Index (CBI),
have been tenuous, particularly in Alaskan boreal forests (Allen & Sorbel,
2008; Epting et al., 2005; Hoy et al., 2008; Murphy et al., 2008). Verbyla
et al. (2008) identified phenology and solar elevation as confounding
factors to mapping burn severity with the dNBR in high-latitude areas
such as Alaska. In other areas (ie., western Canadian boreal forest),
relationships between dNBR and fire severity have been found to be more
robust (Hall et al., 2008).

When calculating any multi-temporal index using NBR, the input
Landsat data should be corrected to a reflectance standard (top-of-
atmosphere (TOA) or surface) to facilitate comparison between multiple
image dates. If field measures of burn severity (e.g., CBI) will be used for
comparison, the images should be corrected to surface reflectance. Roy
et al. (2006) assessed the performance of NBR and dNBR indices over
African savannah regions, and concluded that these indices were not
optimal for describing fire severity in areas with low amounts of forest
cover. Miller and Thode (2007) pointed out that dNBR is strongly
correlated with pre-fire green biomass, because areas with the greatest
absolute difference between pre- and post-fire vegetation cover will
achieve the highest (ANBR) severity values. Therefore, if two areas with
different pre-fire cover experience a stand-replacing fire, each could be
assigned to a different burn severity class. In this context, Miller and Thode
(2007) proposed a relative version of the dNBR (RANBR) that accounts for
variability in pre-fire vegetation density. The RANBR is calculated as
follows:

RANBR = dNBR 3)
/ABS(prefireNBR / 1000)

2.3. LIDAR and fire applications

In the context of forest fire mapping and monitoring, LIDAR data
have been used primarily to characterize and map forest fire fuels, an
important input for forest fire behaviour models. Riafio et al. (2003)
developed methods for automatically extracting forest parameters
(ie., tree height, tree cover, surface canopy height, foliage biomass,
and crown volume) for fire behaviour modeling from small footprint
discrete return LIDAR. These methods were then applied in an
intensively managed Scots pine (Pinus sylvestris L.) forest in central
Spain (Riafio et al., 2004). Plot level estimates of crown volume
(r?=10.92), and foliage biomass (r*> = 0.84) (used to derive crown bulk
density) were found accurate relative to field measurements.
Andersen et al. (2005) also used a discrete return small footprint
LIDAR and applied a similar approach over a more complex conifer
forest in the United States Pacific Northwest to estimate canopy fuel
weight, canopy bulk density, canopy base height, and canopy height.
Their outputs were used to generate maps of forest fuel distribution
that were subsequently input to a forest fire behaviour model. Other
studies have also used LIDAR to map forest fuels (Mutlu et al., 2008;
Skowronski et al., 2007) grassland fuels (Varga & Asner, 2008), and
shrubs (Riafio et al., 2007).

3. Study area

The study area is located in Alberta, Canada (Fig. 1), within the
Boreal Plains ecozone, one of 15 terrestrial ecozones in Canada
(Marshall & Schut, 1999). The area is characterized by moderate
topography, with elevation ranging from 600 to 760 m. White spruce
(Picea glauca), black spruce (Picea mariana), jack pine (Pinus bank-
siana), and tamarack (Larix laricina) are the main conifer species in
this region. There is also a wide distribution of broadleaf trees,

Table 1
Forest structural attributes derived directly or indirectly from discrete return LIDAR
profiling data.

Directly derived attributes Average canopy height (ACH)
Vegetation fill at 1 m (VF;) (%
Vegetation fill at 2 m (VF;) (%
Vegetation fill at 5 m (VFs) (%
Vegetation fill at top of canopy
(maximum height) (VFr) (%)

Crown closure (CC) (%)

Average inter-tree distance (AID) (m)
Volume (VOL) (m?/ha)

m)

Indirectly derived attributes

particularly white birch (Betula papyrifera), trembling aspen (Populus
tremuloides), and balsam poplar (Populus balsamifera). Precipitation is
about 400 mm over much of the ecozone, nearing 500 mm along the
southern boundary. The mean daily January temperature ranges from
—17.5 °C to —22.5 °C, with the mean daily July temperature ranging
from 12.5 °C to 17.5 °C (Lands Directorate, 1986).

This study focuses on the House River fire, which ignited on May 17,
2002, and burned until June 7, 2002, consuming approximately
$343 million worth of merchantable timber over an area of 248,000 ha.
The fire was the second largest in Alberta since 1961, and the most
expensive in the Province's history, with suppression costs estimated at
$49.3 million (Baxter, 2003; Tymstra et al, 2005). The fire was very
intense and with the aid of strong southeast winds, the fire traveled more
than 70 km and burned in excess of 60,000 ha in the first 3 days. In the
six-months preceding the House River fire, the area had experienced
prolonged drought, receiving only 56% of its 30-year average precipita-
tion (Tymstra et al., 2005). The perimeter of the fire is shown in Fig. 1.

4. Data

Two Landsat images (Path 42, Row 21) were acquired to represent
pre- (August 15, 2001; ETM+) and post-fire (September 11, 2002;
TM) conditions for the House River fire. Two LIDAR transects were
flown in September 1997 and 2002 (Fig. 1) with an airborne discrete
return profiling LIDAR system, composed of an infrared laser altimeter,
video camera, and a GPS receiver (Sweda, 1998). Each LIDAR transect
collected was approximately 600 km in length (Wulder et al., 2007);
however, only a portion of the total transect, approximately 170 km in
length, was considered in this study, of which 120 km is located within
the perimeter of the House River fire (Fig. 1). The 2002 flight line was
deliberately designed to follow the 1997 flight line. Known logistical
issues such as flying conditions (e.g. wind, topography) made it
challenging to replicate the 1997 flight line, even with GPS guidance
(Wulder et al., 2007), resulting in flight lines that are not exactly
spatially coincident. The average and median distances between the
two flight lines (over their total length) are 98 m and 79 m
respectively (Wulder et al., 2007). The average and median distances
for the portion of the two flight lines considered in this analysis are:
131 m and 117 m, respectively. This lack of spatial coincidence between
the LIDAR transects necessitated an image segmentation stage in our
analysis to ensure a spatially consistent comparison over time.

5. Methods
5.1. Pre-processing of Landsat data

The capability of the NBR, dNBR, and RANBR to characterize post-fire
effects depends on several factors, including the timing of pre- and post-
fire image acquisition and mitigation of the surface changes that are not
attributable to fire (e.g., moisture content, phenology (Key & Benson,
2006)). For this reason, the pre- and post-fire images need to be
acquired temporally as close as possible, at least within the same season
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Fig. 2. An illustration of the measurement of vegetation fill using a discrete return profiling LIDAR data.

of the same year or in the same season in a different year. To mitigate
differences between the pre- and post-fire images resulting from
discrepancies in sensor gain and offset, sun angle, solar irradiance, and
between-scene variability, the two Landsat images acquired for this study
were first atmospherically corrected (TOA) and normalized to surface
reflectance, and then spatially co-registered. The 2001 Landsat ETM+
image was geo-corrected to 1:50,000 Canadian National Topographic
System planimetry and road vectors (UTM NADS83 projection) using 25
GCPs, a second order polynomial, and nearest neighbour resampling,
resulting in a root mean square error (RMSE) of approximately 22 m. The
2002 TM image was then co-registered to a 2001 image using 30 GCPs, a
2nd order polynomial, and nearest neighbour resampling, yielding an
RMSE of approximately 16 m. An efficient image processing approach,
similar to that proposed by Han et al. (2007), was employed to streamline
the correction and normalization process and avoid errors related to
operator intervention and data scaling between processing steps.

5.2. Segmentation of Landsat images

Image segments were generated from the post-fire Landsat data to
provide a spatial framework within which the attributes and temporal
dynamics of forest structure were estimated from the LIDAR data and
compared. The segments serve as a proxy for homogenous units of
vegetation (Woodcock & Harward, 1992 ), which facilitate analysis of the
linkage between forest structure as derived using LIDAR data and post-
fire effects as measured from the optical remotely sensed imagery. The
segments also account for the spatial disparity between the LIDAR
transects, as described in Wulder et al. (2007). The Landsat TM image
collected on September 11, 2002 was segmented following procedures
outlined in Wulder and Seemann (2003) and Wulder et al. (2007).
Definiens software (Definiens Imaging GmbH, Miinchen, Germany) was
used for segmentation with a post-fire Normalized Difference Vegeta-
tion Index (NDVI) as input and the following segmentation parameters:
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Global analysis: A comparison of pre- and post-fire average values for LIDAR-derived attributes grouped by segment location inside and outside the House River fire perimeter (o =0.05).

Lidar Inside fire perimeter Outside fire perimeter t-test
attribute n=27 n=40 independent samples

Pre-fire (1997) Post-fire (2002) Pre-fire (1997) Post-fire (2002) Pre-fire (1997) Post-fire (2002)

t-value (p) t-value (p)

ACH (m) 481 214 444 327 —0.648 (0.519) 2.579 (0.012)
VFy (%) 68.96 45.52 66.05 55.53 —1.035 (0.304) 3.420 (0.001)
VF, (%) 62.33 3515 59.55 48.83 —0.891 (0.376) 4.560 (0.000)
VFs (%) 49.74 23.59 47.35 36.83 —0.691 (0.492) 4.458 (0.000)
VFr (%) 22.48 10.81 21.70 17.23 —0.433 (0.666) 4.344 (0.000)
CC (%) 52.04 2222 49,03 39.40 —0.814 (0.418) 5.458 (0.000)
AID (m) 7.03 14.47 9.46 6.81 0.675 (0.502) —2.248 (0.028)
VOL (m?/ha) 927.10 539.53 1096.85 890.11 1.063 (0.291) 2.571 (0.012)

Significant values are indicated in bold.

scale (5), color (0.9), compactness (0.5), shape (0.3), and smoothness
(0.5).

5.3. Calculation of NBR, dNBR, and RANBR

Although Key (2006) suggested categorizing dNBR values, subse-
quent studies have indicated that these fixed thresholds of burn severity
may not be universally applicable, since the range and distribution of
dNBR values are not consistent, even if images are radiometrically
corrected and normalized prior to calculating dNBR (Miller & Thode,
2007; Roy et al., 2006). Furthermore, inconsistency in the definition of
fire severity classes has led to confusion and conflicting results in the
scientific community (Lentile et al, 2007; Odion & Hanson, 2008;
Shakesby & Doerr, 2006; Safford et al., 2008). Therefore, in this study we
did not use thresholds to categorize NBR, dNBR, or RANBR values.

To characterize post-fire effects, pre- and post-fire NBR, dNBR, and
RANBR were calculated using Eqs. (1)-(3), and subsequently decom-
posed (Wulder & Franklin, 2001) to the Landsat-derived image
segments. The Windsorized mean value of each burn index was
assigned to each segment. The Windsorized mean is a robust estimator
of the population mean and is relatively insensitive to outliers; it was
computed to reduce the effects of extreme values in the segment (SAS
Institute Inc., 2004), and was calculated at a 95% confidence level using
5% of observations Windsorized from the tails of the distribution. The
distribution of pre- and post-fire NBR, dNBR, and RANBR values inside
and outside the fire perimeter were compared by means of the non-
parametric Mann-Whitney U test (95% confidence level) and histo-
grams of the segment values.

5.4. LIDAR data pre-processing and derivation of forest structural
attributes

Before deriving forest structural attributes to characterize fire-
caused changes, the LIDAR data were pre-processed to reconcile

differences in sampling densities between transects, extract ground

Table 3

elevation profiles, and calculate vegetation height profiles. Further
details regarding the LIDAR pre-processing and attribute derivation
are described in Wulder et al. (2007). Forest structural attributes
(Table 1), were calculated using the LIDAR points within each Landsat-
derived segment. Average canopy height (ACH) measures (in metres)
the mean height of the canopy in each segment. Volume (VOL) was
derived indirectly using empirical relationships between field-based
volume measurements and the profile area under the top of the
canopy, as per Wulder et al. (2007).

Vegetation fill is a measure derived from the profile area under the
canopy. The profile area under the canopy is defined as the cross-
sectional area between the top of the canopy profile and the ground
surface (Fig. 2A), and is particularly useful as it represents both the
height and density of the vegetation (Wulder et al., 2007). The
following equation is used to calculate the profile area under the
canopy or at a specified height threshold:

«1 n
Areaproﬁle = EZ [si—1 X (hi—y + hy)] (4)

i=1

where n is the number of LIDAR points; s; is the distance between
LIDAR points i and i —1; and h; is the canopy height at point i. Profile
areas under 1, 2, and 5 m height thresholds were likewise generated
(Fig. 2B). The total cross-sectional area of the LIDAR profile for any
given segment is calculated using the following equation:

Areq.s = h x|

(5)

where h is the height threshold (1, 2, 5 m, and maximum canopy
height) and [ is the length of the LIDAR profile within the segment.
The ratio of the canopy profile area to the total cross-sectional area
for any given height threshold provides an indication of vegetation
density by vertical canopy location. This ratio is termed vegetation
fill (VF) and indicates what proportion of the total vertical cross-

A Mann-Whitney U test was used to compare pre- and post-fire structure attributes and remotely sensed measures by segment, inside (N = 27) and outside (N=40) the House River

fire perimeter (o= 0.05).

Pre-fire (1997) Post-fire (2002)

Absolute change (d) Relative change (R)

Variable U V4 D U Z D U Z D U Z D

ACH (m) 499.0 —0.52 0.605 3325 2.65 0.008 295.0 —-3.13 0.002 200.0 —4.34 0.000
VF; (%) 520.5 —0.24 0.808 228.0 3.98 0.000 150.5 —4.97 0.000 126.0 —5.29 0.000
VF; (%) 524.5 —0.19 0.848 239.5 3.83 0.000 164.0 —4.80 0.000 131.0 —5.22 0.000
VFs (%) 537.0 —0.03 0.975 228.0 3.98 0.000 2715 —343 0.001 220.0 —4.08 0.000
VFr (%) 498.0 —0.53 0.596 296.5 311 0.002 193.0 —443 0.000 189.0 —4.48 0.000
CC (%) 527.0 —0.16 0.873 182.5 4.56 0.000 111.0 —5.48 0.000 88.0 —5.77 0.000
AID (m) 4205 1.52 0.128 397.0 —1.82 0.069 228.0 3.98 0.000 206.0 4.26 0.000
VOL (m>/ha) 441.0 1.26 0.208 321.0 2.79 0.005 433.5 —135 0.175 358.0 —232 0.020
NBR 525.0 —0.19 0.853 0.0 —6.90 0.000 0.0 —6.90 0.000 1.0 6.88 0.000

Significant values are indicated in bold.
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Fig. 3. Pre-fire NBR, post-fire NBR, dNBR, and RANBR histograms: segments inside and outside the fire perimeter.

sectional area is filled with vegetation. VF is calculated using the
following equation:

Areaprofile
Areacross

(6)

VFheight =

In the example shown in Fig. 2C, 29% of the cross-sectional area, as
measured from the canopy maximum height, is filled with vegetation,
whereas at the 1 m threshold, 72% of the cross-sectional area is filled
with vegetation.

Crown closure (CC) and the average inter-tree distance (AID) are
additional variables that were not computed in Wulder et al. (2007).
CC was estimated as the percentage of LIDAR points within a segment
which have a canopy height greater than 2 m. A 2 m height threshold
was used to distinguish canopy cover from lower ground cover
(Natural Resources Canada, 2004a). AID was generated by calculating
the Euclidean distance between consecutive neighbours of points
representing individual trees (defined as points with canopy heights
greater than 5 m). A 5 m height threshold was used to capture
conditions in dominant and sub-dominant strata of the canopy and
identifies a minimum height for trees (Lund, 1999; Natural Resources
Canada, 2004b).

As per Wulder et al. (2007), forest structural attributes were
assessed both globally (for the entire transect) and locally (per seg-
ment). The attributes listed in Table 1 were calculated globally by

averaging values for all the segments in the study area that were
intersected by both the pre- and post-fire LIDAR transects. The local
approach analyzes pairwise segment-based changes in forest structure
as a result of the House River fire. An independent sample t-test was
used to compare values for each of the LIDAR attributes for segments
inside and outside the fire perimeter, thereby indicating if there were
any significant pre-existing differences between the forests located
inside and outside the fire perimeter. The segment-based comparison
of pre- and post-fire values evaluated both the absolute and relative
changes in attribute values (x) as follows:

dx = PreFire x — PostFire x (7)
Rx(%) = 100 (PreFire x — PostFire x)/PreFire x. (8)

Forest structural attributes inside and outside the fire perimeter
were compared on a segment basis by means of the non-parametric
Mann-Whitney U test (e =0.05) (Table 2).

5.5. Analysis of changes in forest structure and post-fire effects

The relationships between changes in forest structure (derived from
the LIDAR data) and post-fire effects (derived from the Landsat TM
images) were analyzed to determine the impact of pre-fire vertical
structure on post-fire effects, and to characterize post-fire vertical
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structure and absolute and relative changes in vertical structure in the
context of varying fire severity. In the analysis, segments were
considered collectively, but given that pre-fire vegetation is posited to
have an influence on fire behaviour and therefore on fire severity (Jain &
Graham, 2007), the segments were stratified into three classes according
to their pre-fire crown closure. Thresholds for crown closure classes were
defined according to the Land Cover Classification System used by
Canada's National Forest Inventory (Natural Resources Canada, 2004a):
>60% for dense forest, 26-60% for open forest, and 10-25% for sparse
forest. In addition, the Earth Observation for Sustainable Development of
Forests (EOSD) land cover product representing circa 2000 conditions
was used to characterize the dominant vegetation type in each segment
(Wulder et al.,, 2003).

Correlations were calculated between the LIDAR-derived forest
attributes (Table 1) and the post-fire NBR, dNBR, and RANBR (95%
confidence level), and simple linear regression analyses were performed
for those variables with the highest correlations (as measured by the
Pearson r coefficient) to explore in more detail the relationship between
forest structure and post-fire effects. Segments were also stratified by
crown closure. The adjusted R? was calculated instead of multiple R?, to
account for the size of the sample. Linear regression assumptions (i.e.,
independence, homoscedasticity and normality of errors) were tested
by residual analysis (i.e., by considering the normal probability plot of
raw residuals and plotting the predicted values against the raw
residuals).

6. Results

A total of 67 segments generated from the post-fire Landsat image
intersected with both the 1997 and 2002 LIDAR transects, with 27 of

these segments located inside the fire perimeter, and 40 segments
located outside the fire perimeter. The EOSD land cover indicated that 53
of the 67 segments were coniferous forest, with the remainder being
broadleaf, wetland treed, and herbaceous. Table 2 contains a summary of
the global averages for the structural attributes stratified by segment
location inside or outside the fire perimeter. Pre-fire, there were no
significant differences for any of the structural attributes between
forests located inside and outside the fire perimeter (Table 2). However,
post-fire, there were significant differences for all of the forest structural
attributes (p<0.05). This result confirms that observed differences in
forest structure post-fire (2002) are primarily attributable to the House
River fire, and are not the result of some pre-existing differences
between forests located inside and outside the fire perimeter. In
addition, we used independent sample t-tests to compare the
magnitude of the global absolute differences (i.e., pre-fire versus post-
fire) inside the fire perimeter to the magnitude of the global absolute
differences outside the fire perimeter. The results of these tests (not
shown) indicate that for all of the LIDAR-derived attributes listed in
Table 2, the differences between pre- and post-fire measures inside the
fire perimeter are significantly greater than the differences outside the
fire perimeter (p<0.05).

Per-segment comparisons of forests located inside and outside of
the fire perimeter (Table 3) indicated that pre-fire, there were no
significant differences in any structural attributes or in the NBR,
corroborating the results of the global analysis. Post-fire, there were
significant differences between forests inside and outside the fire
perimeter for all attributes, with the exception of AID. When the
absolute change in attributes was considered, VOL was the only
attribute for which there was no significant difference. Finally, when
relative change was considered (accounting for pre-existing forest
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condition), significant differences between forests inside and outside
of the fire perimeter were found for all the forest structural attributes
considered (Table 3). The post-fire NBR, dNBR, and RANBR inside the
fire perimeter were significantly different from the post-fire NBR,
dNBR, and RANBR outside the fire perimeter (p<0.0001) (Table 3).
The distributions of the pre-fire NBR values indicate the similarity of
forests inside and outside the fire perimeter (Fig. 3A). The histograms
of post-fire NBR, dNBR, and RANBR fit a bimodal distribution,
indicative of the differences between forests inside and outside of
the fire perimeter after the House River fire (Fig. 3B-D).

Fig. 4 shows the segment-based absolute differences in vegetation
fill at 5 m (VFs), following the LIDAR flight path through the fire
perimeter, traveling from the NE (segment 1) to the SW (segment 67),
with the relative location of the fire perimeter indicated on the x-axis.
From 1997 to 2002, segments outside the fire experience both
increases and decreases in VFs; however, inside the fire perimeter,
VFs does not increase, and on average, decreases in VFs inside the fire
perimeter are larger than those outside the fire: VFs decreased by an
average of 4.48% (SE=1.07%) outside the fire perimeter, while the
mean decrease in VFs inside the fire perimeter was 11.67%
(SE=1.49%). As shown in Tables 2 and 3, differences between pre-
and post-fire values for VFs are statistically significant, when
compared globally inside and outside the fire, and when compared
locally by segment (including both absolute and relative change in
VFs). Similar trends are found for the other measures of vegetation fill
(at top of canopy, and 1 and 2 m above ground).

Absolute and relative segment-level changes in AID were sig-
nificant (Table 3) and are shown in Fig. 5. On a segment basis, AID
decreased (absolute difference) by an average of 2.65 m (SE =1.86 m)
outside the fire perimeter, and increased (absolute difference) by an
average of 12.79 m (SE = 3.96 m) inside the fire perimeter. In Fig. 6, we

illustrate how such a difference in AID may occur. First, trees must be
greater than 5 m in height in order to be included in the calculation of
AID, so trees that were less than 5 m in 1997 would not have been
included in the calculation of pre-fire AID (Fig. 6A). Inside the fire
perimeter, portions of crown foliage would be consumed by fire,
resulting in less surface area to intercept the LIDAR pulses (Fig. 6B),
contributing to an increase in AID. With portions of the crown
consumed by fire, the highest point of the crown, as measured by the
LIDAR, may now be in a different location on the crown (Fig. 6B),
which also contributes to a difference in AID. Furthermore, if portions
of crown foliage corresponding to the LIDAR profile have been
consumed, the LIDAR profile may no longer intersect a crown, also
contributing to a difference in AID (Fig. 6B). Outside the fire perimeter,
trees that were less than 5 m in height in 1997 may exceed the 5 m
threshold by 2002 and would have been included in the AID
calculation in 2002, resulting in a decrease in AID (Fig. 6C). Average
decreases in inter-tree distance outside the fire perimeter are
expected, as tree crowns grow over time and increase in size. Large
decreases in inter-tree distance outside the fire perimeter (e.g.,
segment 9, Fig. 5) on a segment-specific basis are more difficult to
explain and may be exceptions to the dominant trends present.

Fig. 7 illustrates the segment-level changes in crown closure.
Outside the fire perimeter, CC decreased by an average of 9.6%
(SE=1.83%), and inside the fire perimeter, CC decreased by an average
of 29.87% (SE=2.48%). This large increase in CC inside the fire
perimeter may be attributed to the fire's consumption of portions of
tree crowns, resulting in less surface area to intercept the LIDAR
pulses. Since CC is estimated as the percentage of LIDAR returns within
a segment that have a height greater than 2 m, when there is less
vegetation and therefore fewer LIDAR returns, the CC can change
considerably. Global analysis indicated that pre-fire, there was no
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significant difference in CC inside and outside the fire perimeter. Post-
fire, there was a significant difference in crown closure inside and
outside the fire perimeter (Table 2). On a per segment basis, there was
a significant difference in post-fire crown closure and in the absolute
and relative changes in crown closure.

Inside the fire perimeter, the mean absolute decrease in ACH was
2.7 m (SE=0.38 m), while outside the fire perimeter, the mean
absolute decrease in ACH was 1.16 m (SE=0.23 m). Mean relative
changes in ACH were 54.3% (SE =4.5%) inside the fire perimeter and
20.5% (SE=4.9%) outside the fire perimeter. As noted for AID and VF,
the ACH is not actually decreasing, but rather that the fire's
consumption of portions of the canopy has resulted in less surface
area to intercept the LIDAR pulses and thereby impacted the
calculation of the ACH value. Outside the fire perimeter, the smaller
decrease in ACH is attributable to the nature of profiling LIDAR
measures: the 2002 LIDAR profile is not perfectly spatially coincident
with the original 1997 LIDAR profile, and therefore different areas of
the canopy (within the same segment) are captured in each.
Depending on where the profiles are found relative to the configura-
tion of the forest canopy, differences in structural estimates are
expected between the two profiles.

Correlations between post-fire effects, as measured by post-fire NBR,
dNBR, and RANBR, and the post-fire, and absolute and relative changes
in forest structural attributes derived from the LIDAR data, are
summarized in Table 4. These correlations varied in direction, strength,
and significance. Forest structural attributes generated from the post-
fire 2002 LIDAR transect were most strongly positively correlated to
post-fire NBR, while dNBR and RANBR had stronger positive correlations
with absolute and relative changes in the forest structural attributes.
Absolute and relative changes in VF and changes in CC had the strongest
positive correlations with respect to dNBR and RANBR, with R-values
ranging between 0.514 and 0.715 (p<0.05). No significant correlations
were found between post-fire NBR, dNBR, RANBR and the pre-fire forest

structural attributes (not shown). Relative changes in ACH were signi-
ficantly negatively correlated with post-fire NBR, and significantly
positively correlated to both dNBR and RdANBR. Post-fire CC was
significantly negatively correlated to both dNBR and RdANBR, and
significantly positively correlated to post-fire NBR. The absolute change
in CC was significantly negatively correlated to post-fire NBR and
significantly positively correlated to dNBR and RANBR. Correlations
between AID or VOL and the post-fire NBR, dNBR, and RANBR were weak
and not significant.

Based on the strength of their correlations, relationships between post-
fire NBR, dNBR, and RANBR indices and VF at different heights, ACH, and
CC were further analyzed through linear regression. Table 5 shows the
results of the linear fitting for all segments combined (n=67), and dense
(n=18) and open forests (n=42). None of the adjusted R? values for
open forests were >0.50, and no significant correlations were found in
sparse forests (n=7, not shown). For all segments combined, the
strongest fit was between absolute change in CC and dNBR (adjusted
R?=0.502, p<0.001) and absolute change in CC and RANBR (adjusted
R?=0.503, p<0.001). For dense forests, the best fit was with absolute
change in vegetation fill at the top of the canopy (VFr) and post-fire NBR
(0.894, p<0.001) (Table 5). The suitability of model fit was verified by
plotting the line of best fit and the 95% confidence interval bands, as well
as the normal probability plot and raw residual for the model. Another
interesting result of this work is that although the adjusted R? values for all
of the severity indices were similar in magnitude, the post-fire NBR R?
values were consistently larger than those of dNBR and RANBR for all
LIDAR attributes with the exception of VFs. Fig. 8 illustrates an example of
this for post-fire NBR and absolute change in VF, with confidence intervals
close to the line of best fit, and residual values normally distributed.

Fig. 9 shows the mean and standard deviation for dense and open
forests inside and outside the fire perimeter for dNBR and relative
change in CC. From this, the difference in dNBR values inside and
outside the fire perimeter is apparent, as are the similarity in values for
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segments dominated by dense and open forests. The relative change in
CC for dense and open forests provides an example of why the
relationships for this structural attribute are strong and significant for
dense forests (Table 5), which have a statistical separation inside and
outside the fire perimeter, but not for open forests. Similar trends exist
for the other structural attributes considered in the analysis.

7. Discussion

The LIDAR transects used in this study were collected for a more
general study of boreal forest depletion and growth (Wulder et al.,

Table 4

2007), so the spatial correspondence of the transects with the House
River fire is fortuitous, and provides a unique opportunity to characterize
forest vertical structure before and after a major fire event, and relate
these changes in forest structure to measures of post-fire effects
generated from optical satellite remotely sensed data. Forest structure
is believed to have a role in determining post-fire effects and burn
severity, and knowledge of burn severity relative to pre-fire conditions
informs fuel management and restoration treatments. However, the
results of this analysis indicate that none of the LIDAR-derived measures
of pre-fire forest structure generated from the LIDAR data were
significantly correlated to the remotely sensed measures of fire severity

Correlation between remotely sensed burn severity indices and forest structure attributes derived from the LIDAR data (n=67; in bold: correlations with Pearson's r>0.50, = 0.05).

Variable Post-fire (2002) Absolute change (d) Relative change (R)
Post-fire NBR dNBR RANBR Post-fire NBR dNBR RANBR Post-fire NBR dNBR RANBR
ACH (m) 0.423 —0.339 —0.334 —0.447 0.479 0.476 —0.534 0.550 0.555
p<0.0001 p=0.005 p=0.006 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001
VF; (%) 0.611 —0.531 —0.524 —0.646 0.673 0.673 —0.661 0.673 0.675
p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001
VF, (%) 0.595 —0.507 —0.501 —0.620 0.657 0.656 —0.437 0.512 0.529
p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001
VF5 (%) 0.591 —0.519 —0.514 —0.452 0.514 0.519 —0.660 0.701 0.712
p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001
VFr (%) 0.516 —0.442 —0435 —0.601 0.620 0.617 —0.602 0.603 0.601
p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001
CC (%) 0.672 —0.589 —0.582 —0.673 0.714 0.715 —0.254 0.267 0.277
p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 p=0.038 p=0.029 p=0.023
AID (m) —0.357 0.312 0.320 0.360 —0.353 —0.368 0.469 —0.460 —0.464
p=0.005 p=0.014 p=0.012 p=0.003 p=0.003 p=0.002 p<0.0001 p<0.0001 p<0.0001
VOL (m>/ha) 0.366 —0.320 —0.317 —0.214 0.217 0.214 —0.254 0.267 0.277
p=10.002 p=10.008 p=0.009 p=0.082 p=0.077 p=0.081 p=20.038 p=0.029 p=0.023
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Linear regression between spectral indices and forest attributes derived from the LIDAR data (in bold: adjusted R>0.50, o = 0.05).

All data (n=67)

Dense forests (canopy closure>60%) (n=18)

Open forests (canopy closure 26-60%) (n=42)

Post-fire NBR ~ dNBR RANBR Post-fire NBR  dNBR RANBR Post-fire NBR  dNBR RANBR
Adj-R*> p Adj-R*> p Adj-R*> p Adj-R> p Adj-R*> p Adj-R*> p Adj-R*> p Adj-R*> p Adj-R*> p
Post-fire ACH 0167 0.000 0101 0.005 0098 0.006 0394 0003 0385 0004 038 0003 0153 0.006 0111 0.018 0113 0017
VF; 0363 0000 0270 0.000 0263 0000 0.852 0000 0.835 0000 0.831 000 0345 0000 0301 0.000 0307 0.000
VF, 0344 0000 0246 0.000 0239 0000 0785 0000 0.768 0000 0.765 0.000 0348 0.000 0293 0.000 0301 0.000
VFs 0339 0000 0259 0.000 0253 0.000 0.643 0000 0.644 0000 0.645 0000 0314 0000 0273 0.000 0278 0.000
VFr 0255 0000 0183 0.000 0177 0.000 0.796 0000 0.777 0.000 0.773 0.000 0230 0.001 0205 0.002 0211 0.001
CC 0443 0000 0337 0000 0329 0000 0.874 0.000 0.858 0.000 0.855 0.000 0430 0000 0369 0000 0375 0.000
Absolute change ACH 0187 0.000 0218 0000 0214 0000 0.684 0.000 0.673 0000 0.673 0000 0036 0121 0029 0145 0028 0.149
VF; 0408 0.000 0444 0.000 0444 0000 0.893 0000 0.880 0.000 0.878 0.000 0290 0.000 0272 0.000 0270 0.000
VE, 0374 0000 0422 0000 0421 0.000 0.783 0.000 0.771 0.000 0770 0.000 0261 0.000 0256 0.00 0254 0.000
VFs 0192 0.000 0253 0.000 0258 0.000 0505 0001 0516 0000 0.519 0.000 0065 0056 0085 0034 0087 0.032
VFr 0351 0.000 0375 0.000 0372 0.000 0.894 0000 0.880 0.000 0.879 0.000 0219 0001 0206 0.001 0204 0.002
CC 0445 0000 0502 0000 0.503 0.000 0877 0.000 0.860 0000 0.859 0.000 0371 0000 0356 0.000 0.353 0.000
Relative change ACH 0274 0000 0292 0.000 0297 0.000 0.638 0000 0619 0000 0618 0000 0160 0005 0145 0.007 0150 0.007
VF; 0429 0.000 0444 0.000 0448 0000 0.888 0000 0.875 0000 0.872 0.00 0330 0.000 0306 0.000 0309 0.000
VF, 0418 0.000 0440 0.000 0448 0.000 0.794 0000 0.782 0001 0.779 0.00 0328 0000 0311 0.000 0318 0.000
VFs 0179 0000 0251 0.000 0269 0000 0546 0.000 0.560 0.000 0561 0000 0124 0013 0147 0.007 0155 0.006
VFr 0352 0.000 0354 0000 0352 0.000 0.879 0000 0.865 0.000 0.862 0.000 0241 0001 0226 0.001 0227 0001
CC 0426 0000 0484 0000 0499 0000 0.877 0.000 0.862 0.000 0.859 0.000 0428 0.000 0399 0000 0406 0.000

Models fitted separately for all data, dense forests, and open forests. Significant correlations were not found in sparse forests.

at this particular site. This suggests that either the LIDAR data are not
measuring the structural attributes that impacted this particular fire,
and/or that factors other than forest structure played a more important
role in determining post-fire effects at this site. Jain and Graham (2007)
note that forest structure is only one of the many factors (e.g., weather,
vegetation type and moisture, topography) that potentially contribute to
variation in post-fire effects (Jain & Graham, 2007).

Many studies have identified a linkage between pre-fire forest
structure and post-fire effects. For example, Jain and Graham (2007)
predicted tree crown burn severity as a function of pre-fire forest
structure with probabilities greater than would have occurred
randomly, although forest characteristics could not fully explain all
the variation in burn severity. Lentile et al. (2006b) found that denser
stands with larger trees or many small trees were more likely to have a
higher burn severity, and Kuenzi et al. (2008) similarly found that
areas of high burn severity were characterized by higher pre-fire plant
canopy cover. Other studies have associated tree density, basal area,
snag density, and fine fuel accumulation with fire severity (Cocke et al.,
2005; Lezberg et al., 2008). In our study area, which was relatively
homogenous and dominated by open coniferous forest, we found no
significant correlations between post-fire NBR, dNBR, RANBR and the
pre-fire forest structure attributes listed in Table 1.

Remotely sensed data can be used to quickly assess post-fire effects
over large areas. Large wildfires leave a mosaic of burn severities and
unburned vegetation, and forest managers often strategically prioritize
large areas of high burn severity for rehabilitation (Lentile et al., 2007).
The heterogeneous nature of post-fire effects has been identified in
many studies (Key 2005, 2006; Odion & Hanson, 2006). In the area of the
House River fire traversed by the LIDAR transects, there is a marked
difference between pre- and post-fire structure in the forests within the
fire perimeter. These differences include reduced ACH, decreased VF
(measured at maximum height, 5, 2, and 1 m), diminished crown
closure, and increased AID. Examples of the heterogeneity in the spatial
distribution of these changes in structure are apparent in Figs. 4-6.

One of the major criticisms of remotely sensed estimates of post-fire
effects is that linear models used to determine relationships between
remotely sensed and field measures of burn severity are data and site
specific and therefore cannot be extrapolated to other sites with
different cover types and conditions (De Santis & Chuvieco, 2007).
Ideally, the relationship between field and remotely sensed measures of
burn severity would hold over a range of cover types and conditions and
would thereby be applicable over large areas. In an operational context,

the consistency of these relationships is critical, since the primary
motivation for using remotely sensed data is the lower cost and large
area coverage afforded by this data source, relative to site specific and
expensive field surveys. A recent study used a non-linear model to
describe the relationship between field-based CBI and dNBR for three
separate fires in three different ecozones and ecoregions of the western
boreal forest of Canada (Hall et al., 2008). The authors conclude that the
relationship between CBI and dNBR may be consistent across a range of
ecoregions within the western Canadian boreal forest, suggesting the
possibility of a single model for CBI-dANBR in this area. Hall et al. (2008)
also suggest that stratifying by pre-burn vegetation condition may
further improve modeling of burn severity. Jia et al. (2006) similarly
suggested that characterization of forest fuel types with high spatial
resolution remotely sensed data may also improve modeling of burn
severity. This highlights a potential role for LIDAR in strengthening the
link between severity and field measures. Our results identified no
significant relationship between any of the pre-fire structural attributes
and post-fire NBR, dNBR, or RANBR. This suggests that additional
information on vegetation conditions, beyond the structural attributes
measured in this study may be necessary to fully characterize variations
in post-fire effects (Jain & Graham, 2007). Full waveform scanning LIDAR
or small footprint discrete return LIDAR instruments would be required
to estimate attributes such as canopy bulk density and crown base
height (Andersen et al., 2005), which cannot be measured using the
discrete return LIDAR profiling system employed in this study.
Another major criticism of remotely sensed measures of burn
severity, particularly dNBR, has focused on the influence that pre-fire
vegetation has on these measures. The magnitude of dNBR is highly
dependent on pre-fire cover, meaning areas with the greatest absolute
difference between pre- and post-fire vegetation will have higher burn
severity ratings (e.g., areas with relatively more pre-fire vegetation will
have higher burn severities than areas with less pre-fire vegetation)
(Key & Benson, 2006). Epting and Verbyla (2005) examined the
relationship between pre-fire vegetation, burn severity, and post-fire
vegetation over a 16-year-period in interior Alaska. They found that
pre-fire vegetation did have a strong influence on remotely sensed
burn severity: coniferous forest had a higher mean burn severity
(using dNBR) than broadleaf forest and shrubland, and mean dNBR
increased as tree cover increased and the proportion of area with high
severity was greatest in coniferous forest. The impact of pre-fire
vegetation on dNBR is particularly problematic in heterogeneous
forests (Safford et al., 2008). Hall et al. (2008) likewise concluded that
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Fig. 8. (a) Scatterplot with fitting line and 95% confidence interval bands, (b) normal probability plot and raw residuals. Variables: post-fire NBR and absolute change in VFr.

the magnitude and distribution of dNBR values over boreal forests
were influenced by vegetation type. Our results indicate that relation-
ships between post-fire NBR, dNBR, and RANBR were stronger in dense
forests than in open forests and that there was no significant rela-
tionship between pre-fire forest structure and post-fire NBR, dNBR,
and RANBR, but there were significant relationships between absolute
and relative changes in most of the structural attributes we considered
and post-fire NBR, dNBR, and RANBR. However, in our analysis, we
found no marked difference in the relationship between any of the
forest structural attributes or forest type and post-fire effects, as char-
acterized by the dNBR and RANBR.

In response to these criticisms of the NBR and dNBR, Miller and
Thode (2007) proposed the RANBR and posited that the classification
of the relative index into severity categories should result in higher
accuracies in determining burn severity in heterogeneous landscapes.
The ability to more accurately identify high severity areas is important
to land managers because high severity areas often have the greatest
ecological impacts. Miller and Thode (2007) conclude that the dNBR
and RANBR may be complementary as the dNBR is correlated to the

amount of pre-fire photosynthetically active vegetation, providing an
indication of how much vegetation was damaged, while the RANBR
indicates how much vegetation was damaged relative to how much
pre-fire vegetation existed. As such, the RANBR could be useful in
areas extensively damaged by insects, such as the current mountain
pine beetle epidemic in western Canada, which has resulted in
millions of hectares of standing dead pine. It should be noted that
while the original NBR was designed to account for both soil and
vegetation effects, the dNBR primarily measures changes in vegeta-
tion, and as such, may not be useful for directly comparing severity in
different areas with different pre-fire vegetation density (Miller &
Thode, 2007).

Safford et al. (2008) concluded that RANBR is better than dNBR
where one is interested in quantifying the amount of stand-replacing
fire and vegetation mortality on a landscape, because of the dNBR
dependence on pre-fire conditions. Hudak et al. (2007) assessed how
well remotely sensed burn severity indices related to post-fire effects
assessed in the field, by measuring post-fire effects at 418 plots on 50
sites in 8 wildfires across three different ecosystem types. They found
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that post-fire NBR correlated best with measures of post-fire effects,
and concluded that the current practice of using post-fire NBR and
dNBR to assess burn severity in the United States was appropriate
tools. Hudak et al. (2007) also concluded that the RANBR may have
more limited utility for broad spatial application, since this index only
produced better correlations to field data in 1 of the 8 fires they
studied, which was an area with similar vegetation cover and density
to that in which Miller and Thode (2007) originally developed and
applied the RANBR. Our results support key aspects of Hudak et al.
(2007), with one of the strongest relationships we identified as that
between absolute change in VF; and post-fire NBR in dense forests
(Table 5).

Our results suggest that the utility of the forest structural measures
we have presented may depend on the type of vegetation present and
the characteristics of the fire. For example, trees, although damaged or
partially consumed, are rarely completely destroyed by fire. However,
even partial consumption of tree crowns can have a large impact on
LIDAR measures, explaining the marked average per segment differ-
ences in attributes such as AID and CC. The results presented in Table 5
and Fig. 9 also indicate that the dense coniferous forests in our study area
may have a more uniform structure, and as a result, changes in forest
structural attributes in these dense forests may be easier to characterize
than in open forests, which have a more complex and variable structure.

8. Conclusions

Profiling LIDAR transects and Landsat imagery are integrated in this
study to characterize the post-fire effects of the 2002 House River fire.
Post-fire effects are commonly mapped using spectral indices derived
from Landsat TM/ETM+ data and the relationship between these indices
and actual post-fire effects on the ground is the subject of ongoing
research in different ecological regions with varying cover types and
conditions. In this study, we characterize post-fire effects using forest
vertical structural attributes generated from LIDAR profiling data
collected along the same transect pre- and post-fire. Our results indicate
that post-fire effects are spatially variable, that there are significant
differences in forest structure before and after the fire, and that these
differences in structure are more strongly related to post-fire effects in
dense forests than open or sparse forests. Measures of vegetation fill,
post-fire and absolute change in crown closure, and relative change in
average canopy height are useful for characterizing post-fire effects,
whereas measures of average inter-tree distance and volume were not
strongly correlated to post-fire NBR, dNBR, or RANBR. No relationship was
found between pre-fire vertical forest structure and post-fire effects,
and no marked differences were found in the performance of post-fire
NBR, dNBR, and RANBR for characterizing post-fire effects. The
information on vertical forest structure provided by LIDAR is useful
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for characterizing post-fire effects, but it does not preclude considera-
tion of other attributes such as vegetation type and moisture,
topography, long-term weather patterns, that will also influence
variations in post-fire effects.
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