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ABSTRACT 

Disturbance of the vegetated land surface, due to factors such as fire, insect infestation, 

windthrow and harvesting, is a fundamental driver of the composition forested 

landscapes with information on disturbance providing critical insights into species 

composition, vegetation condition and structure. Long-term climate variability is 

expected to lead to increases in both the magnitude and distribution of disturbances.  

As a consequence it is important to develop monitoring systems to better understand 

these changes in the terrestrial biosphere as well to inform managers about disturbance 

agents more typically captured through specific monitoring programs (such as focused 

on insect, fire, or agricultural conditions). Changes in the condition, composition and 

distribution pattern of vegetation can lead to changes in the spectral and thermal 

signature of the land surface. Using a 6-year time series of MODerate-resolution 

Imaging Spectroradiometer (MODIS) Land Surface Temperature (LST) and Enhanced 

Vegetation Index (EVI) data we apply a previously proposed Disturbance Index (DI) 

which has been shown to be sensitive to both continuous and discontinuous change. 

Using Canada as an example area, we demonstrate the capacity of this disturbance 

index to monitor land dynamics over time.  As expected, our results confirm a significant 

relationship between area flagged as disturbed by the index and area burnt as 

estimated from other satellite sources (R2 = 0.78, p < 0.0001). The DI also 

demonstrates a sensitivity to capture and depict changes related to insect infestations. 

Further, on a regional basis the DI produces change information matching measured 

wide-area moisture conditions (i.e., drought) and corresponding agricultural outputs. 

These findings indicate that for monitoring a large area, such as Canada, the time 
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series based DI is a useful tool to aid in change detection and national monitoring 

activities.  

 

Key words:  MODIS, disturbance, insect, fire, drought, land surface temperature (LST), 

enhanced vegetation index (EVI), coarse spatial resolution, Disturbance Index (DI) 
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1. INTRODUCTION 

Vegetation is inherently dynamic, changing constantly over a range of spatial and 

temporal scales. Composition, succession, and the distribution pattern of species vary 

subtly over long time frames, whereas anthropogenic land cover change, fire, 

windthrow, and agricultural and forestry activities result in discontinuous, often 

catastrophic, disturbances to the vegetated landscape (Linke et al., 2006; Oliver and 

Larson, 1996).  Within forested environments, minor disturbances occurring over long 

time frames, often favour competitive tree species while major disturbances generally 

favour colonizing species. Similarly landscapes with frequent, severe disturbances 

(stand replacing) are often dominated by young even-aged stands of shade-intolerant 

species such as aspen whereas old stands of shade-tolerant species such as hemlock 

dominate where severe disturbances are rare (Frelich, 2002). Disturbance therefore is a 

fundamental component of a forested landscape and often is a key explanitor of the 

current vegetation species and structure.  

Disturbance events also occur and vary over a wide range of spatial scales 

(Gong and Xu, 2003). At the individual tree level, windthrow and selective harvesting 

can result in changes in foliage and stem properties. At the stand level, disturbances 

can cause changes in canopy structure, such as reduced canopy closure and increased 

gap size, as well as changes in the number of layers and density of understorey cover 

(Attiwill, 1994). At the landscape level, disturbances to vegetation cover can be manifest 

spatially as fragmentation (i.e., as an aggregate function of activities such as forest 

harvest, industrial activities, or urban developments), disease and insect outbreaks 

(Linke et al., 2006; Houghton, 1994; Meyer and Turner, 1994). Finally at the global 
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scale, disturbance to vegetation is also evident due to anthropogenic human-induced 

environmental changes as well as the increasing impact of variable climate (Canadell et 

al., 2000; Potter et al., 2003).  

	   The impacts of disturbance upon long-term biomass accumulation are becoming 

an increasingly important consideration for forest managers (Kauppi and Sedjo, 2001). 

Forests are managed to meet a range of stakeholder interests, requiring increasingly 

detailed information on disturbance. Government agencies require information on the 

role of disturbance on natural vegetation, such as land clearing and land conversion, 

and conservation agencies (both governmental and non-governmental) require 

information about disturbance and its subsequent impact on available habitat. These 

disturbances can range significantly in temporal and spatial scales (see Table 1), and 

thus the role of remote sensing can also vary depending on the extents, rates, and 

magnitude of change occurring (Gong and Xu, 2003). For example, the remote 

observation of phenological change would require a number of scenes within one 

growing season to ensure green-up and green-down were sufficiently well captured 

(Morisette et al., 2009). Conversely change that occurs at longer time scales such as 

insect induced mortality could be detected using sets of imagery acquired annually or 

every two years (Wulder et al., 2006).  

 

Table 1: Types of forest change and an indicative temporal and spatial scale of occurrence. 
Type of Change Temporal Duration Spatial Extent 

Phenological Days - months All levels 

Regeneration Days-decades Individual - stand 

Climatic 

adaptation 
Years All levels 

Wind Minutes - hours Individual - stand 
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Type of Change Temporal Duration Spatial Extent 

throw/flooding 

Fire Minutes - days All levels 

Disease Days - years All levels 

Insect attack Days - years All levels 

Mortality Days - years All levels 

Pollution Years Stand - watershed 

Thinning/ 

pruning 
Days Stand - watershed 

Clear-cutting Days Stand - watershed 

Plantation Days-decades Stand - watershed 

 

Waring and Running (1998) define a disturbance as any factor that brings about a 

significant change in the ecosystem leaf area index (LAI) for a period of more than one 

year. This definition closely matches that of an ecological disturbance which is often 

defined as an event that results in a sustained disruption of ecosystem structure and 

function (Pickett and White, 1985; Tilman, 1985). Changes in LAI can occur both in a 

positive (increase) and negative (decrease) direction; thus implying that a disturbance 

event can be also both negative (e.g., wildfire) and positive (e.g., irrigation). Similarly 

changes in LAI may occur naturally (e.g., wildfires, storms, or floods) or may be human 

induced, such as anthropogenic land cover change, clear-cutting in forests, urban 

development, or agricultural practises (Dale et al., 2000).  

 Remote sensing technology has been shown to be successful at monitoring 

ecological disturbances (Foody et al., 1996; Rignot et al., 1997) particularly rapid events 

which result in stand replacement such as fire, clear cut harvesting, and windthrow (see 

reviews by Gong and Xu, 2003; Coppin et al., 2004). By comparison, disturbance 

events which happen (comparatively) slowly through time such as thinning, infestation, 

and succession are more difficult to consistently detect, due to more subtle changes in 
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the spectral responses (Coops et al., 2006). A key aspect in many applications of 

remotely sensed data to detect and map disturbance is the role that vegetation occupies 

in the detection and discrimination of change. As captured in the above reviews, 

numerous studies have concluded that the monitoring of vegetation change can be 

undertaken using two potentially complementary approaches. The first is through the 

use of spectral vegetation indices such as enhanced vegetation index (EVI) which are 

sensitive to change in vegetation condition (Huete et al., 2002), and secondly 

radiometric land surface temperature (LST) which is strongly related to vegetation 

density (Schmugge et al., 2002). Generally, a negative relationship is expected between 

vegetation indices and LST (Goward et al., 1985; Price, 1990; Wan et al., 2004; Nemani 

et al., 1996). The basis for this relationship lies in the unique spectral reflectance and 

emittance properties of vegetation relative to bare ground with vegetated surfaces 

having a lower temperature than soil, resulting in the LST decreasing with an increase 

in vegetation density through latent heat transfer (Mildrexler et al., 2007). The coupling 

of LST and the normalised difference vegetation index (NDVI) was found to improve 

land cover characterization for regional and continental scale land cover classification 

(Lambin and Ehrlich, 1995; Nemani and Running, 1997; Roy et al., 2005).  

Running et al. (1994) suggested that the addition of LST to spectral vegetation 

indices could increase the discrimination of regional land cover classes. Likewise Borak 

et al. (2000) found that using LST with NDVI improved the statistical relationship 

between temporal and spatial change detection metrics. Lambin and Ehrlich (1996) 

explored the biophysical justification for such a combination and recommended land 

cover/land use studies utilize the LST-NDVI feature space as it provided more 
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information on biophysical attributes and processes than vegetation indices alone. 

Goetz (1997) reported that the negative correlation between LST and NDVI, observed 

over a range of scales, was largely related to changes in vegetation cover and soil 

moisture and indicated that the surface temperature can rise rapidly with water stress.  

Mildrexler et al. (2007) recently capitalized upon this relationship in 

demonstrating a continental disturbance index (DI) to serve as an automated, 

economical, systematic disturbance detection index for global application using 

MODIS/Aqua Land Surface Temperature (LST) and Terra/MODIS Enhanced Vegetation 

Index (EVI) data. The index was initially applied using 2003 and 2004 satellite imagery 

over a subset of the United States, with initial results indicating the index was capable of 

detecting the location and spatial extent of wildfire with precision. The index was 

sensitive to the incremental process of recovery of disturbed landscapes, and showed 

strong sensitivity to irrigation.  

Since the launch of Terra in 1999 MODIS data has become a critical data source 

for monitoring global vegetation condition. We take this opportunity to apply and validate 

the DI as proposed by Mildrexler et al., (2007) with this longer term archive to assess its 

capacity as an automated and systematic disturbance detection index. Our aim is to test 

the existing algorithm and verify it with available complementary data, rather than 

develop a new approach. As a consequence, we apply the DI algorithm over Canada 

from 2000 to 2006 allowing 7 years of disturbance to be detected, and compare the 

results to a suite of auxiliary datasets to verify both the temporal and spatial resolution 

robustness of the predictions. The sensitivity of a time-series based change index is 

important to capture and spatially portray a wide-range of dynamics occurring over 
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Canada. Canada is nearly a billion hectares in size, typically monitored by provincial 

and territorial agencies, resulting in differences in attributes, timing, and consistency in 

implementation (Wulder et al., 2007). A remote sensing based disturbance index is 

desired that is sensitive to a range of change agents, both continuous and 

discontinuous and that is applicable for large area implementation in a systematic and 

transparent manner.  

 

2. STUDY AREA AND DATA 

The focus of our investigations is the terrestrial land base of Canada. To obtain 

descriptions of the various biomes across Canada, we utilized the National Ecological 

Framework of Environment Canada (Rowe and Sheard, 1981). Stratification of biomes 

are based on a classification system whereby each region is viewed as a discrete 

ecological system, with interactions between geology, landform, soil, vegetation, 

climate, wildlife, water, and human factors considered. Reviews of the history and the 

applications of ecological regionalization in Canada are given by Bailey et al. (1985) 

amongst others. Ultimately, seven levels of generalization are available with 15 

terrestrial “ecozones” forming the broadest classes (Rowe and Sheard, 1981; Wiken, 

1986). Utilizing the national ecozone stratification links our findings to national level 

reporting activities and enables us to integrate and understand our findings with 

reference to other ecosystem level disturbance products.  

We obtained the 8-day maximum LST (MOD11A2) and 16-day EVI (MOD13A2) 

level 3 MODIS products (collection 4) from 2000 to 2006 from the MODIS archive. 

Terra, launched in late 1999, has a morning (AM) overpass, whereas Aqua, launched in 
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early 2002, has an afternoon (PM) overpass. Generally, LST is expected, under 

cloudless conditions, to be warmer in the early afternoon than the morning due to the 

link between maximum skin temperature and solar isolation peak time; therefore, the 

Aqua PM LST is likely to be closer to the maximum daily LST than Terra. In order to 

utilise the full MODIS archive from 2000 to 2006 we applied a published adjustment to 

Terra AM LST estimates, to approximate a “synthetic” Aqua PM LST product from 2000 

to mid-2002 thereby providing a seamless afternoon MODIS LST product from 2000 to 

2006 (Coops et al., 2007).  

 

3. METHODS 

3.1 Disturbance Index (DI) calculation 

The Mildrexler et al. (2007) DI is designed to capture long-term variations in the 

LST/EVI ratio on a pixel-by-pixel basis, on an annual time step. The basis of the index is 

the development of a “long-term” annual maximum LST/EVI ratio for all pixels in an 

image. In subsequent years the annual maximum LST/EVI is then compared to this 

long-term record. Pixels which are significantly different from the long-term mean are 

deemed to have undergone disturbance (Mildrexler et al., 2007). The index is computed 

as the ratio of annual maximum composite LST and EVI, such that: 
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where DIi is the disturbance index (DI) value for year i, LSTimax is the annual maximum 

eight-day composite LST for year i, EVIimax is the annual maximum 16-day EVI for year 
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i, LSTmax is the multiyear LSTmax up to but not including the analysis year (i-1) and 

maxEVI is the multi-year mean of EVImax up to but not including the analysis year (i-1).  As 

stated in Mildrexler et al. (2007) EVILSTDI /  is a dimensionless value that, in the absence 

of disturbance, approaches unity. 

The index was developed to reveal both the positive and negative changes in the 

land surface energy partitioning while avoiding the natural synoptic variability associated 

with daily and seasonal LST (Mildrexler et al., 2007). Disturbances resulting in 

decreased vegetation density would lead to an increase in LST as sensible heat flux 

increases. Conversely, disturbance resulting in increased vegetation density (e.g., 

irrigated farmland) should be coupled with decreasing LST. Pixels that fall within ±1 

standard deviation of the long-term mean are considered to be within the natural 

variability defined for that individual pixel. Pixels that depart significantly (> ±1sd) from 

the long-term mean LST/EVI ratio are flagged as areas of potential disturbance events. 

Instantaneous disturbances such as wildfire result in an immediate departure of the 

LST/EVI ratio from the range of natural variability, whereas non-instantaneous 

disturbances such as drought and insect defoliation depart incrementally, or can return 

toward the range of natural variability after a brief departure, as in the case of short-term 

drought. It is therefore critical that users of the index develop an understanding of the 

long-term natural variability or range of the ratio values over a multiple-year data set.  

 The annual LSTmax and EVImax values were computed for each of the 7 years and 

the LSTmax for each year then divided by the corresponding EVImax value on a pixel-by-

pixel basis, resulting in a ratio of LSTmax to EVImax from 2000 to 2006. These annual 

layers are then divided by the long-term average of the index for that pixel, averaged 
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over all previous years. For example, the annual 2005 ratio is divided by the long-term 

average of the index from 2000 to 2004. The 8- and 16-day compositing methods, and 

the derivation of annual maximums minimise the impact of cloud cover on this approach 

and, as with the Mildrexler implementation, cells with an EVI value less than 0.025 are 

removed prior to the analysis on the assumption these cells were non-vegetated 

(primarily water bodies and/or snow/ice) (Huete et al., 1999). Any DI values within the 

range of natural variability (defined as between 0.68–1.32, which was ±1sd) were 

considered as no change; whereas, pixels outside of this central range were flagged as 

subject to disturbance. 

 

3.2 Auxiliary datasets 

In order to assess the capacity of the DI to accurately detect disturbance we utilised a 

range of publically available datasets, focused on the major disturbance events 

expected within Canadian terrestrial ecosystems. These datasets consisted of the key 

forest disturbances of fire and insects, as well as broad scale agricultural production 

statistics. Each of the auxiliary datasets will be explained in more detail below. 

 

3.3 Fire 

In order to obtain information about the location of fires, fire hotspot thermal information 

is collected by the Canadian Forest Service (CFS) using three remote sensing sensors: 

Advanced Very High Resolution Radiometer (AVHRR), Moderate Resolution Imaging 

Spectroradiometer (MODIS), and the Along Track Scanning Radiometer (ATSR). Data 

from these sensors are combined, and those with the smallest zenith angle used to 
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identify actively burning fires and smoke plumes (see Li et al. (2000)). This hotspot data 

is then combined with other imagery acquired by SPOT VGT (1 km resolution) and 

MODIS 250-m data to estimate the area burned. Data on fire area for each year from 

2002 to 2006 formed the basis of this comparison. Area estimated by CFS to have 

burned on an annual basis within each ecoregion was compared to the number of DI 

pixels flagged as disturbed over the same time frame. As with most remote sensing-

based change detection approaches the particular cause of a disturbance is not  

provided by the index. As such we do not expect a 1:1 relationship between the area of 

flagged DI pixels and fire extent over all Canadian ecosystems. Therefore to increase 

the reliability of the comparison, we constrained the fire area comparison to ecozones 

where fire is known to be the dominant disturbance regime such as the Boreal and 

Taiga ecoregions.  

 

3.4 Insect Infestation 

In order to assess the capacity of the DI to detect more subtle changes in forest 

condition we utilised information on the current outbreak of mountain pine beetle 

(Dendroctonus ponderosae) in western Canada.  The current outbreak of mountain pine 

beetle in western Canada is of unprecedented proportions with over 10,000,000 ha of 

forest in the interior of British Columbia infested to some degree by 2007 (Westfall and 

Ebata 2008). Aerial overview surveys (AOS), which identify patches of attacked trees by 

trained observers from aircraft, are the primary means for accounting annually for the 

area and severity of impacts attributable to the beetle. In these surveys severity is 

classified into one of five attack levels with the lowest, trace, indicative of locations with 
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light levels of attack (by definition, <1 % of the trees impacted). Conversely, the highest 

class, very severe, has significant levels of attack (≥50 % of the trees impacted). In this 

comparison we utilised a 1-ha tessellation of the AOS data throughout British Columbia 

populated with the corresponding severity code from each year of AOS survey data 

from 2001 to 2006 (Westfall 2007). Using only cells classified as moderate or severe 

levels of attack, we resampled the 1 ha dataset into 1 km cells, and summed the levels 

of attack over the 6 years to provide a single cumulative index of infestation which was 

then compared with cells flagged with the DI over the 6 years (Wulder et al. In press). 

 

3.5 Agricultural Statistics 

Finally in order to assess the ability of the DI to detect broad scale changes in the 

condition of grasslands and crops within the Canadian Prairie ecozone we compared 

the DI results to crop production records for the region. These records provide 

information on the total production of principal field crops in Alberta tabulated by the 

Department of Agriculture and Rural Development (www.agric.gov.ab.ca) for each year 

from 2000 to 2006. Records are compiled by crop with records indicating that 2002, a 

year of significant drought, had the lowest production over the 6-year interval with 

production almost 20% lower than the 10-year average. By comparison, in 2005, almost 

30% more production occurred due to above normal rainfall and cooler temperatures. In 

order to compare the non-spatial agricultural statistics with the DI, we summed the 

number of cells flagged by the DI each year and compared them to the area statistics of 

production for the corresponding year within the Alberta portion of the Prairie ecozone. 
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3.6 Analysis Approach 

As discussed, the Mildrexler et al. (2007) index relies on detecting significant changes in 

the relationship between the LST and EVI on an individual pixel basis. Pixels that 

significantly change (defined as > ± 1sd) from the long-term mean of this ratio are 

flagged as disturbed. As a result our first set of analyses considers the maximum EVI 

and LST for each ecozone, for each analysis year, across Canada. We investigate this 

relationship within the framework described by Nemani and Running (1997) who 

propose in LST / EVI space: water-limited biomes (barren, shrub-lands) occupy the 

high-LST/low-EVI; areas characterized by annual herbaceous vegetation (grasslands, 

savannah, and croplands) occupying the center of the LST / EVI space; and 

atmospherically coupled land cover types (e.g., forests, wetlands) occupying the low-

LST / high-EVI area of the LST / EVI space.  

Annual variation in the DI ratio, even at this broad scale, provides an indication of 

the natural variation that is likely to occur in the ecozone. We then present the individual 

results for the area burned, insect infestation, and agricultural statistics and finally 

discuss issues with and application of this type of index across Canada. 

 

4. RESULTS 

The underlying basis behind the DI is the detection of changes in the relationship 

between LST and landscape greenness and, as a result, investigation of this 

relationship across Canada provides an initial assessment of the inherent natural spatial 

variation of vegetation conditions. The stratification of the ecozones by EVI and LST 

indicate, as expected, ecozones further north such as the Arctic Cordillera, and the 
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Northern Arctic have the lowest LST and EVI (Figure 1). Ecozones with moderate 

greenness included most of the boreal and the highly productive coastal forests. The 

ecozones with the most difference from the general trend are the Prairies and the 

Atlantic Maritime ecozones. In the case of the Prairies, the ecozone has warmer LST 

values associated with the EVI than the other ecozones; the deciduous vegetation of 

the Atlantic Maritime ecozone has lower LST.  Between years, changes in LST and EVI 

is similar to that discussed by Nemani and Running (1997). The Prairie ecozone, 

dominated by agriculture, the Taiga Plain, Taiga Cordillera and the Arctic ecozones, 

dominated in winter by snow cover, all have the greatest annual variation indicating 

significant natural variation. In the case of the Arctic ecozones this LST variation 

between years, is as much as 6ºC.  In contrast, the Taiga Shield and the Hudson Plain 

have some of the lowest annual variation indicating a more consistent LST / EVI ratio 

through time.  The implications of these annual differences relates to the detection 

capacity of the index. Ecozones which have more consistent LST / EVI ratios are likely 

to be more sensitive to changes in this ratio due to disturbance through time. 
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Figure 1: 2000 to 2006 Maximum EVI and maximum LST by Canadian ecozones. 
 
4.1 Fire  

Fire is a prominent disturbance event in Canada (Amiro et al., 2001) and as expected 

many fires occurred throughout the 2000 to 2006 time period. Visually, the DI clearly 

delineates fire events such as MODIS hot spots from 2004 (Figure 2(a) and 2(b)). In 

some cases the fire area as detected by the DI appears in the subsequent year due to 

the fact that the DI algorithm uses the maximum EVI in the year, which may occur prior 

to the fire outbreak. Across the scene there is a wide variety of land cover types 
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including forest, crops, and grassland. The apparent consistent detection by the DI 

implies the algorithm is relatively independent of underlying cover type.  

 
A  
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B 

Figure 2: 2004 MODIS hotspots (Inset A) and 2005 DI for western Canada (Inset B). Underlying image circa 
year 2000 Landsat-7 ETM+ composite provided by EOSD, CFS). 
 

The area estimated as burnt using the CFS statistics in the northern forested 

ecozones where fire is the dominant disturbance regime (Boreal Cordillera, Boreal 

Shield, Taiga Cordillera, Taiga Shield and Hudson Plain) from 2002 to 2005 is 

compared with the number of DI pixels flagged as disturbed over the same timeframe 

(Figure 3). The results show a strong relationship (r2 =0.78, p < 0.0001) however overall 

the area estimated as burnt using the combination of MODIS hotspots and other remote 

sensing data by CFS is smaller than that pixels detected by the DI algorithm by a factor 
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of 2. In these cases, other disturbance agents such as harvesting, insect infestation 

may be attributing to this difference.  

 

 

Figure 3: Relationship between the DI and CFS estimates of area burnt by wildfire in northern ecozones by 
year. Numbers refer to years after 2000 (i.e. 4 = 2004). 
 

Tracking the DI from 2000 to 2006 for a major fire (48,000 ha) in the Yukon 

Territories (-127.09º W, 59.98N) in late summer of 2003 provides an indication of the 

mean, and range of the DI at the time of disturbance for all cells averaged within the fire 
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boundary (Figure 4). In this case it is clear the index is relatively stable prior to the fire, 

lying within the standard deviation bounds of DI previously established. After the fire 

event occurred in 2003 the index increases above the threshold of natural variability. In 

addition, the variability of the index within the pixels detected by the MODIS hotspot 

approach also increases. Post fire, the index remains above the threshold for the two 

subsequent years.  

 

 

Figure 4: Temporal tracking of the DI from 2001 to 2006 for a major fire in the Yukon Territory. 
 

4.2 Insect Infestation 

As a disturbance insect infestation represents a more subtle change in the landscape 

than fire, as at the 1 km scale, healthy trees often remain after the infestation due to the 
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trees either being unsuitable (with respect to age or species), or due to the patchy 

nature of a given infestation. In addition, the temporal aspect of the infestation is 

important. In the case of mountain pine beetle damage, remote sensing detection 

typically occurs a year after the initial attack as foliage fades post-attack and generally 

turns red over the subsequent growing season, due to disruption of the translocation of 

nutrients and water as consequence of girdling and secondary fungi infestation. 

Moderate and severe attack as classified from the aerial overview data when compared 

to pixels detected by the DI indicates the index is able to pick up key regions of the 

infestation especially damage occurring over large homogenous areas (Figure 5(a) and 

(b)). The smaller infested areas, such as those scattered along the eastern perimeter is 

less well differentiated. In addition, it is clear from the comparison that fire is an 

important component of this ecosystem, with the DI capable of detection, resulting in 

both disturbance types being captured and depicted over this time period.  

 



23 

 

    A 
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       B 

Figure 5 (a) and (b): Moderate and severe mountain pine beetle infestation as observed from the aerial 
overview data collected from aircraft and (B) gridded to 1km over the stands from 2004 to 2005 and the 
corresponding area for the DI.  Underlying image circa year 2000 Landsat-7 ETM+ composite provided by 
EOSD, CFS). 
 
 
 
 
 
Comparing the number of years where individual pixels were flagged as disturbed, with 

the MPB gridded aerial overview survey data, shows a clear trend (Figure 6) with pixels 

which have been tagged as having significant disturbance for multiple years 
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corresponding to pixels with increased severity as mapped by the survey. The results 

show that as the cumulative impact of the infestation becomes more severe over the 

landscape (i.e., red attack stands being delineated in the same 1 km cell over multiple 

years) the disturbance index flags significant deviations. The cells which experience the 

most severe infestation correspond to cells where the DI detects a disturbance over the 

majority of the analysis period. 

 

 

Figure 6: Comparison of the number of years where individual pixels were flagged as disturbed, compared 
by the average level of infestation as computed using the Mountain Pine Beetle 1 km gridded aerial overview 
survey data (where a lower score is indicative is less severe read attack  damage).The figure shows pixels 
which experience the most severe infestation correspond to pixels where the DI detects a disturbance over 
the majority of the analysis period. 
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The agricultural and grassland areas located in the Canadian Prairies have significant 

inter-annual variability resulting in the DI detecting in select years a large number of 

cells which have deviated from the range of defined natural variability. In order to 

quantify these changes we compared the proportion of the ecozone flagged with a 

negative disturbance with an annual measure of the agricultural production of the region 

(Figure 7). The relationship confirms a strong link between agricultural production, and 

the deviation of cells away from the long-term mean, with large numbers of negative 

disturbance pixels associated with a reduction in the annual production of the region. In 

this case, 2002 was the poorest year of agricultural production in Alberta between 2000 

and 2006, with approximately 1200 million tonnes of production. Conversely 2004, 2% 

of the ecoregion was flagged as disturbed, coinciding with one of the most productive 

years with 2700 million tonnes of production.  The results for cells with a positive 

disturbance were the opposite, with the largest number of positive disturbance cells 

(2006) associated with an above average production year.  A similar comparison was 

made by Mildrexler et al. (2007) who found a strong correlation between precipitation 

anomaly maps of the western United States at 4 km resolution and the coverage of the 

DI.  The temporal and spatial correspondence between these changes in annual 

production and significant variations in the number of cells flagged as DI is strong 

evidence that the index is detecting these types of landscape dynamics (Figure 8).  
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Figure 7: Relationship between agricultural production, and the deviation of cells way from the long-term 
mean, with large numbers of negative disturbance pixels associated with a reduction in the annual 
production of the region. 
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Figure 8: Agricultural region of the Canadian Prairies with 2002 DI highlighted. (Underlying image circa year 
2000 Landsat ETM+ image composite provided by CFS). 
 

5. DISCUSSION 

In this research we have applied a newly proposed algorithm to detect landscape 

disturbance using MODIS 1 km LST and EVI data. The results confirm many of the 

original hypothesised responses discussed by the original developers (Mildrexler et al., 

2007) undertaken over a different region and shorter time interval. Annual changes in 

the maximum LST / EVI ratios closely corresponding to fire hotpots, insect disturbance, 

and changes in agricultural production associated with drought.  Given that fire and 

insect infestation are two of the major disturbances within the forested ecoregions of 

Canada these are encouraging results and indicate that the index has notable potential 

for implementation as a component of an on-going monitoring system. 
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 A key issue discussed by Mildrexler et al (2007) was the initial limited time period 

over which the original analysis was undertaken (2 years). In this project we extended 

the time series, with the generation of the long-term mean computed from a maximum 

of 7 annual values. This increase in the index length significantly increases our capacity 

to understand the inter-annual variability, and thus assess which cells fall outside the 

natural variability range. This time span however is still limited when compared to the 

time scales of many of the disturbance processes listed in Table 1. Over time as the 

index incorporates an increasingly long archive the robustness of the approach will 

improve. The power of this approach is that, over time, each pixel is self-normalized, 

defining a local range of natural variability (Mildrexler et al., 2007).  

 One key area which is difficult to assess at the 1km scale is the effect of forest 

harvesting or land clearing across the country. Obviously if harvest activities were being 

undertaken at very large spatial scales we would potentially expect to see a similar 

negative pulse response, similar to fire across the landscape. In most regions of the 

country large area clear cutting is no longer an accepted or common harvesting practise 

with smaller harvest units and partial cutting more typical. This change in harvesting 

strategy makes detection of these types of anthropogenic changes at the 1 km scale 

difficult to detect and monitor over 7 years of the MODIS archive. We find limited 

evidence of this harvesting pattern in southern areas of Ontario and British Columbia; 

however, a lack of a clear signal, as well as difficulty in accessing harvesting records 

over large areas across a range of tenure makes verification of these signals difficult. 

This result is similar to that found by Fraser et al. (2005) who concluded that much of 
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the harvesting in British Columbia was at, or near, the size limit for change detection 

procedures using composited 1 km spatial resolution imagery.  

The issue of minimum detectable patch size will depend on several factors, 

including the magnitude of the change signal, degree of within patch fragmentation, and 

clustering of changed patches within the effective sensor resolution. For instance, a 

decline in disturbance predictability can be expected when comparing Landsat and 

MODIS imagery (Collins and Woodcock, 1996; Jin and Sader, 2005; Zhan et al., 2002) 

related to the differences in spatial resolution and signal to noise ratio of both sensors. 

Further, in a forest monitoring context, single large disturbances have a greater 

influence on spectral response of a given coarse spatial resolution pixel than a number 

of small disturbances aggregating to a similar area. The increase in non-clearcut 

harvesting practices have served to reduce the detectability of forest harvesting 

activities.  

Similar to Mildrexler et al (2007) we recognise a limitation of the use of an annual 

maximum compositing index is that any rapid recovery, or binomial vegetarian cycle, 

such as short rotation cropping which results in two harvests per year, or alternatively 

post-fire recovery of grasses and shrubs which may occur within a 12 month period, will 

not be detected. This is because whilst EVI will decrease following disturbance, it would 

return to a peak level soon after, thereby missing the event on an annual time step. A 

more seasonal based calculation could be incorporated to accommodate this type of 

behaviour. However detailed information may be more difficult to define when these 

temporal windows would occur, and may well be ecozone specific. 
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6. CONCLUSIONS 

This coarse spatial resolution (1-km) application of a MODIS disturbance index provides 

a cost-effective coverage of the Earth's surface, and offers critical insights as a ‘first 

pass’ filter to identify regions and the annual occurrence of major change activity. Unlike 

many other change indices, the disturbance index applied here produces information 

regarding both discontinuous and continuous change. Following application of this 

disturbance index, areas of interest can then be targeted for more detailed investigation 

using finer spatial resolution imagery or field surveys, or used to identify annual trends 

on a regional basis (in support of more detailed yet less temporally dense data sources 

in a monitoring system). This type of hierarchal approach is required in most large, 

sparsely populated countries, as they require cost-effective monitoring of their terrestrial 

ecosystems for sustainable management of natural resources, to ensure ecological 

integrity, report on international conventions and agreements, and identifying and 

modeling the impacts of weather events and climate change. Coarse spatial resolution 

imagery offers temporally dense data source that can be used to provide annual 

information in conjunction with more spatially detailed, yet less temporally dense, data 

sources used in sample- or ecosystem-based monitoring systems. Systematic 

monitoring of large areas for a range of important dynamics, as demonstrated in this 

research, is enabled through application of this index.  

The DI is based on two sound fundamental principles: (1) that vegetation, when 

left undisturbed, will achieve maximum coverage for a specified environment, and (2) 

that disturbance of vegetation will result in a significantly different surface coverage and 
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a commensurate change in the maximum surface temperature. The maximum LST / 

EVI ratio takes into account both the potentially most vulnerable biotic (vegetation) and 

abiotic (LST) components of the terrestrial ecosystem to disturbance. The capture of 

these elements of ecosystem structure and function and related dynamics, both in terms 

of positive and negative changes, provides a powerful tool for national level monitoring 

in Canada.  
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