CAN Fo 46-10 CC-X 26

Summary of Toxicity of Insecticides and Chemical Control
Studies Against Balsam Woolly Aphid

Project CC-004

Ву

P. C. Nigam

Chemical Control Research Institute
OTTAWA, Ontario
Information Report CC-X-26

Canadian Forestry Service

Department of Environment

April 1972

In 1965 studies were initiated to determine if the balsam woolly aphid could be controlled by aerial application of systemic insecticides. Since then efforts have been concentrated to find effective systemic and other types of insecticides under laboratory and field conditions using ground and aerial application methods. The results are summarized in Tables 1, 2 and 3 from the reports listed at the end. It is clear from these results that four insecticides, propoxur (Baygon), Dursban, Furadan and diazinon were more effective than others in the laboratory and on individual trees in the field (Tables 1 and 2). They gave more than 70% aphid mortality and could possibly be used in protecting ornamental trees and infested fir stands, where application can be made from the ground. These insecticides failed to control aphids when applied from the air to 40 acre blocks (Table 3).

The hypothesis that systemic insecticides would be more effective does not appear valid in the light of present findings that systemics (propoxur and Furadan) and non-systemics (Dursban and diazinon) are equally effective. When the systemic insecticide propoxur C¹⁴ was studied for phloem transport there was no significant movement of the compound from the site of application. It appears that systemic insecticides have no advantage over other types for the control of this insect and in further search, for more effective insecticides, this should not be a main criterion. Other types of insecticides should be given equal consideration.

Presented at the Balsam Woolly Aphid Work Meeting, Room 4130, West Memorial Building, 344 Wellington Street, February 16 to February 18, 1972, Ottawa.

It is suggested that in future, different formulations (WP, granular, ULV, EC and flowable) of the most effective insecticides (propoxur, Dursban, Furadan and diazinon) should be tested using different methods of ground application in the fir stands where some information on population dynamics of aphids and physiological conditions of trees is available so that the impact of chemical control on the insect population and on the development of balsam fir stands can be evaluated.

Table 1. List of Insecticides Tested Against Balsam Woolly Aphid Applied on Potted Plants (7"-13") at the Rate of 1.6 Ounces per Acre in the Laboratory at New Brunswick and Newfoundland from 1966 to 1970.

Insec	ticide	Type and	Type and Nature Corrected % Mortality	
1 Prop	oxur	carb	syst.	97.2
2 Fura	dan	carb	syst.	95.6
3 Durs	ban®	O-P	cont.	94.5
4 Hero	ules 13462	O-P	syst.	84.8
5 Cytr	olane	O-P	syst.	81.6
6 Cyar	w.	O-P	cont.	65.7
7 Bid	11B	O-P	syst.	64.7
8 Thin	ne t®	0-P	syst.	59.5
9 SD 6	5073	urea	hormone	54.6
	nocarb	carb	cont.	54.4
	ecide	O-P -	cont.	50.2
	er 38156	O-P	-	49.6
	3963	carb	syst.	49.3
	photo®	O-P	syst.	44.7
	ecron®	amide	cont.	43.3
16 C 9		0-P	cont.	41.2
10 0 9	tan	O-P	syst.	40.3
17 Sys	tex	0-P	syst.	32.4
18 Bay	phur®	0-P	syst.	31.2
19 Fam	8591	urea	hormone	30.7
20 SD21 Bay	er 25141	O-P	cont.	29.0
21 Bay 22 Sop	hamide	O-P	syst.	26.5
22 Sop	sdria	0-P	syst.	22.9
23 Pho	lene	0-P	syst.	21.0
24 Rue	id R	carb	cont.	20.8
25 Hop	cid®	O-P	syst.	18.1
26 Kor	lan®	0-P	syst.	16.0
27 Co-	Ra (R)	0-P	syst.	. 15.5
28 Mar	etir®	0-P	syst.	15.3
29 Ant	hide	carb	cont.	14.9
30 C 9	9643 _R	O-P	syst.	13.4
31 Sys	tox	0-P	syst.	12.0
	ta-systox-R	0-P	syst.	10.8
33 Fer	nitrothion	0-P	cont.	10.2
34 D18	azinon®	carb	cont.	5.0
35 C	B353 oba®	carb	cont.	0.14
36 Me	oballo	O-P	syst.	0.0
37 Am	iphose		cont.	0.0
38 Ba	ssa	carb	cont.	0.0
39 Bu	tacarb	carb carb	cont.	0.0
40 C	20132 olane®	O-P	syst.	0.0
	olane		cont.	0.0
	metilan	carb		0.0
43 DU	1418-X	carb	syst.	0.0
44 Fi	tios®	0-P	syst. cont.	0.0
45 Mo	nitor®	O-P	COIIL.	0.0

Table 1 (cont)

6	Insecticide	Type and	Nature	Corrected % Mortality
46	Proban®	0-P	syst.	0.0
47	R 10044 Supracide®	sulphur	cont.	0.0
48		0-P	cont.	0.0
49	VC 13	0-P	cont.	0.0
49 50	Zytron® Zolone®	0 - P	syst.	0.0
51	ZoloneR	O-P	syst.	0.0

O-P = Organo-phosporus

carb = carbamate

syst. = systemic

cont. = contact

Table 2. List of insecticdes tested against balsam woolly aphid on infested trees (25'-35') @ 12 to 25 lbs. active/acre or 2.5% to 10% active @ 0.25 to 1.0 litres/tree, by mist blower, in the field, from 1965 to 1970 (Insecticides arranged in descending order of toxicity).

1965	1966	1966	1967	1969	1970
(Nfld.)	(B.C.)	(Nfld.)	(Nfld.)	(Nfld.)	(Nfld.)
Propoxur Diazinon Menazon Fenitrothion Meta-systox-R Bay 37289 Aramite Dimethoate	Propoxur Furadan Dylox Formothion Diazinon C 8514 Bidrin Fenitrothion Meta-systox-R	Propoxur Dursban Bidrin Ciba 8874 Diazinon Zectran Dicapthon Dylox Methomyl Formothion Aphidan Fenitrothion Ciba 9491 Meta-systox-R Thimet	Dursban Propoxur Diazinon Furadan Menazon	Dursban Methomyl PP062 Propoxur Dupont 1642 Amer. Cyan 474 PP511 Herc. 13462	Propoxur Propoxur 470

EC = Emulsifiable concentrate
ULV = Ultra low volume formulation

BC = British Columbia Nfld. = Newfoundland

Table 3. Insecticides tested against balsam woolly aphid by aerial application in 40 acre blocks in Newfoundland (1968).

Insecticide	Dosage %	% Mortality	
Propoxur	16 oz. active/acre in 1 gallon	26.4	
Furadan	4 oz. active/acre in 2 gallons	- 25.6	
Dursban	8 oz. active/acre in 2 gallons	22.6	
Diazinon	10 oz. active/acre in 2 gallons	12.8	
control	Ξ.	37.2	

REPORTS ON CHEMICAL CONTROL STUDIES AGAINST BALSAM WOOLLY APHID CARRIED OUT BY CCRI FROM 1965-1971

Laboratory evaluation of insecticides on potted balsam fir plants

- 1. Nigam, P.C., 1967. Chemical control trials against the balsam woolly aphid in New Brunswick. For. Branch, Can. Dept. For. and Rur. Dev. Internal Report CC-3, 19 pp.
- Nigam, P.C. and R.C. Clark, 1969. Chemical control trials against the balsam woolly aphid in New Brunswick in 1968. For. Branch, Can. Dept. Fish. and For. Internal Report CC-5, 24 pp.
- Nigam, P.C. and R.C. Clark, 1970. Laboratory evaluation of insecticides against the balsam woolly aphid. (unpublished).
- 4. Randall, A.P., W.W. Hopewell and P.C. Nigam, 1967. Chemical control Studies on the balsam woolly aphid (Adelges piceae (Ratz.)).

 For. Branch, Can. Dept. For. and Rur. Dev. Bi-Mon. Res. Notes 2(3): 18-19.

Field evaluation of insecticides on individual infested trees

- 5. Hopewell, W.W., 1967. Tests of insecticides for control of balsam woolly aphid in Newfoundland, 1966. For. Branch, Can. Dept. For. and Rur. Dev. Internal Report CC-2, 7 pp.
- 6. Hopewell, W.W., 1969. Tests for chemical control of balsam woolly aphid in Newfoundland in 1969. Can. For. Ser., Can. Dept. Fish. and For. Internal Report CC-8, 17 pp.
- Hopewell, W.W. and D.G. Bryant, 1966. Tests of various insecticides for chemical control of the balsam woolly aphid in Newfoundland, 1965. Can. Dept. For. Bi-Mon. Prog. Report 22(2): 1.
- 8. Hopewell, W.W. and D.G. Bryant, 1969. Chemical control of Adelges piceae (Homoptera: Adelgidae) in Newfoundland 1967. Can. Ent. 101(10): 1,112-1,114.
- Nigam, P.C. and R.C. Clark, 1970. Field evaluation of insecticides against balsam woolly aphid. (unpublished).
- 10. Randall, A.P., 1967. Chemical control studies of the balsam woolly aphid Adelges piceae (Ratz.), in British Columbia, 1966. For. Branch, Can. Dept. For. and Rur. Dev. Internal Report CC-1, 4 pp.
 - 11. Randall, A.P., W.W. Hopewell, and P.C. Nigam, 1967. Chemical control studies on the balsam woolly aphid (Adelges piceae (Ratz.)).

 For. Branch, Can. Dept. For. and Rur. Dev. Bi-Mon. Res. Notes 2(3): 18-19.

Aerial spraying of insecticides

12. Hopewell, W.W. and D.G. Bryant, 1968. Experimental airspray for control of balsam woolly aphid in Newfoundland 1968. For. Branch, Can. Dept. Fish. and For. Internal Report CC-4, 7 pp.

Systemic activity studies using Baygon C14

- 13. Saini, M.L., J.A. Webb and P.C. Nigam, 1972. Fate of Baygon isopropoxy C¹⁴ in balsam fir. Can. For. Ser., Can. Dept. Envir. Internal Report CC-15, 12 pp.
- 14. Webb, J.A. and P.C. Nigam, 1971. Penetration, translocation and movement of Baygon formulations in balsam fir. Can. For. Ser., Can. Dept. Envir. Internal Report CC-14. (In press).