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Abstract: Areas burned annually in 29 Canadian forest fire regions show a 
patchy and irregular correlation structure that significantly influences the 
distribution of annual totals for Canada and for groups of regions. A binary Monte 
Carlo Markov Chain (MCMC) is constructed for the purpose of joint simulation of 
regional areas burned in forest fires. For each year the MCMC prediction is a 
binary vector with regions classified to a large fire year (LF) or a small fire year 
(SF). The regional area burned is then obtained from empirical quantile functions; 
separately for LF and SF years. The MCMC results were unbiased with respect 
to: the annual number of LF regions, national totals, and variances of area 
burned.  Approximately 65% of the observed regional covariance was captured in 
the results. 
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Introduction 
 
 
Forest fires affect forest resources and the global cycling of carbon and 

greenhouse gasses (Amiro et al. 2001, Bergeron et al. 2004, Gillett et al. 2004). 
They are a dominant driver in Canada’s boreal forest carbon balance (Bond-
Lamberty et al. 2007). Forecasting areas burned annually in forest fires (BA) at a 
regional and a combined regional scale is therefore important to predicting future 
greenhouse gas emissions (Kurz and Apps 2006, Kurz et al. 2008). 

 
In Canada BA varies dramatically between years and regions. Large fires tend 

to occur during periods of stable high pressure (Skinner et al. 1999, Skinner et al. 
2008). These atmospheric patterns are sub-continental in scale and may impose 
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some regional synchronization in BA. Yet snow-cover or rain during the winter 
prevents the emergence of a strong temporal autocorrelation by saturating the 
forest fire fuels. 

 
The simplest approach to forecasting BA is by recasting historic records. 

Recasting is attractive on grounds of expediency, simplicity, low costs, and 
transparency; however, this approach must take into account any interregional 
correlation structure. In Canada regional BA from 1955 to 1999 show an irregular 
pattern of weak and strong interregional correlations that exert a significant effect 
on the variance, and thus the shape, of distributions of sums of regional BA-
values. 

 
This study demonstrates a Markov Chain Monte Carlo (MCMC) procedure for 

joint forecasting of BA in 29 Canadian forest fire regions. The 29 regions account 
for about two-thirds of the areas burned in Canada. The rationale for the MCMC 
procedure rests with the fact that interregional correlations of BA are - to a large 
degree - shaped by a few years favorable to large fires. 

 
 

Material and Methods 
 

Data 
 
Estimates of annual areas burned in forest fires (BA) from 1959 to 1999 in 

Canada’s 29 forest fire regions were used as data for forecasting purposes 
(Magnussen 2008, Kurz and Apps 2006, Stocks et al. 2002). 

 
 

Forecasting objectives 
 

The objective is to forecast a sequence of BA-values for each of the 29 fire 
regions consistent with historic data from 1959-1999. Forecasted data should also 
conserve the regional correlations pattern so that the distribution of sums of 
regional BA-values matches the historic distribution of these sums. 

 
 

Model premise 
 

Regional correlations reflect the number of concurrent large values of BA. 
Consequently, a binary classification of region years to a large fire year (LF = 1) 
or a small fire year (SF = 0) is used to capture the regional correlations. To 
simplify the correlation structure it was decided to: i) form 29 balanced five-
member ρ-cliques by maximizing the average within-clique correlation, and ii) 
assume that the LF-status of a region is only influenced by regions in the same ρ-
clique. Accordingly, a two-stage process for the joint forecasting of BA is 
formulated: In stage one, the total number and regional allocation of LF years is 
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determined in a MCMC step (Robert and Casella 1999). In stage two, regional 
BA-values are drawn from empirical quantile functions, separately for LF and SF 
years. 

 
Classification of region-years to LF or SF 

 
The classification of region-years to either LF (1) or SF (0) was done by a k-

means clustering (k = 2) routine.  Following the classification, the probability  i  

that a LF year occurs in region i was estimated as: 
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The MCMC (stage I) 
 
Every forecast begins with a random draw of the number of regions with 

a LF = 1 status.  The draw is from a zero-truncated beta-binomial (Griffiths 1973) 
of fitted to the classified data. An initial random allocation of the nLF* is 
done with probability proportional to the regional probability of a LF year  
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here *

1sU 

, 

w  is a random draw from a uniform distribution on the unit interval [0,1] 

and K  is defined in Equation 3 
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[4] 
 

where  denotes a likelihood and  a pseudolikelihood and 
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 p i i   denotes 

regions  i  in the same ρ-clique as region i. Likelihoods   *
~ ,| i i newL LF  were 
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sampled from the joint distribution of regional LF- us (Robert and Casella 
1999). As a safeguard, the vector *

SLF after 3000 accepted switches was retain

A total of 41×100 random replicat *
SLF  were generated, representing 100 

replications of  41-year forecasts. Withou poral autocorrelation, years and 
replicates are interchangable. 

 
Forecasting BA (Stage II) 

stat
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where 1
îF  is the empirical quantile function of BA for region i (i.e. the inverse to 

e empirical distribution function),  is a random draw from a uniform 
 

SF ion.  A 

th *u
distribution from a specified interval, and ˆSFiu  is the MLE estimate of the regional

cut-off quantile between LF = 1 and  = 0 on the empirical quantile funct
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simulation study (Magnussen 2008) sugges

quantile functions:  
ted the following endpoints for the 
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Examples of the classification of BA to LF (1) and SF (0) by the k-means 

procedure are in Figure 1. The average regional relative frequency of LF years 
was 0.19 but varied from a low

AB4 to 3.3% in AB3). Regional correlations of BA in shared SF years wer
average, about 84% below the correlations for the entire period of 41 years and 
the rate of significant correlations was consistent with the null hypothesis of a
zero correlation.  

 
In the MCMC forecasts the average rate of LF years was 2% below the rate in

the classified data (P = 0.12, bootstrap t-test). The number of regional LF years
forecasted for a 41

i

lower frequencies of LF years and to underestimate in regions with higher rates. A
bootstrap t-test with 36 degrees of freedom identified three regions (BC2, NS1, 
NWT1) with a significant difference  0.018 0.026P  between the classified 

and the forecasted number of LF-events during a period of 41 years.  
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Figure 1: Percent of forested area burned annually (BA%) in six randomly chosen regions. Year 1 
= 1959, year 41 = 1999. The classification of BA% to LF (large fire) or SF (small fire) is indicated by 
squares (SF) and circles (LF). 

 
 
The bias pattern in Figure 2 carries over to regional correlations of LF years in 

the MCMC results (Figure 3) and created an inflation in cliques with a below 
average interregional correlation and vice versa. Across all regions, the average 
correlation of LF years was 0.04 in the forecasts and 0.05 in the data, and the 
relationship between the two sets of correlation coefficients was consistent with a 
slope of 1.0 and a zero intercept (P = 0.16).  
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Figure 2:  Forecasted total number of regional LF years during a period of 41 years (nLFMCMC), 
plotted against the number in the classified data (nLFDATA). 
 

 

 
Figure 3: Forecasted average inter-regional correlation of LF years  LF MCMC  plotted against 

the average correlation in the data  LF DATA  . The average is over regions in a  -clique. 

 
 
The mean and variance of forecasted regional BA matched fairly closely their 

historic values. Scatter plots in Figures 4 and 5 convey a strong correlation (0.98) 
between forecasted and historic values. A linear relationship with a slope of 1.08 

and an intercept not significantly different from zero (P = 0.31) captures 

the relationship. For all regions combined the average BA in the forecasts was 
886 976 ha versus 817 308 ha in the data. The bias is attributed to the asymmetric 
capping of the empirical quantile functions. The standard deviation of the regional 
totals of BA was 849 596 ha but only 742 973 ha (-14%) in the MCMC forecasts. 

 0.02  
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The conversion to a binary variable (LF) and the ensuing attenuation of the 
regional correlations is the main factor behind the bias. Regarding regions as
independent would generate a standard deviation of 486 990 ha (-43%). In oth
words, the MCMC procedure captured 65% of the regional covariance of BA. 

 

 
er 

 
 MCMCBAFigure 4: Forecasts of average annual regional BA-values  plotted on a garithmic lo

scale against historic values  DATABA . 

 
 
 

 
 

Figure 5: Forecasts of variance of annual regional BA-values  MCMCvBA  plotted o  a logarithmic 

scale against historic values

n

 DATAvBA .  
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Discussion and conclusions 

A joint forecast of regional BA must take the apparent correlation structure into 
account or the variation of sums of regional values will be biased downward. 
Without a suitable mul  a joint forecast 
becomes a complex challenge (Aalo 
Di

 
mmon environmental factors in region-years classified as LF 

ma  be identified. Modeling at the binary level also facilitates an integration of 
ex l 2003, 

ts in some defined neighbourhood (ρ-cliques) composed of 
interdependent regions, usually a group of first-order spatial neighbours (Gilliland 
an

e been considerably more 
complicated (Smith and Smith 2006). We surmise that our MCMC results reflect 
the ution 

-

Piboongungon, T. 2005. On the multivariate generalized gamma distribution 
ith exponential correlation. In: Global telecommunications conference IEEE 3(28): 

1229-1233. 
Am Wotton, B.M annigan, M.D.; Stocks, B.J.; 

Be
est 

Be  

tivariate distribution function, the task of
and Piboongungon 2005, Carpenter and 

awara 2007).  
 
A binary classification of BA as either large or small facilitates an 

interpretation of the regional correlation structure as it changes the focus from
areas to years. Co

y
pected trends in LF years (Bergeron et al. 2004, Beverly and Martel

Larsen 2007). 
  
Modeling a regional distribution of correlated binary variables is commonly 

done by formulating the probability of an event in a region conditional on the 
number of even

d Schabenberger 2001, Sherman et al. 2006). 
 
The proposed MCMC procedure was simplified by conditioning on the 

marginal distribution of the total number of LF events in a year. Without this 
simplifying step, the transition kernel would hav

 constraints on the covariance structure inherent in all multivariate distrib
functions (Johnson 1987). A restriction of first-order regional interactions to ρ
cliques limited our ability to capture the observed interregional correlation 
structure. The proposed MCMC approach is capable of reproducing the main 
features of observed marginal distributions and an irregular and patchy correlation 
structure.  
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