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Estimation of a Cover-Type Change Matrix 
From Error-Prone Data

Steen Magnussen1

Abstract.—Coregistration and classification errors 

seriously compromise per-pixel estimates of land 

cover change. A more robust estimation of change is 

proposed in which adjacent pixels are grouped into

3 3× clusters and treated as a unit of observation. A 

complete change matrix is recovered in a two-step 

process. The diagonal elements of a change matrix 

are recovered from estimates of the temporal 

correlations of cover-type frequencies and an estimate 

of the odds-ratio of no change. Off-diagonal elements 

are recovered from least-squares solutions to a set of 

constrained linear equations. The proposed method 

produced less biased estimates on three of five 

sites when the average coregistration error was in 

excess of 0.3 to 0.7 pixels and on four of five sites if 

classification accuracy is below 0.9.

Introduction

Land cover change estimation from remotely sensed data is 

riddled with a unique set of problems due to registration errors 

when two images are coregistered (Coppin and Bauer 1996, 

Coppin et al. 2004) and classification errors (Congalton 2001, 

Pontius Jr. and Lippitt 2006). A registered change in a unit 

can therefore misrepresent the actual change event. Although 

techniques for reducing the bias due to classification errors are 

readily available (Czaplewski 2003, Stehman and Czaplewski 

1998), their efficiency depends critically on an accurate 

estimate of a confusion matrix for all change classes; a reality 

that is rarely met. 

This study proposes a new method for estimating a K K×

change matrix ()n for K cover types from clusters of pooled 

pixels instead of individual pixels. Change estimated from clus-

ters of spatially adjoining units is assumed to be less sensitive 

to the problems stated previously than a per-pixel estimation. 

Clusters must be large enough to mitigate the effect of the 

aforementioned problems, yet small enough to reduce the loss 

of information that occurs when pixels are pooled. A cluster of 

3 3× pixels is chosen as a compromise.

Estimates of no change on the main diagonal of a change matrix 

( ), 1, ,kkn k K=  are recovered from temporal correlation 

coefficients of cluster-level pixel counts and the odds ratio of no 

change (Magnussen 2004). Off-diagonal elements are recovered 

by least-squares solutions (CLS) to a set of linear constraints.

The performance of the proposed method is assessed for a 

4 4×  change matrix with data from five sites. Coregistration 

and classification errors are simulated across of a range of 

specifications. For a detailed version of this study, see  

Magnussen (2007).

Material and Methods

Recovery of the change matrix begins with a complete tes-

sellation of the coregistered and the classified time 1 (t
1
) and 

time 2 (t
2
) images into M size 9 clusters with pixels in a 3 3×

array. Only cluster-level counts of the number of pixels in 

each class at 1t  and 2t  will be used for the recovery. Specifi-

cally, the 1t  data are { }( ) ( ) ( )
1 1 , , , 1, ,i i i

Kn n i M+ += =n   , where 
( ) ( )i i
k kkk

n n ′+ ′
= ∑ ; i.e., the kth row sum of in , is the number of 

class k units in the ith cluster at time 1t ; likewise, 2t data are 

{ }( ) ( ) ( )
2 1 , , , 1, ,i i i

Kn n i M+ += =n   , where ( ) ( )i i
k k kk

n n ′+ ′
= ∑ .The 

state of the population at t
1
 and t

2
 is captured by the vectors 

{ }1 1 2, , Kn n n+ + +=n   and { }2 1 2, , Kn n n+ + +=n  . The total 

number of pixels is kk kk
n n n+ +++

= =∑ ∑ . 
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Recovery of the Main Diagonal of the Change Matrix

A procedure for the recovery of the main diagonal in 

the change matrix has been detailed by Magnussen 

(2004). First, Pearson’s correlation coefficients kkρ of 

{}( ) ( ), , 1, , , 1, ,i i
k kn n i M k K+ + = =  are computed. From 

these coefficients, an estimate kkn  is obtained, as outlined 

by Murtaugh and Phillips (1998). A second estimate kkn

is obtained by finding an odds ratio of no change for class k 

( )( )( )1 1
k kk k k k k k k k kk k

n n n n n nθ − −
′ ′ ′′ ′ ′ ′ ′ ′⋅ ⋅′≠

≡ × − −∑  (Fleiss 

1981) that maximizes the likelihood of the observed counts
( ) , 1,..., , 1, 2i
t i M t= =n  (Magnussen 2004). A linear combina-

tion of these two estimates is used as the final estimate—

specifically, 2 1
3 3ˆkk kk kkn n n= + 

 .

Recovery of Off-Diagonal Elements in the Change Matrix

Recovered off-diagonal elements |kk k kn ′ ′≠  are CLS to a set 

of constrained equations. From( ),k kn n+ + and the previous 

estimates of ˆkkn , we can formulate a trivial set of K K×  

constraints on the row and column sums of the elements in 

the change matrix. If we were to recover the off-diagonal 

elements in a 3 3× change matrix, we could formulate a rank 

five set of constraints for the six off-diagonal elements. The 

ratio of unknowns (6) to the rank of the linear constraints 

(5) is the maximum possible. Hence, if we could reduce the 

recovery problem to a 3 3× change matrix, the CLS recovery 

would be the best possible. For a K K× change matrix, we 

can create ( ,3)Bin K 3 3× change matrices and find a set of 

14 linear constraints on their off-diagonal elements with a 

maximum possible rank of 9 and then find the CLS solution 

by least squares (Magnussen 2007). All CLS estimates satisfy: 

,
ˆ ˆ0 , , and Integer , , {1, , 4}CLS CLS

kk kk kkk k
n n n n k k K′ ′ ′++′′

′≥ = ⊃ = … =∑ .

Performance Assessment

In five case studies with four land-cover classes (K = 4), the 

recovered change matrix ˆ CLSn is compared to the actual matrix 

n̂ obtained by a direct counting (DIR) of pixel-level change. To 

facilitate a Monte Carlo simulation of errors of coregistration 

and classification (see the next section), the assessment is 

carried out with data from 200 replications of simple random 

sampling of m = 200 3 3×  clusters with and without errors.

Monte Carlo Simulation of Coregistration and 

Classification Errors

Eleven levels of average coregistration errors in 2t data 

were simulated at the cluster level. With a probability of 0P  , 

the “true” data in a 3 3×  cluster had no coregistration error

( )0 0, 0.1,..., 0.9, 1.0 .P =  With a probability of ()2
1 03 1P P= − ,

the location of a cluster was either shifted one column to 

the left (right) or one row up (down). With a probability of

()1
2 03 1 ,P P= − the location of a cluster was shifted one column 

to the left (right) or one row up (down). Registration errors in 

each of the 200 replications of a random sample of 200 clusters 

were distributed at random across clusters.

Classification errors at t
1
 and t

2
 were assumed to be equal and 

independent. The following symmetric 4 4×  confusion matrix 

P  was used to simulate multinomial classification errors:
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The value of |k kp , the classification accuracy, was varied from 

0.5, 0.6,…, 0.9 with the value fixed during one simulation. 

Examples

Remotely sensed data from five large forested areas (BC, HI, 

IT, NB, SE), representing different regional landscapes with 

contrasting cover-type composition and rates of presumed 

change, are used for demonstrating the performance of the 

proposed alternative estimator of a change matrix when data 

are potentially error-prone. The data domains vary in size 

from 109 km2 (BC) to 188 km2 (IT). Details are in Magnussen 

(2004). Population sizes in pixels of approximately 30 × 30 m 

were 121,104 (BC), 129,600 (HI), 208, 675 (IT), 181,068 (NB), 

and 166,464 (SE). An example of a population change matrix 

for IT is in table 1. 
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Results

Only results pertaining to IT are given. Diagonal elements of 

ˆ CLSn  estimates were generally estimated with less bias than 

off-diagonal elements; a trend that is especially clear on a rela-

tive scale where the bias of diagonal estimates was one-half to 

one-tenth of the bias in off-diagonal change estimates. Relative 

bias of estimated diagonal elements was in the range of 5 to 

10 percent. Scatter-plots in figure 1 give additional insight to 

CLS performance. For the diagonal elements, the relationship 

to DIR was typically linear with 2ˆ0.97 0.91adjR≥ ≥ , yet with a 

persistent bias. For the off-diagonal elements, the scatter plots 

suggest a linear relationship but also a persistent bias.

Coregistration errors in 2t  data introduce bias in n̂  and in-

creased the bias in ˆ CLSn . As the coregistration error increases, 

however, the bias increased three to four times faster in n̂  than 

in ˆ CLSn  (fig. 2). As a result, when the average coregistration 

error reaches 0.3, one can expect less bias in the diagonal 

elements in ˆ CLSn  than in n̂ . A similar situation arises for the 

off-diagonal elements when the average coregistration error 

exceeds 0.4.

Classification errors also generate a serious bias in n̂  and ˆ CLSn  

(fig. 3). As expected, diagonal elements are most sensitive to 

classification errors because a classification error generates 

a change event where none occurred. The rate at which bias 

increased as classification accuracy decreased was about 1.5 

times higher in n̂  than in ˆ CLSn . The critical accuracy level 

below which ˆ CLSn  would be less biased than n̂  is around 0.9.

Table 1.—True change matrix for IT. 

Class 1 2 3 4 All (t1)

1 30771 (14.7) 89 (0.0) 5117 (2.5) 4262 (2.0) 40239 (19.3)
2 2 (0.0) 1455 (0.7) 80 (0.0) 12 (0.0) 1549 (0.7)
3 3582 (1.7) 3321 (1.6) 64977 (31.1) 1876 (0.9) 73756 (35.3)
4 630 (0.3) 30 (0.0) 364 (0.2) 92107 (44.1) 93131 (44.6)

All(t2) 34985 (16.8) 4895 (2.4) 70538 (33.8) 98257 (47.1) 208675 (100.0)

Notes: Table entries are number of pixels. Numbers in parentheses are percentages of the total. Percentages may not add to 100 due to rounding.

Figure 1.—Scatter plot of ˆCLS
kkn ′  versus ˆkkn ′  in 200 replicated 

samples of size 200 in IT.

Figure 2.—Mean absolute bias (MAD) of elements of 
ˆ CLSn  and direct counts n̂  (DIR) plotted against average 

coregistration error (unit: pixel of 30 × 30 m).

Black: diagonal elements.
Gray: off-diagonal elements.

Triangles: recovered.
Full line: direct counts.
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Discussion

A change matrix recovered from cluster-level counts of units 

per class at two points in time is, in absence of registration 

and classification errors, less accurate than a change matrix 

obtained by direct counts of change events. The proposed 

recovery method is an option when unit-level change is seri-

ously compromised by errors. The choice of a 3 3× cluster was 

a compromise between conflicting goals. A larger cluster would 

be more robust against errors but would incur additional loss 

of information and increases in computational complexity. A 

smaller cluster, however, would be less robust against registra-

tion and classification errors without offering any significant 

computational advantages.

The Monte Carlo simulations confirmed the sensitivity of unit-

level change estimates derived directly from remotely sensed 

data to errors of coregistration and classification (Bruzzone and 

Cossu 2003, Lunetta and Elvidge 1999). Average coregistration 

errors in the range of 0.3 to 1.1 units (pixels) are not uncom-

mon. Classification accuracies of 0.7–0.9 units are commonly 

reported for forest cover-type maps derived from Landsat 

Enhanced Thematic Mapper+ (Foody 2002, Holmgren and 

Thureson 1998). Thus, if no better approach to mitigate the bias 

is available, the proposed recovery should be pursued when 

classification accuracy and registration errors have the potential 

to seriously compromise the results. 
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