
INTRODUCTION TO PROGRAMMING

AN IBM 360/25

IN "BASIC FORTRAN IV" LANGUAGE

F, H E G Y I

FOREST RESEARCH LABORATORY

ONTARIO REGION

SAULT STE. MAR IE, ONTAR 10

INFORMATION REPORT O-X-152

CANADIAN FORESTRY SERVICE

DEPARTMENT OF FISHERIES AND FORESTRY

JUNE 1971

Copies of this report may be obtained

from

Director, Ontario Region,

Canada Department of Fisheries and

Forestry3

Box 490, Sault Ste. Marie, Oniari.o

Frontispiece. An IBM 360/25 system, showing console typewriter, line

printer and card read/punoh unit.

ABSTRACT

This report introduces programming an IiiM 360/25 computer in

"Basic FORTRAN IV" language. Computer hardware is briefly explained, and

the fundamentals of the FORTRAN language are dealt with in detail. Topics

covered in the text include: arithmetic expressions, arithmetic state

ments, input/output statements, control statements (GO TO, IF, Computed

GO TO, and DO), and specification statements. A brief introduction is

also given to the Disk Operating System and to the set-up of the control

cards needed for various types of jobs.

The text was compiled for a seminar course given by the author

for the staff of the Ontario Region, Canadian Forestry Service, during

the Pall of 1970.

TABLE OF CONTENTS

Pago

1

BASIC CONCEPTS

ntroduction

: conce

Magnetic cove storage l

Binary numbers and bytes

Registers and control 2

System 360 model 25 3

FUNDAMENTALS OF THE "BASIC FORTRAN IV" LANGUAGE ... 4

Constants

Variables '

Arithmetic expressions 8

Rules fov constructing arithmetic expressions 9

Arithmetic assignment statement 10

INPUT AND OUTPUT u

Example of a small FORTRAN program 15

CONTROL STATEMENTS 15

Unconditional "GO TO" statement 15

Arithmetic "IF" statement 16

"CONTINUE" statement 16

"END" statement 17

"STOP" statement 17

"PAUSE" statement 17

Computed "GO TO" statement 18

"DO" statement 18

Rules for DO looping 20

SPECIFICATION STATEMENTS 21

DIMENSION statement 22

INTEGER specification statement 24

REAL specification statement 2 5

DOUBLE PRECISION specification statement 25

SOME FORTRAN LIBRARY SUBPROGRAMS 25

TABLE OF CONTENTS

Page

PROGRAMMING CONSIDERATIONS 27

DISK OPERATING SYSTEM 27

DEFINE FILE statement 28

Direct Access WRITE statement 30

Direct Access READ statement 30

BIBLIOGRAPHY 35

APPENDIX A 39

APPENDIX B 42

APPENDIX C 45

APPENDIX D 47

INTRODUCTION

In scientific data processing, one is often confronted with

highly complex problems whose solutions could take several man-years even

with a calculator. In such cases, one would most likely turn Co an

electronic assistant, which is called "the electronic computer". An
electronic computer works in a somewhat similar manner to a calculator.

An ordinary calculator has one or two registers in which either data are

stored or arithmetic operations such as addition, subtraction, multiplica

tion, or division are carried out. In a calculator with two registers,

the contents of one register may be added to the contents of another regis

ter to obtain the sum of the two numbers. In a computer, there are

several registers as well as thousands of storage locations where numbers

or instructions may be stored. Each storage location is identified by a

numeric address. A number or a variable stored at a specified storage

location may be brought into one of the registers, and then another

number—stored at a different location—may be added to it. This is, in

effect, just a more sophisticated form of the operation carried out with

an ordinary calculating machine.

BASIC CONCEPTS

Magnetic core storage

Computers function in a binary mode, that is, they operate on

quantities that can have only two possible states—the "on" and "off" or

1 and 0 states. A device that can take only one of two possible states

is referred to as a binary indicator. In most IBM 360 models, thousands

of ferric oxide rings (19 mils inside diameter) are used as binary indi

cators. These rings are easily magnetized, can retain their magnetism

indefinitely, and can be just as easily demagnetized. Thus, they are

called magnetic cores or often are referred to as the memory of the

computer. Magnetic cores are arranged in planes and are strung like

beads on wires. They may be magnetized by passing an electric current

through the wire. The direction of the magnetic field depends on the

direction of the current. It is agreed by convention that cores mag

netized in one direction represent l's, and those magnetized in the

opposite direction represent 0's.

Binary numbers and bytes

To represent decimal numbers in binary mode, a combination of

l's and 0's is used, i.e., cores magnetized and not magnetized. A binary

digit Is also called a bit. The smallest unit of information with which

the computer deals is a byte, which la composed of nine bits—eight bits

to represent information and an extra bit called a parity bit. This

The author is a Research Officer, Forest Research Laboratory,

Sault Ste. Marie, Ontario.

extra bit is used for Che detection of possible machine malfunctions.

With the eight bits, 28 = 256 distinct characters can be represented
while using only one position of storage. To represent a constant or a

variable in an IBM 360/25 computer, four storage locations or four bytes

are needed. Thus, 4 x 8 = 32 binary digits (not counting parity bit)

are taken up by each constant or variable. Because of this, writing in

binary notation may be tedious and subject to clerical errors. Various

notations have been developed to represent binary numbers in a more com

pact notation, of which the hexadecimal one has become standard for the

IBM 360/25. Hexadecimal notation is based upon powers of 16 and uses 16
different digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, (where,

A = 10, B = 11 F = 15).

Registers and control

Besides magnetic core storage, the IBM 360/25 computer also makes

use of registers. Registers are electronic units which hold informa

tion temporarily during the processing of a program. There are three

types of registers in the 360/25: the general purpose (used for stor

ing the integer operand involved in arithmetic operations), the floating

point (used for storing the operands of floating point numbers) , and

the control registers (used as "electronic scratch pads").

The computer operates under the control of instructions. The

instructions might be in the form:

move into register 7 the number at location 0140, then add to

register 7 the number at location 0132.

This, in hexadecimal form, would look as follows:

58 7 0140

5A 7 0132

where: 58 and 5A are instruction codes (meaning load and add, respec

tively), 7 is the register number, and 0140 and 0132 are core

address numbers. Thus, the computer receives the instructions

in coded numeric form.

System 360 model 25

The IBM system 360/25 may simply be thought of in terms of Lhree

units:

(1) the storage unit, containing the main core storage,

(2) the central processing unit (C.P.U.), containing the circuitry

for performing arithmetic operations and control (also the

various registers),

(3) the input/output units, providing means of communication with

the computer. Although there may be several input/output units

attached to an IBM 360 system, generally only four are attached

to a model 25 which supports basic FORTRAN IV (with disk operating

system). These are:

(a) A console typewriter, which is a modified IBM selectric

typewriter, used mainly for brief communications between

the operator and the computer, such as starting or stopping

program runs. It also provides a log of what the computer

has done.

(b) A card read/punch unit, which provides for reading infor

mation from cards into core storage and for punching the

contents of specified core areas on cards. In scientific

data processing, where often a large number of cards must

be read, it is an economic advantage to have a relatively

fast card reader attached to the computer, such as the

model 2540 (which reads 1000 cards/minute).

(c) A line printer, which prints the contents of specified core

areas on paper. Generally, an entire line, consisting of

120-144 characters, is printed at once. Again, in scien

tific data processing, speed is important. Hence, the

model 1403 line printer, which can print between 600 and

1000 lines per minute, is often used with a model 25 com

puter.

(d) A disk drive (or in some cases two or more disk drives),

which in effect expands the capacity of a computer at a

relatively low cost. This disk unit looks something like

a juke box. The disk is covered with magnetic coating and

information from core storage is recorded on it in much

the same way as a phonograph record is made. Later on,

this information may be read back into core storage and

used either in calculations or directly for printing.

FUNDAMENTALS OF THE "BASIC FORTRAN IV" LANGUAGE

The word "FORTRAN" is derived from "FOR"mula "TRAN"slation, and

this is what it actually means. FORTRAN language is a cross between

English and mathematics; therefore, it is mainly used for solving scien

tific problems. In a way, it is independent of the type of machine, or

in other words, is applicable to different makes of computers. However,

each machine has a certain dialect, or more correctly, a number of re

strictions, but once the basic elements of the FORTRAN language are

mastered, it is relatively simple to program the different makes of

computers.

A program written in Basic FORTRAN IV language consists of a

set of statements written for the purpose of directing the computer

through the various steps of the program. Basically, the computer may

be instructed through binary or hexadecimal numbers. That would, however,

be very confusing and time consuming. Thus, the FORTRAN language pro

vides a practical approach and an easy access to the computer.

A program written in FORTRAN is called the source program. It

must be translated into machine language in order to be suitable for

execution on an IBM 360 system. This translation is performed by

another program, called the FORTRAN compiler, which is generally built

into the system and the reader need not be concerned with it. For the

sake of interest, it may be mentioned that when a source program is

translated into machine language it is called an object program.

In order to be able to read and write in any language, it is

best to learn its alphabet first, then something about its grammar, and

finally to build up a fairly good vocabulary. This logical course of

action also follows in learning to read and write in FORTRAN language.

Here, the alphabet is the same as in English, (A to Z) plus the $ sign,

but the alphabetic characters must be capital letters. The numeric

characters run from 0 to 9, and in addition, special characters sucii

as+-/=. ()*,'& and blank are acceptable in FORTRAN. Thus,

in FORTRAN, there are alphabetic, numeric, and special characters.

When alphabetic and numeric characters are mixed within a word, the

word is called alphameric.

The basic language units used for constructing FORTRAN state

ments are constants, variables, operations, expressions, and functions.

Constants

Any number that appears in a source statement in digit form is

called a constant. It is a fixed, unvarying quantity. Three types of

constants can be used in basic FORTRAN: integer, real, and double pre

cision.

(1) An integer constant is a whole number written without a decimal

point. It may be zero or any positive or negative number of

less than approximately 10 decimal digits (maximum magnitude =

2147483647 or 2JJ- - 1), and it must not contain embedded commas.
If a constant is unsigned, its positive value is assumed.

An integer constant occupies four locations of storage, that is,

four bytes.

(2) A real constant is any number written with a decimal point. It

may be zero or any positive or negative number with a maximum

of seven significant digits. A real constant may explicitly be

specified as real by appending an exponent to it. The exponent

consists of the letter E followed by a signed or unsigned 1- or

2-digit integer constant. The letter E indicates that the real

number is to be multiplied by the specified power of 10 (the

integer constant following E specifies the power of 10). A real

constant also occupies four locations of storage, that is, four

bytes. It may not contain embedded commas. An integer constant

followed by a decimal exponent is also considered real. The

range of exponents of a real constant is from 10~'° to ^5

Examples:

Valid real constants

Invalid real constants

5,271. (embedded comma)

2.E (missing the integer constant after E)

2.E222 (E is followed by a 3-digit integer)

2.E-80 (magnitude is outside the allowable range)

1.E2. (the constant after E is not integer)

0 (missing a decimal point)

(3) A double-precision constant differs from a real constant mainly

in terms of precision. It can contain from 8 to 16 significant

digits, and the exponent following it is D instead of E.

Examples:

Valid double-precision constants

2.12345678901234

2.0000000

0.0D0

2.5D07

■0.222D-3

7.8D0

i.e. 25000000.

i.e. -.000222

i.e. 7.8 x 10° = 7.

Invalid double-precision constants

222,511.2

1234567

22.2D-95

5.2D4.

(embedded comma)

(decimal point missing)

(magnitude outside the allowable range)

(not an integer exponent)

Variables

A variable in FORTRAN language is a symbolic representation of

a quantity; or alternatively, a number referred to by name rather than

by value is a variable. Names assigned to variables must consist of

from one to six alphameric characters, i.e., alphabetic—A through Z,

including $ sign—and numeric—0 through 9, and the first one must be

alphabetic. Special characters are not permitted in FORTRAN names.

The type of a variable corresponds to the type of the data it

represents—it may be in integer, real, or double-precision mode. The

mode of a variable is specified by the first character of its symbolic

name. Thus, if the first letter of a variable's name is either 1, J, K,

L, M, or N, it is in integer mode; that is, it represents an integer

quantity. If the symbolic name of a variable does not start with any of

the above six letters, then it may either be in real or double-precision

mode. It is double precision only when it is explicitly specified wirh

a 'D' exponent, or when it is specified at the beginning of the program.

Examples:

Valid integer names Valid real names

IBM360 TREE

IRENE AIBM

IVAN DIAM

ID I AM A

ITREE $GOTU

KAREA SILLY

L100 OHBOY

H2F4$ WHATEH

N FUNNY

NOMORE TRY

Invalid integer and real names

K735S75 (more than six characters)

WRONG. (contains a special character)

5IBM (first character is not alphabetic)

In the FORTRAN language, a set of variables identified by a

single variable name is called an array. For example, let the waist

measurement of three young ladies be called WAIST1, WAIST2, and WAIST3,

where WAIST1 refers to the first, WAIST2 to the second, and WAIST3 to

the third young lady. Thus, the variable names imply that the three

waist measurements are in "real" mode. If it is further specified that

the three waists in question have been measured and found to be 23, 32,

and 24 inches, respectively, in FORTRAN arithmetic, they may be written

as

WAIST1 = 23.0

WAIST2 =32.0

WAIST3 =24.0

However, these three waist measurements may be identified by a single

name, say WAIST. To be able to refer to each individual measurement

separately, an integer quantity (in parentheses) is attached after the

name. Thus,

WAIST(l) = 23.0

WAIST(2) - 32.0

WAIST(3) = 24.0

The integer quantity in parentheses is called the subscript of the var

iable. A variable name with a subscript immediately following it is

called a subscripted variable. The subscript may be an integer constant

or an integer variable. For example, WAIST(I) refers to the I-th value

of the variable WAIST, and this value could be 1, 2, or 3. For example,

if I = I

WAIST(I) - 23.0 that is, WAIST(l) = 23.0

or if I - 3

WAIST(I) - 24.0

The foregoing is only a brief introduction to subscripted vari

ables, which will be dealt with later on in more detail.

Now, try to solve Exercises 1 to 4 in Appendix A.

Arithmetic expressions;

Basic FORTRAN IV provides only one type of expression, the arith

metic expression. An arithmetic expression is a sequence of constants,

variables, and functions separated by operation symbols and parentheses

to form a meaningful mathematical expression. In addition, a single

constant or a variable can also be an arithmetic expression. The fol

lowing five operations are permitted:

+ denoting addition

- denoting subtraction

* denoting multiplication

/ denoting division

** denoting exponentiation

Examples:

A+B FRANK+TALK

3 2**2

2+1 Y/4.5

(A+B*C) A-C

l.D-02

Rules for constructing arithmetic expressions:

(1) All desired operations must be specified by operation signs. For

example, AB does not mean the multiplication of A and 11. If multi

plication is desired, it must be written as A*B or B*A.

(2) When two operation symbols follow in succession, they must be sep

arated by parentheses. For example, CA-2. is invalid, and should

be written as C*(-2.).

(3) Computation Is performed from left Lo right according Co the fol

lowing hierarchy oi' operations:

(a) evaluation of functions (e.g. SIN(X))

(b) then **

(c) then * and /

(d) and finally + and -

This hierarchy is used to determine which of two consecutive operations

is performed first until the end of the expression is encountered, and

then all of the remaining operations are performed in reverse order.

However, in the case of exponentiation, the evaluation is from right to

left.

For example, the expression

C*D/A-F**E**G+2.

would be evaluated as

Step 1 E**G

Step 2 F**(result of Step 1)

Step 3 C*D

Step 4 (result of Step 3)/A

Step 5 (result of Step 4)-(result of Step 2)

Step 6 (result of Step 5)+2.

As in algebra, parentheses may be used in arithmetic expressions

to specify the order of operations. For example,

(((C*D)/(A))-(F**(E**G)))+2.

In fact when one is in doubt about the order of operations, the best

policy is to make use oF parentheses, even if it means inserting un-

needed ones. When one or more pairs of parentheses are used, the

expression within the parentheses, or within the innermost parentheses,

is evaluated first.

CO The mode of the result of an operation depends on the mode of the

operands involved in the operation. Mode is given for the internal

representation of the result. The actual value is dependent upon

the mode of the target variable. For example, the results of the

10

operations + , -, *, /, and ** would be as follows:

Furthermore, it should be noted that a negative real or double

precision quantity cannot be exponentiated, since the log of a negative

number is complex.

Arithmetic assignment statement

The arithmetic assignment statement resembles the conventional

algebraic equation. Its general form is

A=B

where: "A" is a variable name (without a sign), and

"B" is any FORTRAN expression.

In effect, the FORTRAN arithmetic assignment statement tells the com

puter to evaluate the arithmetic expression on the right of the equal

sign, and then to assign the resulting value to the variable named on

the left of the equal sign. Thus, the equal sign is not used here as

it is in ordinary mathematical notation, since the left side of the

statement must be the name of a single variable. The arithmetic

assignment statement is sometimes abbreviated to arithmetic state

ment, and from now on in this text, it will be used in the latter

form.

Example:

A=2. means assign 2. to "A"

B=7.+8. means add 8. to 7. then assign the result

(15.) to "B"

1=3 means assign 3 to "I"

J=5 means assign 5 to "J"

n

K=I+J means add the value of "J" (=5) to the value of

"I" (=3), then assign the result (=8) to "K".

In the previous section it was stated that the mode of an arith

metic expression depends on the mode of the operands. Generally, it is

a good practice not to mix modes in arithmetic expressions. However,

when modes are mixed, the computer changes the operands into a uniform

raode; that is, if both integer and real quantities are present in an

arithmetic expression, integer quantities are changed into real, then

the indicated operations are performed. This also extends to arithmetic

statements, where the mode of the result of the arithmetic expression is

equated with the mode of the variable on the left of the equal sign.

Example:

1=5/2 here, 5/2 results 2.5 but in integer arithmetic, the

decimal portion is "cut off" to give 1=2

A=5A2 first, 5*2 is 10 (integer), then this integer value

is converted into real, so A=10.0

J=2.7 the value 2.7 is truncated to an integer value, and

this value will replace the value of J, so J=2 is the

final result.

INPUT AND OUTPUT

The transfer and control of the flow of data between an input/

output device and internal storage is performed in FORTRAN through the

use of input/output statements. In an IBM 360/25 system, where data are

frequently submitted into internal storage from punched cards as read by

the card reader, the "READ" statement is the relevant input statement.

First, information needs to be put on the cards. This operation

is performed by any card-punching machine, such as the IBM 029. A card

generally has 80 columns that may be punched, and each column has 12

punching positions, one each for digits 0 to 9 and two zones above the

zero. Numbers are recorded on cards by punching a single hole in the

corresponding digit positions of the desired column. Alphabetic and

special characters are the combinations of a digit and one or both of

the zone-position punches. Hence, each numeric, alphabetic, and special

character requires one column on the card. Figures 1 and 2 in Appendix

B show examples of punched cards.

When punching FORTRAN source programs, the first five columns of

the card are used exclusively for numbering the FORTRAN statements. The

statements themselves are punched in columns 7 to 72, but if a statement

12

Is too long for one card, it may be continued on as many as 19 succes

sive cards by punching any character, other than blank or zero, in col

umn 6 of each continuation card. Columns 73 to 80 are not significant

to the FORTRAN compiler, and thus may be used for identification infor

mation. Furthermore, if "C" Is punciied In column 1, any information

written in the rest of the columns will not be executed by the computer,

but will be printed when the program is listed. A card such as this is

called the comment card.

In contrast, when data are punched on cards, all 80 columns may

be used.

Generally, FORTRAN source program cards, specifying certain

operations which the programmer wishes to perform are read into the

computer under the supervision of the operating system. On the other

hand, instructions for the reading of data cards are given by the pro

grammer in the source program. This may be done through a READ state

ment which has the following general form:

READ(i,j)list

where: "i" is an unsigned integer constant or an integer variable that

represents a data-set reference number. The programmer can

obtain the relevant number generally from the personnel of the

computer centre. For example, for the IBM 360/25 used by the

Ontario Region, the value of i is 1.

"j" is the statement number of the FORMAT statement used for

describing the data being read.

"list" refers to a possible list of variable names, separated

by commas.

The counter-part of the READ statement is the WRITE statement.

This has the same general form as the READ statement, except that the

word WRITE is substituted for the word READ. Therefore, its general

form is:

WRITE(i,j)list

where: "i", "j", and "list" refer Co data-set reference number, FORMAT

statement number, and an optional list of variable names, respec

tively. Again, the value of "i" depends on the installation.

For the IBM 360/25 used by the Ontario Region, the value of I

is 3.

As indicated by the input statements, there is another state

ment, the FORMAT statement, which generally follows the input statements,

i.e., not necessarily right after them, but it is included Ln Llie same

program. The FORMAT statement has the following general form:

13

where: "j" is the same number as specified in the READ and WRITE state
ments , and

"c,,c_ ,.. . ,c " are format codes.
I l n

Format codes describe the type of data being transmitted. The following
format codes are moat often used.

(1) I format for integer data. Its general form is

In where "n" is an unsigned integer constant, less than

or equal to 255, and specifies the number of characters
of data. For example, to read 3520 from columns 1 to 4,
the format code should be 14

(2) F format for real data without exponent. Its general form is

Fn.m where "n" is the same as above, and "m" is an unsigned
integer constant specifying the number of decimal

places to the right of the decimal point. For example,
2840.5 could be punched with the decimal point, or
as 28405 in columns 1 to 5, i.e., without punching
the decimal point, and the decimal point may be prop
erly positioned through the format code as F5.1

(3) E format for real data with exponent. Its general form is

En.m where "n" and "m" mean the same thing as above.

(4) D format for double-precision data. Its general form is

Dn.m where "n" and "m" mean the same thing as above.

(5) A format for character fields. Its general form is

An where "n" again means the same as above. For example,
to read the word LOVE from columns 1 to 4, the format'
code A4 may be used. An A format also transmits,
besides alphabetic characters, numeric and special
characters.

(6) H format for literal data. Its general form is

nH where "n" again has the same meaning as above, except
that it refers to the number of characters in a text
or in literal data. For example, the word LOVE trans

mitted in H format is 4HLOVE whore 4 is referring to

14

the four characters (LOVE) following "H". Literal

data may also be transmitted between a pair of apos

trophes. For example, 'LOVE'. In both cases, blanks

are classified as characters. The H format is also

used for carriage control (page or line skipping). For

example, when a line printer is used for output, the

first byte of the output record is not printed, but

used for controlling the action of the printer's

carriage control tape. Usually, the H format is used

for this purpose by writing 1H , where the character

after "H" may be blank, 0, +, or 1, depending an the

desired instruction. The meanings of the characters

are as follows:

blank means single space before printing,

0 means double space before printing,

+ means do not space before printing,

1 means skip to the first line of the next page.

Thus, 1H1, would instruct the computer to start print

ing on the first line of the next page. Furthermore,

a / may also be used for skipping a card or line.

(7) X format for skipping columns and fields. It has the form

nX where "n" again means the same thing as in (1). For

example, to skip five columns, 5X is the relevant for

mat code.

(8) I format for transferring data. Its general form is

Tn where "n" is an unsigned integer constant designating

a character position in a record where transfer of

data is to start. For example, if T5,4HL0VE is

designated in a FORMAT statement used by a WRITE

statement, the printing of LOVE would start in position

4. It should be noted that in this case the first

character is used for carriage control.

(9) n(..) indicates a group format specification. Here, "n"

signifies the number of times the format codes inside

the parentheses are repeated. For example, to read

21 35.0 12 and 71.2 from a card punched as 2135012712

in columns 1 to 10, the relevant format codes are

2(12,F3.1). When only one format code is to be

repeated, "n" is written in front of the particular

format code. For example, 214 or 2F5.1.

r,

Example of a small FORTRAN program

Calculate the area of a triangle.

First, read values for BASE and HEIGHT from a data card punched as 12052

in columns 1 to 5; the value for BASE is in columns 1 to 3 with one

decimal, and the value for HEIGHT is in columns k to 5 with one decimal.

Then, calculate the AREA by multiplying BASE with HEIGHT and dividing

the product by C (where C is a real constant with a value 2.). Call

the result "AREA".

C=2.

READC1,DBASE,HEIGHT

1 FOBMAT(F3.1,F2.1)

AREA=BASE*HEIGHT/C

WRITE(3,2)AREA

2 FORMAT(1H1,26HAREA OF THE TRIANGLE IS = ,F8.2)

END

This program is written on a FORTRAN coding sheet in Appendix B,

Figure 3. Now, try to solve Exercises 5 to 7 in Appendix A.

CONTROL STATEMENTS

Generally, FORTRAN statements are executed sequentially; that is,

control begins with the first statement, then passes from one statement

to the next, unless a control statement alters that order. Alternatively,

the order of the execution of FORTRAN statements may be controlled

through control statements. These are as follows.

Unaonditional "GO TO" statement

Its general form is

GO TO nnnnn

where: "nnnnn" is the number of an executable statement, to which

control is to be passed. For example,

C=2.

3 READ(1,1)BASE,HEIGHT

1 F0RMAT(F3.1,F2.1)

AREA=BASE*HEIGHT/C

WRITE(3,2)AREA

2 FORMAT(1H!,6HAREA= ,F8.2)

GO TO 3

END

16

This program causes the reading of the values for BASli and HEIGHT from

a card, and then the calculation and the printing of AREA. After the

execution of the GO TO statement, control is passed back to the READ

statement, i.e., statement number 3. However, the program hangs up and

never comes to a normal exit.

Arithmetic "IF" statement

Its general form is

IF(a)n.»n2,n,

where: "a" is an arithmetic expression, and "n","n ", and "n " are the

numbers of executable statements.

The "IF" statement causes control to be transferred to statement number

"ni","n2", or "113", when the value for "a" is less than, equal to, or

greater than zero, respectively. Since control is being transferred

from this control statement to a specified statement, the statement

immediately following an IF statement must be numbered. For example,

C=2.

3 READ(1,1)BASE,HEIGHT

1 FORMAT(F3.1.F2.1)

IF(BASE)3,3,4

4 AREA=BASE*HEIGHT/C

WRITE(3,2)AREA

2 FORMAT(1H1,6HAREA= ,F8.2)

END

This program causes the reading of the values for BASE and HEIGHT from

a card, and then tests the value of tiASE. If a blank card is read

(or BASE =0.), the "IF" statement would cause the control to be trans

ferred back, to the READ statement. Thus, another card is read. If,

on this card, the value for BASE is a positive number, the area of the

triangle would be calculated and printed. Then, the program comes to a

normal end. Note that if on the first card the value for BASE was a

positive number, another card would not be read, and calculation would

continue with the information obtained from this card.

"CONTINUE" statement

This is a dummy statement that may be placed anywhere in the

program. The "CONTINUE" statement does not affect the sequence of

execution in a source program, and is frequently used with other control

statements. For example, in the AREA OF TRIANGLE program, it may be

used as follows:

17

3 READ(1,1)BASE.HEIGHT

1 FORMAT(F3.1,F2.1)

IF(BASE-99.9)4,5,4

4 AREA=BASE*HEIGHT/2.

WRITE(3,2)AREA

2 FORMAT(1H1,'AREA= T,F8.2)

GO TO 3

5 CONTINUE

END

This program causes the reading of a card containing the values for BASE

and HEIGHT. Then, the "IF" statement tests whether BASli is equal to 99.9

or not. If BASE is not equal to 99.9, the area of the triangle is cal

culated and printed, after which, the "GO TO" statement transfers control

back to the READ statement. This whole process is repeated until the

computer reads a card with 999 in columns 1 to 3 (i.e., the columns allo

cated to the variable named BASE). At this step, the value of the arith

metic expression in the "IF" statement is 99.9-99.9=0. Control is then

transferred to statement number 5, and to the "END" statement. The card

with 999 punched in columns 1 to 3 is called the stop card, since it

causes the termination of card reading. Note that it is assumed that

99.9 would never be an observed value for BASE.

"END" statement

Its general form is simply END and it is a nonexecutable state

ment that defines the end of a source program or source subprogram for

the compiler. The "END" statement must be the last statement of each

program or subprogram.

"STOP" statement

Its general form is simply STOP or STOP n where "n" is an integer

constant of not more than 5 digits. The "STOP" statement terminates the

execution of the object program, and if "n" is specified, its value is

typed on the output device(s).

"PAUSE" statement

Its general form is PAUSE or PAUSE n where "n" is an integer

constant of not more than five digits. When a "PAUSE" statement is

encountered, the program waits until operator intervention causes it to

resume execution, starting with the next statement after it.

18

Computed "GO TO" statement

Its general form Is

GO TO (n1,n2,n3,...,nn),i

where: "nj" ."i^'V'i^" ,"nn" are the numbers of executable statements and

"i" is a non-subscripted integer variable.

The computed "GO TO" statement causes control to be transferred to the

statement numbered "nj",1^",'^", or "nn", depending on whether the

current value of "i" is 1, 2, 3, ..., or "n", respectively. For example,

a computed "GO TO" statement may be used in the AREA OF TRIANGLE program

as follows:

9 ITEM=0

3 READ(1,1)BASE,HEIGHT

1 FORMAT(F3.1,F2.1)

IF(BASE-99.9)4,5,4

4 AREA=BASE*HEIGHT/2.

ITEM=ITEM+1

GO TO (6,7,7,7),ITEM

6 WRITE(3,2)AREA

2 FORMAT(11U,'AREA= ',F8.2)

GO TO 3

7 WRITE(3,8)AREA

8 FORMAT(1H0,'AREA= ',F8.2)

IF(nEM-4)3,9,3

5 CONTINUE

END

The above program prints only four areas per page; that is, the computed

"GO TO" statement causes the first ARM to be printed on a new page

(because ITEM - 1 and so control is transferred to the first statement

number, i.e., to statement number 6). Since ITEM is incremented to 2

before the computed "GO TO" statement is encountered again, control is

transferred to statement number 7. Now, try to follow the various steps

in the program, assuming it has 10 data cards. Also, try to solve Exer

cise 8 in Appendix A.

"DO" statement

Its general form is

DO n i=m,,m?,m_

where: "n" is a statement number, "i" is a nonsubscripted integer

variable, and "m ","m ","m " are unsigned integer constants

19

or nonsubscripted integer variables whose values are greater

than zero.

The DO statement is a command to execute repeatedly the statements that

physically follow the DO statement (up to and including the statement

numbered "n")- These statements that are to be executed repeatedly are

called the "range of the DO". The first time the statements in the range

of DO are executed, "i" is initialized to the value "m^", then at each

succeeding time, "i" is increased by the value "tn-j". At the end of the

iteration, "i" is equal to the highest value that does not exceed "m2",
and then control passes to the statement following the statement numb ere-. I

"n". The value "mV1 is optional and when it is omitted, its value is

assumed to be 1.

Thus, the DO statement causes the repeated execution of the state

ments within its range. Such a process could also be performed with other

control statements, for example, with an IF statement.

3 READ(1,DBASE,HEIGHT

1 FORMAT(F3.1,F2.1)

AREA=BASE*HEIGHT/2.

WRITE(3,2)AREA

2 FORMAT(1H0,1AREA= ',F8.2)

J=J+1

IF(J-10)3,5,5
5 CONTINUE

END

In this program, the integer variable "J" is used as a counter; that Is,

the statements between the READ statement and the IF statement are exe

cuted 10 times. With a DO statement, this program may be written as

follows:

DO 5 J=l,10

RBAD(1,1)BASE,HEIGHT

1 FORMAT(F3.1,F2.l)

AREA=BASE*HEIGHT/2.

WRITE(3,2)AREA

2 FORMAT (1H0, 'AREA= *,F8.2)

5 CONTINUE

END

Alternatively, the first statements may be written as

M=10

DO 5 J-l.M

20

or as

L=l

M-10

K=l

DO 5 J=L,M,K

In the above example, the DO statement causes the execution of

the statements up to and including the statement numbered 5, thus result

ing in the reading of 10 cards, and in the calculation and printing of 10

areas. During the last execution of the range (in this case, when J = 10) ,

the DO is said to be satisfied, and there is a normal exit from the DO
loop.

Rules for DO looping

(1) The indexing parameters of a DO statement (i, mi, m2, and

m^) must not be changed by any of the statements within the range

of the DO loop. For example, the following is not allowed:

M-10

DO 5 1=1,M

M=2

5 CONTINUE

(2) The last statement in the range of a DO loop, i.e., statement

numbered "n", cannot be a "GO TO", a "PAUSE", a "RETURN", a "STOP",

and "IF", or another "DO" statement. The "CONTINUE" statement

is most often used to circumvent this rule.

(3) There may be other DO statement(s) within the range of a DO loop

and such a set is referred to as a nest of DO's. In nested DO's,

the range of the innermost DO must be entirely within the range of

the outer DO loop. For example,

DO 5 1=1,2

WRITE(3,7)

7 FOHMAT(llil)

DO 5 J=l,5

READ(1,1)BASE,HEIGHT

1 FORMAT(F3.1,F2.1)

AREA=BASE*HEIGHT/2.

WRITE(3,2)AREA

2 FORMAT(1HO,'AREA= ',F8.2)

5 CONTINUE

END

21

In this program, the outer (or first) DO starts the program off

(1=1). The first WRITE statement causes the printer to move to the

top of a new page, and then the second DO statement is satisfied,

i.e., J = 1, J = 2, ..., J = 5. At this stage, five cards are

read and five areas are calculated and printed. Control then

passes back to the first DO statement, and the first WRITE statement

causes the printer again to move to the top of a new page. The

second DO statement is next to be satisfied again. At this step,

the first DO statement is also satisfied (I = 2), and control is

passed to the END statement.

(4) A transfer out of the range of a DO loop is permissible.

For example,

DO 5 1=1,10

READ(1,1)BASE,HEIGHT

1 FORMAT(F3.1,F2.1)

IF(BASE-99.9)3,4,4

3 AREA=BASE*HEIGHT/2 .

5 WRITE(3,6)AREA

6 FORMAT(1HO,'AREA= ',F8.2)

4 CONTINUE

END

In this program, if, for example, the sixth card has 999 punched

on it in columns 1 to 3, the IF statement would cause it to exit

from the DO loop when 1=6. Note that statement number 6 is out

side the DO loop, but this is allowed because the FORMAT statement

is not executed and it may be placed anywhere in the source program.

(5) A transfer into the range of a DO loop from outside its range is

not permitted. This rule also prohibits the transfer from the

range of an outer DO into the range of an inner DO. However, it

does permit the transfer from the range of an inner DO into the

range of an outer DO, since such a transfer is within the range

of the outer DO. An exception to these rules is that it is per

mitted to transfer out of a range of a DO to perform some subroutine,

and then to transfer back to the same DO loop, providing that no

change has been made in the values of the Indexing parameters.

SPEC IFICATION STATEMENTS

Specification statements provide the compiler with information

about the nature of data in the source program, and supply the infor
mation required to allocate storage locations.

22

DIMENSION statement

Its general form is

DIMENSION a1(k1),a2(k2),... .*(*■)

where: "a^","a2","an" are array names, and

"k^","k2","kn" are unsigned integer constants representing the

maximum value of each subscript in Che array.

For example, if the following one-dimensional array is punched on a card

as 230 320 240 and if this array is named "W", then it can be read in

with the following short program:

DIMENSION W(3)

READ(1,1)W(1),W(2),W(3)

1 FORMAT(3F5.1)

END

Note that in the DIMENSION statement the subscript quantity is 3, because

the maximum number of elements in the array is 3. A further point of

interest is that since the array Is dimensioned, the order of elements

need not be specified in the READ statement. For example,

DIMENSION W(3)

READ(1,1)W

1 FORMAT(3F5.1)

END

This program does exactly the same thing as the previous one. Therefore,

when the order is not specified explicitly by either a READ or WRITE

statement, the elements in a one-dimensional array are taken in a se

quence, starting with the element corresponding to the subscript 1 and

proceeding to the largest subscript as defined in the DIMENSION state

ment.

In basic FORTRAN, an array may be one-, two-, or three-dimensional,

For example, the above one-dimensional array may be expanded into a two-

dimensional one as follows:

230 320 240

235 326 242

The program for this array may be written as:

DIMENSION H(3,2)

READ(1,1)W(1,1),W(2,1),W(3,1),W(1,2),W(2,2),W(3,2)

1 FORMAT(3F5.1)

END

23

or alternatively

DIMENSION W(3,2)

READ(1,1)W

1 FORMAT(3F5.1)

END

These two programs give identical results. Similarly, when the order of

elements is not specified explicitly for a two- (or tliree-) dimensional

array, the elements are taken so that the first subscript is increasing

first, Chen the second (then the third, if applicable).

The order of elements in an array may also be specified as

follows: for one-dimensional array,

DIMENSION W(3)

1 FORMAT(3F5.1)

END

For two-dimensional array,

DIMENSION W(3,2)

READ(1,1)((W(I,J),1=1,3),J=1,2)

1 FORMAT(3F5.1)

END

In the last example, the maximum values of "I" and "J" are 3 and 2, respec

tively, as specified in the DIMENSION statement. The subscript "I" is

being incremented first from 1 to 3, and the corresponding values are

read from the first data card (with 3F5.I format). Next, "J" is incre

mented to 2, and "I" is again incremented from 1 to 3. This program may

also be written with two "DO" statements:

DIMENSION W(3,2)

DO 5 J»l,2

DO 5 1=1,3

5 READ(1,1)W(I,J)

1 FORHAT(3F5.1)

END

In the general form of the DIMENSION statement, the subscript was

defined as an unsigned integer constant, since it represents a set value.

In the examples, however, it was shown that the value of a subscript may

vary, provided it does not exceed its maximum value as specified in the

DIMENSION statement. Thus, in general, a subscript is an integer quan

tity (or a set of integer quantities separated by commas) that is used to

identify a particular element in an array. The value of a subscript must

always be greater than 0. Subscripted quantities may be onu of seven

forms in basic FORTRAN:

(1) an unsigned, nonsubscripted integer variable, e.g., L

(2) an unsigned integer constant, e.g., 2

(3) an unsigned, nonsubscripted integer variable + an unsigned

integer constant, e.g., L+2

(4) an unsigned, nonsubscripted integer variable - an unsigned

integer constant, e.g., L-2

(5) an unsigned Integer constant x an unsigned nonsubscripted

integer variable, e.g., 2*L

(6) an unsigned integer constant x an unsigned nonsubscripted

integer variable + an unsigned integer constant, e.g., 2*L+2

(7) an unsigned integer constant x an unsigned nonsubscripted

integer variable - an unsigned integer constant, e.g., 2*1.-2

Finally, it should be noted that the DIMENSION statement describing

data must precede any statement that refers to that data.

INTEGER specification statement

Its general form Is

INTEGER a, ,a_ a
12 n

where: "a.","a ","a " are variable names, or

Li* J.c.ljtK ai,K.,J,a«l,K^^,...,d I.K.)

where: "al"'"a2"» an(^ "an" are array or function names, and
"k/'/'kn", and "k-" are unsigned integer constants representing

the maximum value of each subscript in the array.

The INTEGER specification statement declares that a particular variable

or array is in integer mode irregardless of its initial character. For

example, the variable named TREE and the array named W may be declared in

integer mode by writing:

DIMENSION W(3,2)

INTEGER TREE,W

The array W may also be dimensioned in the specification statement:

INTEGER TREE,W(3,2)

Of course in this case, a "DIMENSION" statement for the "U" array is not

needed.

25

REAL specification statement

Its general form is

REAL a.,a ,... ,a or

REAL a1(k1),a2(k2)l...,an(kn)

Here, "aL","a2","an"."k^1 ,"k2", and "kn" mean the same thing as

in the case of the INTEGER specification statement. Thus, the REAL

specification statement declares a particular variable or array to be

in real mode. For example, the variable named NUMBER and the array

named IW may be declared in real mode by writing

DIMENSION IW(3,2)

REAL NUMBER,IW

or simply

REAL NUMBER,IW(3,2)

Here again, the dimension information is given in the specifi

cation statement.

DOUBLE PRECISION specification statement

Its general form is

DOUBLE PRECISION a,,a,,,...,a or
l I n

DOUBLE PRECISION a. (k,),a.(k_) a (k)
i i i. l n n

where: "ai11,IIa2","an"»"kl"1llk2"» and "kn" mean the same thing as in
the case of the INTEGER and REAL specification statement.

Hence, the DOUBLE PRECISION specification statement declares

a particular variable or array to be in double-precision mode.
For example:

DOUBLE PRECISION NUMBER,IW(3,2)

SOME FORTRAN LIBRARY SUBPROGRAMS

In scientific data processing, it is often necessary to obtain

the square root or the logarithm of a number. To do this in a FORTRAN

program, the relevant mathematical subprogram, which is generally

stored on the disk during system generation, may simply be called upon
by name. The following is a list of subroutines which are likely to
be used.

'(>

(1) To compute the natural logarithm of a real number.
Entry name: ALOG

Form of use: ALOG(a) where "a" in parentheses is the argument,

which may be a real number or a real arith

metic expression with a value greater than

zero.

Examples: AL0G(2.)

ALOG(B)

ALOGCA+B/C)

(2) To compute the common logarithm of a real number.
Entry name: ALOG10

Form of use: ALOG10(a) where "a" is the same as in (1).

Examples: ALOG10(2.)

ALOG 10 (A)

ALOG10(A+B/C)

(3) To compute the natural logarithm of a double-precision number.

Entry name: DLOG

Form of use: DLOG(a) where "a" in parentheses is the argument,

which may be a double-precision number or a

double-precision arithmetic expression with

a value greater than zero.

Examples: DLOG(2.)

DLOG(A)

DL0G(A+B/C)

(4) To compute the common logarithm of a double-precision number.

Entry name: DLOG10

Form of use: DLOGlO(a) where "a" is the same as in (3).

Examples: DLOG10(2.)

DLOG10(A)

DL0G10(A+B/C)

(5) To compute the square root of a real number.

Entry name: SQRT

Form of use: SQRT(a) where "a" in parentheses is the argument,

which may be a real number or a real arith

metic expression with a value equal to or

greater than zero.

Examples: SQRT(2.)

SQRT(A)

SQRT(A+B/C)

27

(6) To compute the square root of a double-precision number.

Entry name: DSQRT

Form of use: DSQRT(a) where "a" in parentheses is the argument,

which may be a double-precision number or

a double-precision arithmetic expression

with a value equal to or greater than zero.

Examples: DSQRT(2.)

DSQRT(A)

DSQRT(A+B/C)

There are a number of other mathematical subprograms available,

such as the computation of the sine or cosine of an argument representing

a number. To obtain more information on these, the reader should consult

the IBM manual.

PROGRAM ING CONS IDERATIONS

In this text, subprograms are not dealt with, since the primary

objective of this paper is to introduce the reader to programming. It

is assumed that those wishing to reach a more sophisticated or advanced

level in programming are now sufficiently equipped to use the IBM-

supplied manuals. For the beginner, it is best to practice with single

programs more extensively before attempting to write subprograms.

In the remainder of this paper, the Disk Operating System will

also be introduced and the control cards necessary to run a program

through the computer will be given.

DISK OPERATING SYSTEM

In this section, an attempt will not be made to explain in detail

the Disk Operating System (DOS), but rather to show how certain types of

jobs may be carried out with disks. In particular, information given here

refers to the IBM 360/25 system with two IBM 2311 disk storage units, as

used by the Ontario Region. Furthermore, only the storage of data on the

disk and the retrieval of data from the disk is being presented here.

Those readers wishing information about how to store programs or subpro

grams in the relocatable library or core image library, or those wishing

to understand the DOS, should consult the IBM manuals.

In cases where large volumes of data are to be processed, and

especially if these data are to be put through internal storage several

times, the available core storage in the computer may not be large enough

to handle the job. Even if it is large enough, the repeated loading of,

for example, 10,000 cards can become an unattractive or an uneconomical

proposition. In such cases, it is best to store the data on the disk.

28

To be able to do this, certain information muse be supplied to the com
puter regarding the size of the data and their positions on the disk.

This requires some knowledge of the structure of the disk.

As stated above, the computer used by Ontario Region has an IBM

2311 disk storage unit attached to it. A disk pack, which consists of
six disks, is mounted on each storage unit or disk drive. These disks,
looking like phonograph records, are 14 inches in diameter and are

spaced about 1 inch apart. Each disk has two faces, upper and lower.

Thus, in a disk pack, there are 12 faces. However, the upper face of the
top disk and the lower face of the bottom disk, i.e., the outside faces
are not used because they are too vulnerable to damage. This leaves 10

available faces whicli are numbered 0 to 9 starting with the lower face

of the top disk (the upper face of the bottom disk is, therefore, num

bered 9). Each disk face contains 200 circular areas or tracks on which
information can be recorded. These 200 tracks over 10 disk faces form

200 cylinders, thus each cylinder contains 10 tracks. Cylinders are
numbered, starting with 0 at the outer edge and ending with 199 at the

inside of the disk. On each track, 3,625 bytes of information may be

stored. Thus the capacity of the entire pack is about 7.5 million bytes.

When the disk pack is spinning at a relatively high speed on the

disk drive, five access arms, each containing two READ-WRITE heads, move

between the disks in such a way that the 10 heads are positioned above

each other in a cylinder. Therefore, for example, when the upper head

is positioned at track 0 on disk surface 0, the rest of the heads are

also positioned at cylinder 0 over their respective disk surfaces.

Information may be stored on or retrieved from the disk in a se

quential manner (Sequential Access), or by going directly to the relevant

cylinder (Direct Access). Storing data on a disk pack can be an involved

and a complex operation, especially from a beginner's point of view.

Therefore in this paper, only one method is given which is the Direct

Access. This might not always be the most efficient one, hut it is the

one most often used in the Ontario Region for the programming of research

data.

Before data can be manipulated, during Direct Access, between

internal storage and the disk pack, it must be defined in some way. In a

FORTRAN source program, this is done by the "DEFINE FILE" statement.

DEFINE FILE statement

Its general form is

DEFINE FILE l^.^.f ̂ .l^fa^f^) ,... .^CVVVV

where: "ij","i2","in" are integer constants, representing data set

reference numbers. The user should obtain Che relevant number

29

from the personnel of the computer centre. For the computer

used by the Ontario Region, any of the following integer con

stants; may be used: 7, 8, 9, 10, 11, and 12 (if the user

requires more than six numbers, he should consult with the

Regional Biometrician).

"m1","m2","mn" are integer constants, specifying the maximum

number of records in Che data set.

"r1","r2","rn" are integer constants, specifying the maximum

size of each record in the data set. This may be measured in

bytes or in words (number of bytes divided by four and

rounded to the next highest integer). At this stage, one must

remember that an integer variable or constant and a real variable

or constant occupies four storage locations or £our bytes,

whereas a double-precision variable or constant takes eight

bytes. For example, if the values of two integer variables and

of three real variables are punched on a card, then this can be

taken as a record whose length is calculated as follows:

record length = number of variables x. 4 = 20

Similarly, for two integer and three double-precision variables,

the record length is 2x4 + 3x8^ 32.

"f1","f2","fn" specifies that the data set is to be read or

written either with or without format control. The following

three letters are used here:

E indicating that I/O will be formatted,

U indicating that i/o will be unformatted, and

L indicating that I/O will be mixed—some formatted, and some

unformatted. This is perhaps the most convenient one to use.

"vi , Vj » vn" represents a nonsubscripted integer variable,

called the associated variable, referring to the "index" number

of each record. Alternatively, consider that the records in the

data set are numbered from 1 up to and including "m^","m2" ,"1^",

i.e., the maximum record number.

For example, if 10 variables (some integer, some real) are punched per

card, and there are 100 such cards, the DEFINE FILE statement may be

written as

DEFINE FILE 7(100,40,L,INDEX)

The DEFINE FILE statement in the source program must precede any

input/output statement referring to the data it defines.

30

Now that the data for the computer is defined, it may be manipu

lated between internal storage and the disk pack. This is done by READ

and WRITE statements.

Direct Access WRITE statement

The D.A. WRITE statement causes data to be transferred from in

ternal storage to a direct access device (in this case, to the disk).

Therefore, data must be put into internal storage first. For example, if

the input is through cards, then the data can be transferred into internal

storage (or read in) with an ordinary READ statement. Such data may then

be put on the disk with a D.A. WRITE statement. Its general form is:

WRITE(i'k.j)list or simply

WRITE(i'k)list

where: "i" is an unsigned integer constant or integer variable that re

presents the data set reference number as given in the DEFINE

FILE statement (corresponding to "ii'V^'V'i-").

"k" is an integer expression that represents the relative posi

tion of a record within the data set associated with "i" (refers

to "v1","v2","vn" in the DEFINE FILE statement).

"j" is optional and, if given, is the statement number of the

FORMAT statement that describes the data being written. It is

often simpler to omit j.

"list" refers to the possible list of variable names, separated

by commas.

For example, if there are six variables (A,B,C,D,E, and L) per card, and

there are 100 such cards, the following program would store these data

on the disk.

DEFINE FILE 7(100,24,L,INDEX)

INDEX=1

DO 5 1=1,100

READ(1,2)A,B,C,D,E,L

2 F0RMAT(5F10.0,110)

5 WRITE(7'INDEX)A,B,C,D,E,L

END

Direct Access READ statement

The D.A. READ statement causes data to be transferred from a

direct access device (a disk) into internal storage. Its general form is:

31

RJ5AD(i'k,j)list or simpiy

KEAD(i'k)list

where: "i" is an unsigned integer constant or integer variable that

represents the data set reference number as given in the DEFINE

FILE statement.

"k" is an integer expression that represents the relative posi

tion of a record within the data set associated with "i".

"j" is optional and, if given, is the statement number of the

FORMAT statement that describes the data being read.

"list" refers to the possible list of variable names, separated

by commas.

For example, the following program would cause the printing of the data

stored on the disk by the above program.

DEFINE FILE 7(100 ,1k ,L.INDEX)

INDEX=1

DO 10 1=1,100

READ(7'INDEX)A,B,C,D,E,L

10 WRITE(3,8)A,B,C,D,E,L

8 FORMAT(lH0,5F12.0,111)

END

When programming for direct access files, the area(s) of file(s)

on the disk must be preformatted. This again can be a rather complicated

procedure. Therefore, only a simple and practical method, which is

applicable to the Ontario Region's facilities, is presented here. For

Preformatting, the following program may be used.

// JOB CLEARDSK

// DLBL UOUT/FILE NAME'

// EXTENT SYS004,111111,1,,1800,190

// EXEC CLKDSK

// UCL B=(K=0,D=24),X'00T,OY,E=(2311)

// END

However, the above program needs to be modified in order to accommodate

the particular set of data it is referring to. Thus, the following

changes may need to be made:

(1) On the third card or EXTENT card, SYS004 (which is a logical unit

name) refers only to data set reference number 7. If more data set

reference numbers are used, the corresponding logical unit names are:

32

Data set reference number Logical unit name

7 SYSOO4

8 SYS005

9 SYSOO6

10 SYS007

11 SYS008

12 SYS009

For example, if we use data set reference number 9, the corresponding

logical unit name in the EXTENT card is SYS006.

The last two integer numbers on the EXTENT card refer to relative

track number and to number of tracks, respectively. Users in the

Ontario Region may leave these two numbers unchanged when creating

only temporary files. When creating protected files (that is,

wishing to protect the storage of data on the disk for a certain

period of time) users should consult with the Regional Biometrician.

(2) On the fifth card of UCL card, "D" refers to the length of a record.

Therefore, it is equal to Che value given for "r^","r2","rn" in

the DEFINE FILE statement. For example, if there are six variables

(integer, real, or both) per record, D=24.

After the disk is formatted for a particular set of data,

numerous jobs may be run on that set of data without formatting it again

with the above CLEARDSK UTILITY program. However, for each such job,

two cards need to be inserted between the // EXEC LNKEDT and the // EXEC
cards to provide information about the location of the particular data

on the disk. These cards are:

// DLBL IJSYS04,'FILE NAME1

// EXTENT SYS004,111111,1,,1800,190

On the first card or DLBL card, IJSYS04 is the DOS file name, corre

sponding to FORTRAN data set reference number 7. Again, the cross

reference between the two are as follows:

Data set reference number DOS file name

7 IJSYSO4

8 IJSYS05

9 IJSYS06

10 IJSYS07

11 IJSYSO8

12 IJSYS09

The second card or EXTENT card is the same as the one used in the

CLEARDSK UTILITY program.

33

As mentioned earlier, FORTRAN source programs alone are not

accepted by the computer. For the execution of a job, monitor or control

cards are needed as well. Some of these are Hated in Appendix C.

35

BIBLIOGRAPHY

GERMAIN, C.B. 1967. Programming the IBM 360. Prentice-Hall Inc.

New York. 366 p.

IBM 1969. IBM System/360. Basic FORTRAN IV Language. International

Business Machines Corporation, Systems Reference Library, File

No. S36O-25, GC28-6629-2. 90 p.

IBM 1969. IBM System/360. Disk and Tape Operating Systems. Basic

FORTRAN IV. Programmer's Guide. International Business Machines

Corporation, Systems Reference Library, File No. S360-25, Form

C24-5038-3. 91 p.

IBM 1966. IBM System/360. Disk Operating System. System Control and

System Service Programs. International Business Machines

Corporation, Systems Reference Library, File No. S360-36, GC24-

5036-1. 178 p.

McCRACKEN, D.D. 1965. A guide to FORTRAN IV programming. John Wiley

& Sons, Inc. New York. 151 p.

APPENDICES

39

APPENDIX A

(For Answers, see Appendix D)

Exercise 1. Integer constants:

(A) Write the following numbers as FORTRAN integer constants.

(L) 1,222 (2) 258.0 (3) +1. (4) -3. (5) 737,438.0

(B) Which of the following numbers are valid integer constants?

(1) 3,728 (2) $132.75 (3) 25 (4) 9 (5) 1234567

(C) Why are the following numbers not valid integer constants?

(1) 4.37 (2) 3,426 (3) -.25 (4) 3A7 (5) .000895

Exercise 2. Real constants:

(A) Write the following numbers as FORTRAN real constants.

(1) 375 (2) -3.0 (3) 4,382 (4) $375.82 (5) 32

(B) Which of the following numbers are valid real constants?

(1) 5597 (2) 375.95 (3) 192 (4) 4,378 (5) 37.

(C) Why are the following numbers not valid real constants?

(1) 289 (2) E3-79 (3) 9278E (4) 000 (5) $.78

Exercise 3. Integer variables:

(A) Write the following names as FORTRAN integer variables.

(D jack (2) tree (3) dutch (4) elms (5) sick

(B) Which of the following names are valid integer variables?

(D I (2) LIKE (3) ICE-CREAM (4) $COST (5) MONEY

(C) Why are the following names not valid integer variables?

(1) ID. (2) OWES (3) DAVID (4) THREE (5) DOLLARS

40

Exercise 4. Real variables:

(A) Write the following names as FORTRAN real variables.

(1) input (2) xyz (3) Help (4) Pine (5) ELM

(B) Which of the following names are valid real variables?

(I) JIM (2) AND C3) MARY (4) LIKE (5) TREE

(C) Why are the following names not valid real variables?

(1) ILIKE (2) JUICE (3) APPLE-PIE (4) 271 (5) MAPLE

Exercise 5. Arithmetic expressions:

CA) Write a FORTRAN arithmetic expression to compute

(1) a_ (2) a (3) 6a_ (4) ab (5) 4_3 (6) (a+b)2
b -b b c 3 r

(7) Ca+b)3 (8) a+b_ (9) a+b_2 2 (10) x2+xy+y2
c+d c+d + x

Exercise 6. Arithmetic statements:

CA) Write a FORTRAN arithmetic statement to compute

(1) b_ (2) a. (3) ab (4) a+b = c+d (5) •/} = y
b C C -b d C

(B) Given the values (A=2.), (B»3.). (C=4.), (1=5), and (J=l), evaluate
the following FORTRAN expressions

CD D=A+B (2) E=A*B (3) F=A*B/C (4) K=I**2 (5) G=j/l

(6) L=I*A/(I+1) (?) Q=A**B/C (8) OH=B*C/I (9) M0H=B*C/l

(10) Y=I**J

Exercise 7. Input/output statements:

(A) Write the necessary statements which would cause the reading of

three variables CA, B, and I) from a card. The values for A, B,

and I are punched in columns 1-5 (with one decimal), 6-10 (wiLli 2

decimal places), and in columns 11-35, respectively.

41

(B) Write the necessary statements which would

(1) cause the printer to be positioned on the first line of a new

page

(2) cause the printing of THIS IS A HEADING on Che second lLne of a

new page

(3) cause the printing of A FORMAT EXERCISE WITH TRICKS on the same

line as the printer is positioned, but starting in column 25.

Exercise 8. Control statements:

(A) Given 10 cards with values for BASE and HEIGHT punched on each in

columns 1-5 (with 1 decimal), and in columns 6-10 (with 2 decimal

places), respectively,

(1) Write a program to calculate the values of AREA, where

AREA=BASE*HEIGHT/2. and test for the last card (on the eleventh

card, 9999. is punched in columns 11-15). Print the results on

a new page under the heading:

AREAS OF TRIANGLES FOR EXERCISE 8.

(2) Write a program to calculate the values of AREA, where

AREA=BASE*HEIGHT/2. and test for the last card (the eleventh

card is blank). Print the first five results on a new page with

the heading AREAS OF THE FIRST 5 TRIANGLES FOR EXERCISE 8 and

use double spacing. Then, print the second five results on a

separate page with single spacing and under the heading AREAS

OF TRIANGLES (6-10) FOR EXERCISE 8.

>
-
j
:
.
.
i
.
i
-
j
,
-
.

,
-
1
.

/

M
I
I
I
M
I
I

h
U
V
B
L
»

I

I
I
I
I
I
I
H
I

1
O
R
T
R
A
'

L
I

5
(I

0
0

S,
0

0
3

0
0
"0
3

D
0

u
O
f
l
|
|
H
*
!
!
0
 1
0

3
i*

J
3

C
Q

0
0
O
T
y
H
i
 0

 0
 J
C

Ij
0

D
D
Q
C
C
U
O
D
O
b
f
i
O
D
 D
l
T
o
T
o
 0

 0
 0

 0
 0

 3
?
 l
iT

oi
lF

fl
'

:
i

•
s

f
I

:
,
i
L
M
i
i
i
i
)
m
s
H
,
;
u
i
u
i
i
i
)
2
j
;
s
«
:
i
:
i
J
i
.
i
i
9
;
;
:
.
;
:
a
i
.
s
1
3
i
:
:
3
!
d
i
i
H
'
<
:
«
*
.
;
:
i
s
)
M
i
.
i
a
s
,
s
;
u
.
l
-
Π

i
;-

'j
j
„

:■
.<
„,
,
„
u

1
1
M
1
1

I
1
II

1
1
I
I

I
1

I
1

1
I

I
!

1
11

1

i
11

1

1
11

U

1
1

!
I
l
l

1
M

11

1

!
1

1
1
II

1

1
I

1
1

i
i

i
i

i
i

i
i

i
i

i
i

1
r

i
.
i
t
,
.
,

(
l
l

I
!

i
i
1
1

i
I

1
I

I
1

i
i

1
i
n

u

i
i

i
i
i

i
i,

n

1
1
1
1
1
1
1
1
1

i
1
1
1
;

|
i

1
1

1
1

n

i

2
2
11

 2
 2

 1
 |
2

2
2

2
2

2
2

2
1

2
f
2
 2

 2
 2

 2
 2

 2
 2

 2
 ?

 2
 2

 2
 2

 2
 2

 1
 2

 2
 2

 2
 2

 1
 I

 7
 7

 2
 2

 2
 2

 2
 2

 2
 2

 J
 2

 2
 2

 2
 <

 2
 1
2
 2

 2
 2

 2
 2

 2
 I

:
3
!
3
|
3
3
:
3
3
3
3
3
3
|
3
3
3
1
3
3
3
f
l
3
3
]
3
3
3
|
1
3
3
|
3
3
3
3
3
3
n
3
3
|
3
3
*
J
 J
33

J3
31

 3
3
J3
33
33
 1
3
3
1
3
3
3
3
3
 J
li
33
33
33
 3
3

|4
 4
(
4
^
4
 4

■,
4
4
4
*
4
4
 4

 4
4
4
4
 |
4
4
4
 i

 4
 4

 4
 4

 4
-i

 1
1

4
■!

4
4
4
4
4
 4

 4
4
1
^
(
4
4
4
4
4
4
4
4
4
4
4
4
4

1
4
4
4
4
*
4
4
 ;

 ;
 .

;
4.

 ;
4
4

1
1
4
4
4

• J
i

j
^5

J5
5i
!>
 j

 5
 !
5

i
5
JS
 Ii

 3
 |
i

i
:

J
:
j;

 ;
 j

 5
 |
3i

 :
 :

 5
 5

 3
 5

 5
 |
5

:
||
5

i
5S

5
5S
 5

 5
SS

 =
 5
S

I
j5
 i

 5
 :

 j
 :

 5
 i
i

5
:

j
j

S
D

;
j

7
J

7
7

7
7
3
 7
 7

7
7

7
7

I
b
t
(
l
9
C
k
l
b
>
W
J
J
U
i
t
.

"
i
i
!
i
n
i
!
;
;
n
i
]
!
i
i
n
i
i

§
8

7 |
n
 7

J
J M
 7

7
1 |
M
 j

 M
 7

 7
m
?
 1
77
7
77

 T
i

J
S
«
3
 "
w

S
3
:3
 J

 i
 3
 |
i
|(
 6

 H
H
|
|
|
6
 8
 6
 B

 6
 S
 B
 S
 £
 (

 6
 E
 E
 8
 8
 S
 5

 a
 l

 ;
 t
.
3
6
 i

 i
 J
H
«
S
»
5

:
H
 |
9

9
9

3
i

3
3S

 S
3
|3

£
S:
 £

 S
3S

 B
^

S
3
C
9
9
S
9
 S

 S
B
S
S
S
S
 3
95

 3
 5

-j
 S
9

'
5

■.
i
a

a

0
3

J.

4

p
u
n
c
h
e
d

a
a
r
d

w
i
t
h

a
l
p
h
a
b
e
t
i
c
,

n
u
m
e
r
i
c
,

a
n
d

s
p
e
c
i
a
l

c
h
a
r
a
c
t
e
r
s
.

0-
1

G
0

D
3

tl
:

3
.

i

I'
ll

 1

I
I

2)
2

2
2

2

I
I
I

I
I

I
I
I
H
I
_
J
-

1
1
1

I

C
F
O
R
T
R
A
N

S
T
A
T
E
M
E
N
T

t
j

is

r

i:

i;

u

■!

if

,i

ii

i
»
a
:
i

a

a

;i

a

:=

i
;:

33

:■

:
s
»
1
1
:
!

i
:
;
:
.
'

<;

i

»

w

si

a

si

>»

:
i
»
1
:

j

n

u
s

e

1;

ej

b

w
o
o

es

t
»

ii

jj

0
□

0
0

Q
3
0
 |
0
0
0
G
0

0
0

|
|
0

b
0
0
 0

 0
 G

 G
 0

 0
 0

 0
 C

 0
 0

 0
 G

 u
 i

 3
 0

 0
 3

 0
 0

 0
 0

 f
l'f

l
0

G
0
0

C
0

B
0

G
0

3
G

P
U

0
9

0
G

0
C ̂

Q
0

0
|
 D
 0

 G
 C

j

■)

U

B

TS

!7

n!

Tl

t

1
1
M

1
1
1

|

2
2
2
2
2
2
2
2

!

1
1

1
1

1
1

1
1

1
1

I
!
!

1
I
?
!

1
1

1
1

1
I

1
1

1
U

1
1

1
I
I

1
1

M

1
1

1

2

3
3

3

3
3:

3,
3

J
3

3
3

3
3

3
3

3
3

3
3

3
3
|
3

3
|
3

3

3
3

Z
3

3
3

i
!

3
3

3
1

.1
3

3
3

3
2

:
3

3
3

J
3

3
j

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3

2
3

3
3

3
3

3

I M
 4
 4
 |
4
H
 4
 4
 *
 4
 t
 <
 4
 4
 |
4
 A
 4
 4
 4
 *

 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4
 4

 i
 4
 4

 i
 4
 4
 4
 t

 4
 4
 1

 *
 4

 4
 4
 4
 4
 4
 4
 4
 4
 <
 4
 4
 4

M
 4
 4
 4
 i
 4
 4
 4
 4
 t

.
i'

fi
 t

,
4
4
4
4
4
4

I
i
i
E
G

i
n

n
 i

 t
n
 n

n

n

1
1
1

-
t.

■;
i
n

i
~
:
 i

>
1
1
1

m
 m

1
1

m

n
 m
 i

n

t
:

t
,

m

n

I
t
,
 i

n

t
t
u
5
f
i
i
o
J
o
3
i
|
S
6
6
B
|
|
5
o
o
|
£
£
s
|
6
^
B

i

i
I

i
i

1
I

I
■

i
3

s
S.

9
51
S

5
9

»
i.

3
9

9
9

9
19

 9
 3

 3
 3

 9
 3

 3
 E

 3
 i

 5
 £

 9
 9

 S
 S

 £
 5

 i
 ?

 5
 3

 J
 S

 3
 •

 3
 3

 ■!
 9

 9
 E

 3
 9

 i
 G

 S
3

fl
5

3
5

3
D

9
3

3
9

9
9

9
3

5
S

9
5
I:
 C

 E
 '

i

■<

:i

"I

■'

^1

■
;
:
.

:■

:.
'
r
.
i
>
'
.
:
:
'
.

"

:<

:■

s

:■

:
:
.
-
■

•:
'-
.

<:

n

u

:-
.
i
t

1-

■
•
 ■
.;
::

y

:
:

m

2.

;!

p
u
n
c
h
e
d

c
a
r
d

w
i
t
h

a

F
O
R
T
R
A
N

s
t
a
t
e
m
e
n
t
.

APPENDIX C

Examples of job control cards for use on an IBM 360/25

1, Compilation of a FORTRAN source program

// JOB NAME

// EXEC FORTRAN

*

*

source program

/*
/&

Note Chat the first "/" starts in column 1. On the first control card

(// JOB NAME), "NAME" is the title or name of the job and it may be from

one through eight characters.

2. Compilation and execution of a FORTRAN source program

// JOB NAME

// OPTION LINK

// EXEC FORTRAN

source program

/*
// EXEC LNKEDT

// EXEC

data

!*
ft

3. Compilation of a FORTRAN source program and production of an object
deck (machine language translation of a source program)

//JOB NAME

// OPTION DECK

// EXEC FORTRAN

source program

/*

4. Execution of an object module

// JOB NAME

// OPTION LINK

INCLUDE

object deck (obtained from previous job set up (3))

/*
// EXEC LNKEDT

// EXEC

data

/*

/*

Note that if several sets of data are to be analysed with the same pro

gram, it is more efficient to convert the source program into an object

module and then to use the above set up.

47

APPENDIX D

(Answers to Exercises in APPENDIX A)

Exercise 1.

(A) (1) 1222 (2) 258 (3) 1 (4) -3 (5) 737438

(B) (3) 25 (4) 9 (5) 1234567

(C) (1) decimal point (2) comma (3) decimal point (4) alphabetic

character (5) decimal point

Exercise 2.

(A) (1) 375. (2) -3.0 (3) 4382. (4) 375.82 (5) 32.

(B) (2) 375.95 (5) 37.

(C) (1) no decimal point (2) E should follow 3, even then, it would be

too large (3) integer constant after E is missing (4) no decimal

point (5) alphabetic character in numeric field

Exercise 3.

(A) (1) JACK (2) ITREE (3) 1DUTCH (4) IELMS (5) ISICK

(B) (1) I (2) LIKE (5) HONEY

(C) CO special characters in name (2) real variable name (3) real

variable name (4) real variable name (5) more than six characters

Exercise 4.

(A) (1) AINPUT (2) XYZ (3) HELP (4) PINE (5) ELM

(B) (2) AND (5) TREE

(C) (1) integer variable name (2) integer variable name (3) too many

characters and a special character in the name (4) the first

character is numeric (5) integer variable name

Exercise 5.

(A) (1) A/B (2) A/(-B) (3) 6*A/B (4) A*B/C (5) (4**3/3)*R

48

(6) (A+B)**2 (7) (A+B)**3 (8) (A+B)/(C+D)

(9) ((A+B**2)/(C+D))+X**2 (10) X**2+X*Y+Y**2

Exercise 6.

(A) (1) C=B/B (2) C=A/(-B) (3) C=A*B/D (4) A=C+D-B or B=C+D-A

(5) Y=X**2

(B) (I) D=5. (2) E«6. (3) F=l.5 (4) K=25 (5) G=(J. (6) L=l

(7) Q=2. (8) 0H=2.4 (9) MOH=2 (10) Y«5.

Exercise 7.

(A) READ(1,1)A,B,I

1 FORMAT(F5,1,F5.2,I5)

(B) (1) WRITE(3,2) (2) WRITE(3,3)

2 FORMAT(lHl) 3 FORMAT(1H1,/,' THIS IS A HEADING1)

(3) URITE(3,4)

4 FORMAT(1H+,24X,29HA FORMAT EXERCISE WITH TRICKS)

Exercise 8.

(A) (1) WRITE(3,1)
1 FORMAT(1H1,'AREAS OF TRIANGLES FOR EXERCISE 8.1)

6 READ(1,2)BASE,HEIGHT,TEST

2 F0RMAT(F5.1,F5.2,F5.0)

IF(TEST-9999.)3,4,3

3 AREA=BASE*HEIGHT/2.

WRITE(3,5)AREA

5 FORMAT(1H ,12X,F8.2)

GO TO 6

4 CONTINUE

END

(2) N=0

WRITE(3,1)
1 FORMAT(1H1,1AREAS OF THE FIRST 5 TRIANGLES FOR EXERCISE 8.1)

11 READ(1,2)BASE,HEIGHT

2 FORMAT(F5.1,F5.2)

IF(BASE)3,10,3

3 N=N+1

AREA=BASE*HEIGHT/2.

IF(N-6)5,8,7

5 WRITE(3,6)AREA

49

6 FORMAT(1HO,19X,F8.2)

GO TO 11

8 WRITE(3,9)
9 FORMAT(1HI,1 AREAS OF TRIANGLES (6-10) FOR I'XERCISE 8. ')

7 WRITE(3,4)AREA

4 FORMAT(1H ,12X,F8.2)

GO TO 11

10 CONTINUE

END

	Abstract
	Table of Contents
	Introduction
	Variables
	Rules for constructiing arithmetic expressions
	input and Output
	Control Statements
	Specification Statements
	Some Fortran Library Subprograms
	Programming considerations, Disk operating system
	Bibliography
	Appendices
	Appendix A
	Appendix B
	Appendix C
	Appendix D

