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Abstract. We performed a series of empirical experiments designed to refine the processing of discrete-return profiling
light detection and ranging (lidar) data for the purpose of estimating canopy closure across a broad range of forest
conditions in west-central Alberta, Canada. The following three methodological conclusions were obtained: (i) a new line-
segment method based on the ratio of overstory segment distance to total distance outperformed alternative point-count
techniques described previously in the literature; (ii) an absolute overstory–understory threshold of 1.4 m generated the best
models overall and appeared to extend well across a range of forest types; and (iii) stratification by species composition
(hardwood, softwood, and mixedwood) or moisture regime (upland and wetland) was of little influence in alternate models,
suggesting good portability of these methods across a broad variety of forest conditions. A k = n cross-validation approach
produced an average root mean square error (RMSE) of 7.2% for the best model with no systematic bias. In addition to
contributing to the identification of sound methodological practices, these results successfully reconciled the conceptual
differences between canopy closure, measured through the use of ground-based optical tools, and canopy cover, captured
remotely with lidar, revealing a direct linear relationship between the two attributes.

Résumé. Nous avons réalisé une série d’expériences empiriques conçue pour raffiner le traitement des données de profileur
lidar (détection et télémétrie par la lumière) à retours discrets afin d’estimer la fermeture du couvert à travers une large
gamme de conditions forestières dans le centre ouest de l’Alberta, au Canada. Les trois conclusions méthodologiques
suivantes ont été dérivées : (i) une nouvelle méthode de segment de ligne basée sur le ratio de la distance du segment de
l’étage supérieur par rapport à la distance totale a mieux performé que les techniques alternatives de comptage de points
décrites précédemment dans la littérature; (ii) un seuil absolu de 1,4 m de l’étage supérieur–l’étage inférieur a permis de
générer globalement les meilleurs modèles et a semblé bien s’appliquer à toute une gamme de types de forêt; et (iii) la
stratification selon la composition des espèces (feuillus, conifères et forêt mixte) ou le régime d’humidité du sol (hautes
terres et terres humides) avait peu d’influence dans les modèles alternatifs suggérant ainsi la portabilité de ces méthodes
dans une large gamme de conditions forestières. Une approche de validation croisée k = n a permis de produire une valeur
moyenne de RMSE de 7,2 % pour le meilleur modèle et cela sans biais systématique. En plus de contribuer à l’identification
de pratiques méthodologiques saines, ces résultats ont permis de réconcilier avec succès les différences conceptuelles entre
la fermeture du couvert, mesurée par le biais d’outils optiques au sol, et le couvert, capturé par télédétection lidar, révélant
ainsi une relation linéaire directe entre ces deux attributs.
[Traduit par la Rédaction]
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229Introduction

Although forest inventories are collected primarily for
strategic planning and operational management purposes, they
are also relied upon to support a broad variety of additional
reporting and modeling activities, including the assessment of
carbon stocks (e.g., Grierson et al., 1992; Tate et al., 1997; Clark,
2002; Karjalainen et al., 2002; Hu et al., 2007; Woodall and
Liknes, 2008; Wulder et al., 2008), biodiversity status (e.g.,

Noss, 1990; Parthasarathy and Karthikeyan, 1997; Ayyappan
and Parthasarathy, 1999; Mani and Parthasarathy, 2005;
Travaglini et al., 2007; Winter et al., 2008), and habitat
conditions (e.g., Franklin et al., 2001; 2002; Bond et al., 2004;
Schulte et al., 2005; Zielinski et al., 2006). Common to each of
these applications is a need for forest structural attribution,
including canopy closure. Although the current trend in forest
inventory practice is towards an enhanced focus on capturing an
extensive range of vegetation attributes (Siry et al., 2005),
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updates often occur over long time intervals, and spatial
coverage can be coarse or incomplete (Lund, 2004). Light
detection and ranging (lidar) provides a means of estimating and
subsequently extending forest inventory attributes for the
purpose of producing spatially exhaustive information on
detailed aspects of forest structure (e.g., Hudak et al., 2002;
Wulder and Seemann, 2003), which can contribute to the
mitigation of forest inventory or other data coverage limitations.

Canopy closure is defined as the proportion of the sky
hemisphere obscured by vegetation when viewed from a single
point (Jennings et al., 1999) and is of particular interest to
forest ecologists studying the variability of understory
environments (Minckler et al., 1973; Vitousek and Denslow,
1986), light regimes (Canham et al., 1990; 1994), reforestation
patterns (Gray and Spies, 1996), sapling growth rates (Wright
et al., 1998), and regeneration (Nicotra et al., 1999). Canopy
closure has traditionally been measured in the field through the
use of ground-based optical tools such as the spherical
densiometer (Lemmon, 1956; 1957) and hemispherical
photography (Frazer et al., 2001).

Similar to canopy closure is the concept of canopy cover,
defined as the proportion of the forest floor covered by the
vertical projection of the tree crowns (Jennings et al., 1999). It
has been used to predict stand volume (Philip, 1994) and
estimate precipitation interception by forests (Molicova and
Hubert, 1994). Canopy cover can be measured in the field by
looking vertically upwards and recording whether or not the
forest obscures the sky. Thus, given a number of observations,
the proportion of sky obscured gives an estimate of forest canopy
cover. These measurements can be taken without
instrumentation (e.g., Vales and Bunnell, 1988), but instruments
such as the gimbal balance (Walter and Soos, 1962) and the
sighting tube (Johansson, 1985) are commonly used to avoid
nonvertical bias and enhance repeatability. Although individual
observations of canopy cover are straightforward and efficient, a
very large sample size (in excess of 100 observations) is required
to obtain accurate estimates over an area, regardless of its size
(Jennings et al., 1999). The amount of time required to collect
these estimates suggests a limited role for field measurements of
canopy cover in forestry mapping.

The most important difference between canopy closure and
canopy cover is that the former measurements integrate
information over the sky hemisphere above one point on the
ground, whereas the latter assesses the presence of canopy
vertically above a sample of points (Jennings et al., 1999).
Despite the conceptual differences between the two, both
attributes are descriptors of canopy density and structure and
should be related. A strong relationship would permit the use of
canopy cover estimates derived from lidar for describing and
explaining canopy closure measurements made on the ground.
Development of this relationship is important to address
because logistical constraints can often limit the acquisition of
field-based canopy closure measurements, and the acquisition
of canopy cover in the field is a resource-heavy endeavor that
can be prohibitively expensive. In addition, an improved
understanding and reconciliation of the two parameters would

be valuable to confirm the relationship between the two distinct
but closely related attributes.

It is common practice to acquire scanned data from small-
footprint, discrete-return lidar systems, but these systems are
also capable of obtaining transects (profiles). Lidar profiles
may also be collected from dedicated systems (e.g., Nelson et
al., 2003). The key difference between profiles and scanned
datasets is that profiles constitute a single corridor of returns at
nadir along the flight path, whereas scanned datasets have a
dispersion of points over a given scan angle off nadir and
therefore result in greater areal coverage (Lim et al., 2003).
Although scanning datasets certainly have their utility, the
extended time of acquisition and the large physical size of
datasets (and therefore increased computing power and lengthy
preprocessing and postprocessing) place practical limitations
on the size of study areas that can be reasonably managed.
Under many situations, profiling datasets provide an attractive
alternative, since they can be acquired when flying higher,
which increases the speed of acquisition, resulting in greater
coverage in a given amount of time. The configuration
produces smaller data volumes per distance covered and
therefore more affordable datasets.

Profiling lidar data have been used to effectively relate
ground-measured biomass to lidar-generated biomass (e.g.,
Nelson et al., 2004; Boudreau et al., 2008) and in fusion
exercises with segmented Landsat Enhanced Thematic Mapper
Plus (ETM+) imagery for canopy attribute change
characterization (Wulder et al., 2007). These studies demonstrate
the ability to link plot-based measures with lidar profiles to
enable the extrapolation of structure over large areas in a cost-
effective and timely manner. However, a variety of issues must
be addressed before attempting to implement these strategies
consistently across large, diverse study sites. Specifically, we
require a robust strategy for separating overstory from
understory over diverse forest conditions and a consistent and
transparent approach for selecting overstory–understory
thresholds. Also, although previous studies have calculated
canopy cover as the fraction of canopy returns over a given unit
area (Nelson et al., 1984; Morsdorf et al., 2006; Chasmer et al.,
2008) or the number of returns per height category above a
threshold (Ritchie et al., 1992; 1995; 1996) with varying levels
of success, unexplained variation in the relationship between
lidar-derived attributes and field measurements suggests that
more work on the topic remains. In addition, it would be useful
to establish the utility of stratification across differing forest
types as a function of moisture conditions and (or) canopy
occlusion of the lidar signal.

The goal of the research reported in this paper was to
identify, develop, and communicate a methodological strategy
for processing discrete-return profiling lidar data for the
purpose of estimating canopy closure across a wide range of
forest conditions in western Alberta, Canada. The work
involved addressing four specific research objectives related to
the handling and processing of profiling lidar data:
(1) determining the best methodological approach for
extracting estimates of canopy cover from lidar transects;
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(2) establishing a transparent and reliable means for identifying
the threshold strategy for separating overstory and understory
points; (3) evaluating the value of stratification by species
composition (hardwood, softwood, and mixedwood) and (or)
moisture regime (upland and wetland) over diverse forest
types; and (4) examining the strength of the relationship
between lidar-derived measurements of canopy cover and
field-based estimates of canopy closure.

Methods
Study area

The study area for this research is within the spatial extent of
a 1200 km long lidar transect located in west-central Alberta,
Canada, acquired on 19 and 20 August 2006 (Figure 1). The
flight path was designed to sample the structural diversity of
forests present in the area and traversed seven natural
subregions defined by the Natural Regions Committee (2006):
Central Mixedwood, Dry Mixedwood, Lower Boreal Highlands,
Lower Foothills, Peace River Parkland, Upper Boreal Highlands,
and Upper Foothills (Table 1). The forested areas of the
transect contain hardwood species such as balsam poplar
(Populus balsamifera), trembling aspen (Populus tremuloides),

and white birch (Betula papyrifera) and softwood species such
as black spruce (Picea mariana), lodgepole pine (Pinus
contorta), and white spruce (Picea glauca). Mixed stands are
also common (Resource Information Management Branch,
2005), as are both upland and wetland areas.

Lidar data acquisition and preprocessing

Distance ranges from lidar (in reference to sea level) were
acquired along the transect using a Riegl USA LMS-Q140i-80
sensor on board a fixed-wing aircraft flown by Laser Imaging
Technologies of Calgary, Alberta, Canada. The LMS-Q140i-80
sensor is a discrete-return device that uses a rotating polygon
mirror to scan the target surface in a parallel manner, up to a
maximum scan angle range of 80°. The pulse is considered a
class 1 laser (human-eye safe), has a beam divergence of
approximately 3 mrad, and is emitted at 10 kHz at a near-
infrared wavelength (900 nm). The average absolute
measurement accuracy is typically ±0.025 m, the distance-
dependent error is ≤20 ppm, and the relative measurement
accuracy is ±0.003 m (Riegl USA, 2002). The mean flying
altitude was approximately 150 m. From the instrument
parameters specified and flight characteristics followed, a point
density of approximately 2.5 returns/m2 was achieved, and the
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Figure 1. Study area (lidar transect) location in northern Alberta.



mean footprint diameter was approximately 45 cm. Only first
returns were used in this analysis, since it has been established
that the combination of first and last returns does not provide
any additional information regarding field-measured canopy
cover than does first returns alone (Morsdorf et al., 2006).
Initial processing of the lidar range files and global positioning
system (GPS) was handled by Laser Imaging Technologies,
with the final data delivery containing LAS files of x, y, and z
coordinates and incidence angles. To obtain a narrow lidar
profile along the study area transect, we thinned the data to
select only those returns with an incidence angle of less than
one quarter of a degree, a threshold that maintained the density
inherent in the scanned lidar data. We assumed that there was
minimal systematic bank-angle-dependent variation from the
fixed-wing aircraft. This assumption was bolstered by
examining the extent of the lidar profiles in the x and y domain
only, a process that revealed very little deviation from centre.

Field data collection and processing

The lidar data acquired for this research were supported by
spatially and temporally coincident ground estimates of canopy
closure obtained in the field using hemispherical photography. We
selected field sites using a stratified random sampling approach
(Husch et al., 2003) to reduce sampling bias and limited our

efforts to homogeneous stands at least 1 ha in size located between
60 and 300 m of known access features in an attempt to account
for positional errors and reduce logistical constraints surrounding
travel. Field site locations were measured using a Garmin
GPSMAP 60 hand-held device, with positional errors recorded at
each location not exceeding 3 m, according to error information
provided by the device. It should be noted that according to the US
Forest Service, the true GPS error for a hand-held system similar
to this one was in the range of 6.4–37.2 m, depending on system
configuration and forest canopy structure (Chamberlain, 2002),
although this was not verified. To ensure the acquisition of a
sample that represented the range of forest structural conditions
present, we matched the pattern of tasseled cap wetness values
(Kauth and Thomas, 1976) extracted from Landsat thematic
mapper imagery of the sample sites to the distribution of wetness
values observed across the entire study area, under the assumption
that wetness had a positive relationship with structural complexity
of the forest canopy and the optical depth of water in leaves (Hunt,
1991; Cohen and Spies, 1992; Cohen et al., 1995), and thereby
provided an effective gradient across which to sample. Field sites
were distributed proportionally across each natural subregion
occurring within the transect, subject to the constraints described.

Our ground protocol involved measurements of vegetation
composition (tree species), moisture regime (upland, wetland),
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Natural subregion Geology and landforms Vegetation

Lower Foothills Rolling topography consisting of moraine
deposits over folded bedrock; extensive
organic deposits in valleys and wet
depressions

White spruce, black spruce, lodgepole pine, balsam fir,
aspen poplar, paper birch, balsam poplar, buffaloberry,
juniper, Labrador tea, fireweed, feathermoss, dwarf
birch, and peat moss

Upper Foothills Strongly rolling topography with frequent
bedrock outcrops; ground moraine over
bedrock with some colluvium on steep terrain

White spruce, black spruce, lodgepole pine, buffaloberry,
bunchberry, Labrador tea, fireweed, feathermoss, dwarf
birch, and peat moss

Central Mixedwood Gently undulating plains with minor inclusion of
hummocky uplands

Aspen poplar, white spruce, jack pine, black spruce,
green alder, northern rice grass, Rocky Mountain
fescue, dryland sedges, plains wormwood, Saskatoon
berry, bearberry, blueberry, prickly rose, wild lily of
the valley, and hairy wild rye

Dry Mixedwood Low-relief topography consisting of ground
moraine and sandy outwash plain

Aspen poplar, balsam polar, white spruce, balsam fir,
jack pine, black spruce, tamarack, cranberry, red-osier
dogwood, feathermoss, bearberry, lichen, Labrador tea,
peat moss, and sedge

Lower Boreal Highlands Gentle to strongly sloping lower elevations;
some undulating and hummocky upland areas

Lodgepole pine, jack pine, hybrids, aspen poplar, white
birch, green alder, bearberry, Labrador tea, blueberry,
and bog cranberry

Upper Boreal Highlands Steeply sloping dissected plateaus and
undulating and hummocky upper plateau
surfaces; medium-textured glacial tills present

Lodgepole pine, jack pine, hybrids, aspen poplar, balsam
poplar, black spruce, white birch, green alder, beaked
willow, Scouler’s willow, bearberry, Labrador tea,
blueberry, and bog cranberry

Peace River Parkland Broad, gently rolling plains with scattered
uplands and steep river valleys

White spruce, aspen poplar, balsam polar, sedges,
western snowberry, wood rose, intermediate oat grass,
old man’s whiskers, low goldenrod, western porcupine
grass, pasture sage, columbia needle grass, June grass,
green needle grass, and pale comandra

Table 1. Characteristics of the natural subregions present in the study area.



and forest structure (canopy closure and basal area) using
standard forest mensuration techniques at 70 field sites. Upon
arrival at a given site, five hemispherical photographs were
taken at systematically distributed measurement stations
located within a 30 m × 30 m plot, such that images were
acquired 17 m from the plot centre in each of the intermediate
cardinal directions. We used a Nikon CoolPix 8700 digital
camera with an FC-E8 fish-eye lens, with most of the
photography performed during diffuse-light conditions. The
few images that were taken in direct light conditions were
processed separately, with the sun masked out. The time of
acquisition for each photograph was recorded and used to
stratify images prior to processing, following the
recommendations of Zhang et al. (2005). The five digital
photographs in each plot were analyzed in WinSCANOPY
(Regent Instruments Inc., Ottawa, Ont.), where gap fraction
was calculated to estimate canopy closure. The software
performs a classification of grey-level values using a threshold
between plant and sky pixels selected using an image
histogram. Gap fraction calculations were restricted to the area
within 40° from zenith maximum. The five resulting canopy
closure estimates were then averaged to determine a single
measurement for each field site. Tree species composition was
calculated as the proportion of species by basal area in a
variable-area prism sweep conducted from the centre of each
plot (Husch et al., 2003) and categorized as softwood (greater
than 70% conifer species), hardwood (greater than 70%
broadleaf species), or mixedwood (between 31% and 69%
hardwood or softwood species).

Data integration and analysis

We extracted 70 lidar profile segments 30 m in length for
processing, each one corresponding spatially to the location of
the sample plots measured in the field. We inspected Canadian
digital elevation data (CDED) at our plot locations and found
that over 95% of plot locations had slopes less than 3°,
indicating that ground elevation was stable over field site
locations. Under this assumption, we defined the understory
surface elevation for each profile segment as the minimum
elevation recorded over that interval. We scaled the remaining
elevation values on the basis of this minimum value, thereby
generating a representative vertical profile of the local area
running through each sample site (see Wulder et al., 2007 for
additional details).

To determine the best methods for characterizing canopy
closure from profiling lidar data (objective 1), we compared
three different processing techniques: (i) a histogram method
outlined by Ritchie et al. (1992), (ii) a point-count method
described by Nelson et al. (1984), and (iii) a line-segment
method described herein. The histogram method of Ritchie et
al. determines canopy cover by counting the number of laser
measurements in a height category and dividing by the total
number of laser measurements for a given segment of the
profile, thereby providing a frequency distribution of cover
values at given height categories. The point-count method

described by Nelson et al. calculates canopy cover simply by
dividing the number of canopy hits by the total number of hits.

The line-segment method introduced here interpolates the
distance between lidar points and sums the length of the line
segments above and below an overstory–understory threshold, an
approach fundamentally different from previous efforts that
focused only on counting the number of returns. The procedure is
illustrated graphically in Figure 2. If the locations of p1 and p2 are
known, then the distances a and b can be calculated through
subtraction, after which distances c and d can be calculated using
basic trigonometry. Once determined, the lengths representing
overstory segments (distance c) and understory segments (distance
d) are tallied along the entire transect. The ratio of overstory
vegetation segments to total distance can be considered a lidar-
derived horizontal projection of the vertical structure of the
canopy and used to estimate canopy cover. It is important to note
that the line-segment method does not assume an even distribution
of returns, since returns are treated as locations with x and z
coordinates (z being height above an understory surface), and uses
trigonometry to determine the horizontal projection of the vertical
structure of the profile. The placement of returns does not affect
trigonometry calculations and therefore does not affect the
estimation of canopy cover.

To determine the best local threshold for separating
overstory from understory (objective 2), we tested each
processing strategy using a range of both absolute and
proportional height thresholds. The absolute thresholds ranged
from 0.1 m to the maximum height of the canopy, and the
proportional thresholds ranged from 1% to 100% of maximum
canopy height. We summarized the relationships between the
lidar-based canopy cover estimates and the corresponding field
measurements using a series of simple linear regression
models. We also appraised the value of stratifying the sample
sites by species composition (i.e., softwood, hardwood, and
mixedwood) or site moisture regime (i.e., wetland and upland)
(objective 3) by repeating the regression analyses on both
stratified and unstratified datasets. The result was a total of
17 100 regression models that provided the empirical results
required for subsequent performance evaluation.

The best model for each trial was determined following
Ferguson (1981), who outlined a strategy for testing the
significance of the difference between two correlation
coefficients. We calculated t values for comparison with critical
t values to make a decision regarding the null hypothesis of no
difference between the models. Once we established the top
overall strategy for estimating canopy cover from profiling
lidar in our study area (i.e., the best methodological procedure,
top thresholding tactic, and best stratification approach), we
performed a leave-one-out cross-validation procedure as has
been done in other studies including machine learning
(Elisseeff and Pontil, 2003), bioinformatics (Simon et al.,
2003), and, recently, remote sensing (e.g., Van Der Heijden et
al., 2007; Brovelli et al., 2008).

Leave-one-out cross-validation is a special case of the k-fold
cross-validation method (Stone, 1974; Geisser, 1975), a process
that involves portioning the original dataset into k subsets of
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equal size, whereby the model is trained k times using each
subset as validation and the remaining data as training. The
leave-one-out cross-validation is a k-fold cross-validation
computed where k = n, with n being the size of the original
dataset. The purpose here was to provide an independent
assessment of our capacity to estimate field-based measurements
of canopy closure with lidar-derived measurements of canopy
cover (objective 4). We calculated root mean square errors
(RMSEs) for each k and reported the average. We estimated bias
in the best model by calculating systematic error (SE) using an
approach recommended by Wu (2004):

SE =
−

=
∑ (� )
i

N

i ic c

N
1 (1)

where �ci is the estimated value of canopy cover, ci is the
reference value of canopy cover, and N is the total number of
samples. SE calculates the effects of systematic errors: a positive
systematic value would indicate overestimation and bias, and a
negative value would indicate underestimation and bias.

Results

Histogram, point-count, and line-segment
approaches to calculating canopy cover

Line plots of the coefficients of determination r2 arising from
the regression analyses performed between lidar-derived cover
and hemispherical photography derived estimates of canopy
closure using the line-segment, point-count, and histogram
methods are found in Figures 3, 4, and 5, respectively. The
plots illustrate the observed trends in the strength of each
method and corresponding field measurements, given varying
stratification strategies and overstory–understory thresholds.
The key values from these plots are summarized in Table 2,
illustrating that the line-segment method represented the best
approach overall for estimating canopy closure, outperforming
both the histogram and point-count methods described
previously in the literature. The highest peak in the r2

distribution of the line-segment method was 0.76 (RMSE =
6.9%), higher than the r2 = 0.73 peaks observed for both the
histogram and point-count techniques (RMSE = 7.2%)
(Table 2). In addition to having the highest peak overall, the
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Figure 2. Illustration of line-segment method for estimating canopy closure on a forest profile
generated from lidar data.



line-segment method consistently generated the best r2 values
for any given threshold and stratification configuration (see
Figures 3–5). The largely comparable coefficients of
determination and RMSE values for all the canopy closure
measurement approaches indicate the robustness of the
relationship present between the field-measured canopy
closure and the lidar-based remote measurements.

Separating overstory from understory

We found that an absolute threshold of 1.4 m was the best
height for separating overstory from understory over the range
of forest conditions present in our study area (Figures 3–5),
generating a peak r2 value of 0.76 (RMSE = 6.9%; Table 2).
Although the 1.4 m threshold was not universally optimal (for
example, a proportional threshold of 68% (of total canopy
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Figure 3. Plots for regression analyses performed on line-segment method used to estimate canopy closure using
(a) absolute thresholds and (b) proportional thresholds.



height) produced better models in wetland areas), the approach
provided the best results overall. The top proportional
threshold was observed at 15% of the total canopy height and
generated an r2 value of 0.61 (RMSE = 8.7%).

The value of stratification

Regression models from the unstratified datasets tended to
perform better than those generated by models stratified by

either moisture regime (upland, wetland) or species
composition (softwood, hardwood, mixedwood) (Figures 3–5;
Table 2), suggesting that there is limited value to be gained
through stratifying by either of these two criteria. As noted
previously, the highest peak in the r2 distribution of the line-
segment method was 0.75 for unstratified data (Figure 3a).
Although a close inspection of Figure 3a reveals that some
individual strata performed better, specifically softwood with a
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Figure 4. Plots for regression analyses performed on point-count method used to estimate canopy closure using
(a) absolute thresholds and (b) proportional thresholds.



peak r2 of 0.83 (RMSE = 5.6%) and wetland with a peak r2 of
0.92 (RMSE = 2.1%), the stratified trials were judged inferior
overall because of the lower r2 values from the corresponding
hardwood (r2 = 0.24, RMSE = 13.1%), mixedwood (r2 = 0.61,
RMSE = 8.8%), and upland (r2 = 0.57, RMSE = 9.1%) strata.

Accuracy and bias

Results of determining bias for the best model overall (line-
segment method using an absolute threshold of 1.4 m and

unstratified) revealed an SE of 0.003%. Therefore, no
significant systematic bias estimation exists for the best model.
The RMSE calculated between observed and predicted values
of canopy closure reveals a value of 6.9%.

Cross-validation results

Canopy cover was calculated from the corresponding lidar
segments running though the plots using the line-segment
method and a 1.4 m threshold. We found the average RMSE
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Figure 5. Plots for regression analyses performed on histogram method used to estimate canopy closure using
(a) absolute thresholds and (b) proportional thresholds.



from the k = n trials to be 7.2%. These results indicate that a
strong relationship exists between lidar- and field-derived
estimates, suggesting that canopy closure can be reliably
obtained across the study area using profiling lidar data
processed with the line-segment method.

Discussion
Our empirical experiments demonstrated the better

performance of the line-segment method over established
point-count and histogram techniques described previously in
the literature for extracting estimates of canopy closure from
profiling lidar transects obtained across a diverse sample of
forest types in west-central Alberta, Canada. The results
suggest that interpolating between height samples of a target
surface yields a more accurate estimate of vertical canopy
projection than that obtained from discrete samples alone. This
finding supports previous studies that have employed canopy
height profiles and canopy height models to derive other
relevant forest inventory information (e.g., Harding et al., 2001;
Popescu et al., 2002; Van Aardt et al., 2008). However,
unexplained variability remains and may be related to a variety
of factors, including a theoretical difference between canopy
cover and canopy closure, system noise – measurement errors,
GPS error, and the nature of the first-return lidar data. In future
research, investigation on the use of multiple returns in a
similar type of analysis would be beneficial, since more
information on the structure of the canopy may be available. It
would also be useful to verify the true accuracy of hand-held
GPS units compared with that of survey-grade units as outlined
by Chamberlain (2002) and determine how errors influence the
estimation of canopy closure from lidar.

We found the best strategy for separating overstory from
understory in this analysis was through the use of an absolute
threshold, rather than a proportional one. This was somewhat
unexpected, given the range of forest canopy heights existing in
the study area and the theoretical flexibility offered by a
variable threshold. It is possible that our assumption of flat
topography within a given 30 m transect introduced errors in

maximum tree height estimations that negatively impacted the
ability to calculate stable proportional thresholds. However, the
success of absolute thresholds mirrors that reported by other
authors (Morsdorf et al., 2006; Chasmer et al., 2008), though
their studies were not comparative in nature. Our observation
that an absolute threshold of 1.4 m was the most suitable over
most of the sites is likely due to the fact that this is the height at
which the coincident hemispherical photographs were
obtained. Our field protocol dictated the acquisition of
hemispherical photographs at a height of 1.3 m (breast height),
giving a difference of just 10 cm.

The superior performance of the proportional threshold at
66% of the maximum height in wetland areas is an interesting
observation. Wetland areas in this region can be dominated by
low, sparse black spruce stands; low, dense black spruce stands;
and tall, open, and mature black spruce and larch stands. The
variability between wetland forest regions makes these areas
more challenging to characterize and therefore more suitable to
a proportional threshold.

Stratifying sample plots on the basis of moisture regime
(upland, wetland) or species composition (softwood,
hardwood, mixedwood) revealed no benefit overall. This again
was somewhat surprising, given our expectation that methods
and (or) thresholds that performed well in softwood forests
might not be readily transferable to hardwood or mixedwood
environments, given the difficulty in penetrating hardwood
canopies with lidar documented elsewhere (e.g., Nelson et al.,
2004). However, although we believe that the hardwood
penetration issue accounts for at least some of the unexplained
variability in our best models, the hardwood forests in our study
area did not appear to be dense enough to prevent at least one
return from penetrating to the understory over the 30 m
horizontal profile distance used to characterize each sample
plot. The apparent ability of at least one return to penetrate to
understory level (aided no doubt by the relatively high density
of the data) rendered the methods transferable across all the
forest types in the sample, a finding that could simplify the
processing strategies adopted by future projects in these forests.
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Method Threshold type Threshold value Field data stratification r2 RMSE (%)

Line segment Absolute 1.4 m Unstratified 0.76 6.9
Point count Absolute 0.8 m Unstratified 0.73 7.2
Histogram Absolute 0.8 m Unstratified 0.73 7.2
Line segment Proportional 19% Unstratified 0.65 8.7
Point count Proportional 15% Unstratified 0.61 8.7
Point count Proportional 68% Wetland 0.99 1.8
Histogram Proportional 68% Unstratified 0.61 8.7
Line segment Absolute 1.1 m Upland 0.62 8.6
Line segment Absolute 1.1 m Hardwood 0.35 12.3
Line segment Absolute 2.9 m Softwood 0.84 5.9
Line segment Proportional 21% Mixedwood 0.61 8.8

Table 2. Summary table showing the peak r2 values observed in the line plots describing the regression
analyses relating lidar-derived canopy cover to field-estimated canopy closure.



A strong, statistically significant, and unbiased linear
relationship was found to exist between lidar-derived estimates
of canopy cover and field-based measurements of canopy
closure, despite the theoretical differenced between the two
attributes. As a result, these findings indicate that profiling lidar
systems can be successfully employed to estimate the widely
used attribute of canopy closure in forests typified by those in
the present study area, despite the fact that these instruments
actually acquire measurements that are more suitable for
measuring canopy cover. This finding supports previous studies
that have related canopy cover from lidar to gap fractions
measured from hemispherical photography in other
environments (e.g., Riaño et al., 2004; Takahashi et al., 2006;
Hanssen and Solberg, 2007), though the issue had not been
tested before explicitly. This is an important result, since it
affirms the ability of lidar to generate fine-scale estimates of
this important structural descriptor that might not be otherwise
possible using traditional field methods over large, diverse
study areas. In addition, these findings could serve to reduce the
demand for expensive ground-based observations of canopy
closure in locations where high-density, small-footprint or
profiling lidar data are available.

Conclusion
A line-segment method for processing discrete-return

profiling light detection and ranging (lidar) data was found to
provide the best and most consistent strategy for estimating
canopy closure over diverse forest types in west-central
Alberta, Canada. The strategy works best when applied using
an absolute overstory–understory threshold of 1.4 m, and we
recommend that future applications use breast height
(approximately 1.4 m) as an absolute threshold for calculating
overstory canopy closure. The strategy appeared to extend well
across the full variety of forests sampled in this study,
suggesting that little value is to be gained through
prestratification on the basis of species composition
(hardwood, softwood, and mixedwood) or moisture regime
(upland and wetland). These results successfully reconcile the
conceptual differences between canopy closure, which is
measured in situ through optical instruments, and canopy cover,
which is measured remotely by lidar. This finding is important,
since it confirms the ability of lidar instruments to estimate an
attribute strongly related to plant growth and survival
characteristics, thereby extending the benefits of efficiency,
repeatability, and accessibility offered by remote sensing
technology. Our results suggest that the strategies reported in
this research identify the utility of profiling lidar for the
measurement of canopy closure, which can be successfully
applied to the creation of fine-scale, spatially exhaustive
estimates of canopy closure over large, diverse study areas,
aiding the mitigation of forest inventory or data coverage
limitations, and supporting the goals of forest monitoring and
reporting programs.
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