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Sample-Based Estimation of Tree Species 
Richness in a Wet Tropical Forest 
Compartment

Steen Magnussen1 and Raphaël Pélissier2

Abstract.—Petersen’s capture-recapture ratio 

estimator and the well-known bootstrap estimator are 

compared across a range of simulated low-intensity 

simple random sampling with fixed-area plots of 

100 m2 in a rich wet tropical forest compartment 

with 93 tree species in the Western Ghats of India. 

Petersen’s ratio estimator was uniformly superior 

to the bootstrap estimator in terms of average error 

(bias) and mean absolute error. The observed richness 

always had the largest negative bias. A large negative 

bias of 25 percent persisted even when approximately 

10 percent of the area was sampled. Estimated 

confidence intervals had poor coverage rates. A 

proposed variance estimator for the observed richness 

performed well.

Introduction

Obtaining an unbiased and precise estimate of the number of 

forest tree species (S) currently growing in a region, State, or 

country poses a challenge. The number of species observed in 

a statistically valid sample is downwardly biased, and historic 

data and tree distribution maps may not reflect current realities 

(Guralnick and Van Cleve 2005).

A forest survey would ideally provide an unbiased and precise 

estimate of S for the populations of interest. Research into the 

species estimation problem was pioneered by Arrhenius (1921), 

Fisher et al. (1943), and Good and Toulmin (1956). We now 

have a plethora of estimators and estimation procedures (Bunge 

and Fitzpatrick 1993, Walther and Moore 2005). Rare species, 

easily missed in typically low-intensity forest survey sampling, 

exert a disproportionate influence on the results (Link 2003, 

Mao and Colwell 2005). Samples with a poor representation of 

rare species cannot be expected to yield reliable estimates of S.

Can we expect a typical low-intensity forest survey to provide 

an acceptable estimate of S? Experience with sample-based es-

timation of S for tree species is limited. Schreuder et al. (1999) 

assessed 10 modifications of Chao’s and Lee’s nonparametric 

estimators by resampling two large data sets with 4,060 forest 

inventory plots from Missouri and 12,260, from Minnesota, 

respectively. Sample sizes in the order of 500 to 700 were 

deemed necessary to keep bias below 15 percent. Sample sizes 

of 80 produced a negative bias of about 40 percent. Palmer 

(1990) performed resampling with very small circular plots of 

2 m2 in the Duke Forest (North Carolina, United States) and 

found that the nonparametric second-order jackknifed and that 

the bootstrap estimators performed best in terms of accuracy 

and precision. Hellmann and Fowler (1999), in a similar resam-

pling study with 25 m2 plots, found the second-order jackknifed 

estimator to be the best for low-intensity sampling (< 10 percent 

of area sampled). Gimaret-Carpentier et al. (1998a) found Chao’s 

estimator(s) to be superior to the generalized jackknifed estima-

tor for estimating richness in a wet, species-rich tropical forest.

The objective of this study is to introduce and assess the 

performance of Petersen’s ratio estimator of richness 

(Thompson 1992) in low-intensity simple random sampling 

with fixed-area plots in a wet, species-rich tropical forest 

compartment. Petersen’s ratio estimator, which rests on a 

minimal set of assumptions, is easy to calculate and lends itself 

to a bootstrap estimation of sampling errors, but has so far not 

been used for the purpose of tree species-richness estimation. 

The bootstrap estimator serves as a reference benchmark as it 

is a widely known and equally simple estimator (Bunge et al. 

1995, Schreuder et al. 1999).
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Material and Methods

Data from a 28-ha forest compartment in the Kadamakal 

Reserve Forest (Kadagu District, Karnatiaka State, India) 

near the village of Uppangala in the Western Ghats mountain 

range (lat. 12º30’N by long. 75º39’W; 500–600 m ALT) are 

used for this study. The forest type is Dipterocarpus indicus–

Kingiodendron pinnatum–Humboldtia brunonis (Pascal 1982). 

Five strips with a width of 20 m, oriented north-south, 100 m 

apart, and 180- to 370-m long, were stem mapped (Pascal and 

Pélissier 1996). Species and spatial location were determined 

for all trees with a diameter at breast height (d.b.h.) ≥ 30 cm. 

Pascal and Pélissier (1996) found 1981 such trees (635 trees per 

ha), representing 93 species (S = 93).

The five 20-m-wide survey lines, totaling 1,560 m in length, 

were subdivided into 312 100 m2 rectangular (5 m by 20 m) 

plots. Simple random sampling (SRS) with sample sizes           

n = 10, 15, ..., 30 plots without replacement was simulated.   

Accordingly, between 3.2 and 9.6 percent of the area was sam-

pled. The area sampled is denoted by A
s
. Sampling, followed by 

estimation of species richness (S), was repeated 2,000 times for 

each sample size.

Let OBSS be the number of species encountered in n sample 

plots. Encountered species are labeled by an index i 

( )1,..., OBSi S= . The sample data consist of a size OBSS n×

binary matrix δ with element δ
ij
 = 1 if the ith species occurred 

in the jth plot and zero (0) otherwise. A design-unbiased 

estimator of the sampling variance of OBSS  is not available. 

The distribution of OBSS  has been assumed Poisson with a 

mean and a variance equal to OBSS . Instead  

is proposed as an estimator of the sampling variance on the 

grounds that  is the average number of plots 

per unique species in the sample.

To arrive at Petersen’s capture–recapture ratio estimator of 

richness, we first consider the n  sample plots as composed 

of two independent half-samples. Let (1)
OBSS  be the number of 

species found in the first half and (2)
OBSS  the number of species 

in the second half. We have (1) (2)
OBS OBS OBSS S S= + . Some species 

are seen in both half-samples; let this number be denoted by 
(1) (2)

OBSS
∩

. Petersen’s capture–recapture estimator (Thompson 

1992) of S  is then

(2)

(1) (2)

(1)ˆ OBS

OBS

PET OBS

S
S S

S
h

∩
= × ×

 
(1)

where h is a multiplier that scales the estimate from 

the half sample to the complete sample of size n. Here 

( )(1) (2) (1)/OBS OBS OBSS S Sh = + . In case (1) (2) 0OBSS ∩ = , a modification 

suggested by Chapman (Seber 1982) would be used. To 

avoid estimating SPET from a single arbitrary data split, 

we computed ˆ
PETS as the average of  

where ˆ i

PET
S is an estimate based on the ith random split of 

the n sample records. The variance of ˆ
PET

S was estimated as 

( )ˆ i
PETVar S .

Smith and van Belle (1984) first suggested a bootstrap estima-

tion of S. A bootstrap sample of size n is drawn with replace-

ment from the n observed sample records. Let r
BOOTS  be the 

number of unique species in the rth such bootstrap sample. The 

difference, , is a bootstrap estimate of 

bias (Efron and Tibshirani 1993); thus

( )
1

(1 )
OBSS

r n
r BOOT OBS BOOT i

i

E S S S p
=

− = Δ = −∑  (2)

with expectation taken across all possible size n bootstrap 

samples.  is an estimate of the number of species 

“missed” in the sample (bias). From equation (1) we obtain the 

bootstrap estimator of S:

 (3)

A variance estimator for ˆ
BOOTS  conditional on OBSS  is

 (4)

where 
i

q is the proportion of sample plots that do not contain 

the ith species and ijq is the proportion that contains neither the 

ith nor the jth species.

The two richness estimators either explicitly or implicitly 

assume an infinite population size. To take the finite population 

size into consideration (Valliant et al. 2000), we corrected the 

estimates in equations (1) and (3) by

ˆ ˆ(1 )( )M OBS pc M OBSS S f S S′ = + − −  (5)
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where 1
pc sf A A−= ×  with { , }M PET BOOT= . This correction 

ensures that 1pcf →  means ˆ
M OBSS S′ →  as required. A corre-

sponding correction was applied to estimators of sampling variance.

The performance of  and 
PET BOOT

S S will be assessed by their 

average error (estimate of bias), precision (actual and average 

of estimated sampling errors), accuracy as estimated by the 

mean absolute difference (Mad) between an estimate and the 

true value, the proportion of estimates within 10 percent of the 

true value (δ10), and finally the coverage rate of estimated 95 

percent confidence intervals ( )95pCI .

Results

Observed richness had, as expected, the largest negative 

average error (estimate of bias), as detailed in table 1. Even 

with 10 percent of the area sampled, the bias was –56 percent. 

The average relative error of the observed richness declined at 

a decreasing rate as sample size increased. PETS  was clearly 

a better estimator than BOOTS in terms of its average relative 

errors (bias), which were roughly half of those associated with 

BOOTS . The rate of decline in the average relative error was 

similar for the three estimators.

Relative standard errors of the richness estimates were about 4 

to 5 percent for n = 10 and 3 to 4 percent for n = 30 (table 1). 

Hence, the decline in the standard error for an increase in n was 

much slower than –2–1n–1.5, as expected for conventional forest 

inventory estimates of population totals, namely averages. 

Average estimates of precision for PET were quite conservative: 

about three times larger than the empirically estimated errors 

(table 1). In contrast, those for BOOT were somewhat liberal 

(too small) at n = 10, but at larger sample sizes (n ≥ 20) 

they matched the empirical estimates to within 0.5 percent. 

The proposed variance estimator for OBS appears attractive 

inasmuch as the observed and the average of the estimated 

errors were within 0.5 percent of each other.

Mean absolute differences (table 2) were dominated by the bias 

component; as such, the results largely mirror those detailed 

above for the average error. The fraction of estimates within 10 

percent of the actual value of 93 was low for PET (≤ 8 percent) 

for all sample sizes. It was 0 for both OBS and BOOT. Estimat-

ed 95 percent confidence intervals of BOOT and OBS estimates 

of richness failed to include the actual value (table 2). Results 

were not much better for PET, with coverage rates increasing 

from just 15 percent at n = 10 to 34 percent at n = 30.

Table 1.—Mean error (estimate of bias) of richness estimates. 
Actual (s.e.) and average of estimated sampling errors ( s.e.) 
are in parentheses (s.e./ s.e. ). Errors are in percent of true 
richness S = 93. Means are across 2,000 replicate samples.

Estimator  Sample size (As/A×100)

   �0    �5    20    25    30

(3.2) (�.�) (6.�) (�.0) (�.6)

– 75 – 6� – 6� – 60 – 56

 (�/�) (�/�) (�/�) (�/�) (�/�)

– �6 – 3� – 3� – 2� – 25

(�/��) (�/��) (�/�0) (3/0) (3/�)

– 6� – 62 – 57 – 57 – ��

(5/3) (�/3) (�/3) (3/3) (3/3)

Table 2.—Mean absolute error (Mad) of richness estimates. 
Mad is in percent of true richness (93). Percent of estimates 
within 10 percent of true value (δ10  )and coverage rates 
of estimated 95 percent confidence intervals (pCI95 )are in 
parentheses (δ10  / pCI95 ).

Estimator  Sample size (As/A×100)

�0 �5 20 25 30

(3.2) (�.�) (6.�) (�.0) (�.6)

75 6� 6� 60 56

 (0/0) (0/0) (0/0) (0/0) (0/0)

�6 3� 3� 2� 25

(2/�5) (3/2�) (3/2�) (5/2�) (�/3�)

6� 62 57 57 ��

(0/0) (0/0) (0/0) (0/0) (0/0)
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Discussion

Low-intensity forest inventories do not provide estimates of 

tree species richness on a routine basis. Given the importance 

that is attached to notions of species richness and biodiversity, 

however, it would seem reasonable to expect that forest 

inventories would provide such an estimate. While it is 

generally recognized that the observed number of species 

will be downwardly biased, it is probably less appreciated 

that almost any estimator of species richness will be an 

improvement over the observed richness. It is generally 

accepted that there is no universally best estimator of S. The 

choice must be based on documented performance (Chao 

and Bunge 2002). Because an overestimation of richness can 

have a negative impact on credibility, an estimator unlikely 

to produce an inflated estimate is warranted. At low-intensity 

sampling both Petersen’s and the bootstrap estimator are 

unlikely to produce an inflated estimate. Palmer (1990, 1991) 

and Hellmann and Fowler (1999) have already confirmed 

this property of BOOTS . The uniform superiority of Petersen’s 

estimator vis-á-vis the bootstrap estimator holds promise, but it 

needs to be corroborated by additional studies before one can 

draw any general conclusion.

Because the study site had many rare and just a few common 

species we cannot a priori expect to obtain very good estimates 

of richness from low-intensity forest inventory sampling. 

Condit et al. (1996) suggest that a sample of at least 1,000 

individually sampled trees, or about 10 percent of a population, 

is needed in wet, tropical species-rich forests before a sample-

based estimate of species richness is within 15 percent of the 

actual value.

Our study reiterated the importance of choosing a suitable 

estimator of richness. It is well known that the performance 

of an estimator depends not only on the statistical sampling 

designs but also on the population structure and spatial 

distribution of species (Brose et al. 2003, Colwell et al. 2004, 

Keating et al. 1998). Only an extensive assessment of a larger 

suite of estimators in diverse environments and across a series 

of conventional low-intensity forest inventory designs will 

allow a resolution to the question of whether we can hope 

to obtain estimates of tree species richness that are both 

reasonably accurate and reasonably precise from low-intensity 

forest inventories. The test designs would have to include 

sampling with plots of different size, as the effect of plot size 

is expected to depend strongly on both the estimator and the 

spatial distribution of species in the population of interest 

(Condit et al. 1996, Gimaret-Carpentier et al. 1998b).
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