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Abstract  

Landsat imagery with a 30 m spatial resolution is well suited for characterizing 

landscape-level forest structure and dynamics. While Landsat images have 

advantageous spatial and spectral characteristics for describing vegetation properties, 

the Landsat sensor's revisit rate, or the temporal resolution of the data, is 16 days. 

When considering that cloud cover may impact any given acquisition, this lengthy revisit 

rate often results in a dearth of imagery for a desired time interval (e.g., month, growing 

season, or year) especially for areas at higher latitudes with shorter growing seasons. In 

contrast, MODIS (MODerate-resolution Imaging Spectroradiometer) has a high 

temporal resolution, covering the Earth up to multiple times per day, and depending on 

the spectral characteristics of interest, MODIS data have spatial resolutions of 250 m, 

500 m, and 1000 m. By combining Landsat and MODIS data, we are able to capitalize 

on the spatial detail of Landsat and the temporal regularity of MODIS acquisitions. In 

this research, we apply and demonstrate a data fusion approach (Spatial and Temporal 

Adaptive Reflectance Fusion Model, STARFM) at a mainly coniferous study area in 

central British Columbia, Canada. Reflectance data for selected MODIS channels, all of 

which were resampled to 500 m, and Landsat (at 30 m) were combined to produce 18 

synthetic Landsat images encompassing the 2001 growing season (May to October). 

We compared, on a channel-by-channel basis, the surface reflectance values (stratified 

by broad land cover types) of four real Landsat images with the corresponding closest 

date of synthetic Landsat imagery, and found no significant difference between real 

(observed) and synthetic (predicted) reflectance values (mean difference in reflectance: 

mixed forest 088.0,086.0x , broadleaf 079.0,019.0x , coniferous 
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093.0,039.0x ). Similarly, a pixel based analysis shows that predicted and 

observed reflectance values for the four Landsat dates were closely related (mean 

r2=0.76 for the NIR band; r2=0.54 for the red band; p<0.01). Investigating the trend in 

NDVI values in synthetic Landsat values over a growing season revealed that 

phenological patterns were well captured; however, when seasonal differences lead to a 

change in land cover (i.e., disturbance, snow cover), the algorithm used to generate the 

synthetic Landsat images was, as expected, less effective at predicting reflectance.  
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1. Introduction 

Vegetation canopy biophysical and structural information are required inputs to many 

landscape-scale models, including ecosystem process and wildlife habitat models 

(Peddle et al., 1999; Sellers 1985b; Sellers et al., 1996; Townshend and Justice 1995). 

Since the launch of the first satellite sensors in the 1970’s, remote sensing has emerged 

as a key technology for providing modeling inputs in a spatially continuous fashion, with 

considerable progress being made in the determination of biophysical plant properties 

from optical sensors (Prince 1991; Prince and Goward 1995; Ecklundh et al., 2001, 

Patenaude et al. 2005; Masek and Collatz 2006). Key challenges are still imposed by 

technological limitations, requiring trade-offs to be made between the spatial, spectral, 

and temporal resolutions of an instrument, and often preventing an adequate 

description of ecosystem dynamics and disturbance for modeling purposes. For 

instance, high spatial resolution typically results in a smaller image footprint, or spatial 

extent, thereby increasing the time it takes a satellite to revisit the same location on 

Earth (Coops et al. 2006). Conversely, high temporal resolution sensors have a more 

frequent revisit rate and produce wide-area coverage with a lower spatial resolution 

(Holben 1986; Justice et al. 1985).  

Arguably, the most commonly used satellite sensor for mapping biophysical 

vegetation parameters and land cover type is Landsat (Cohen and Goward, 2004). The 

Landsat TM and ETM+ sensors on board the Landsat 5 and 7 platform have a spatial 

resolution of 30 m, a spatial extent of 185 x 185 km per scene, and proven utility for 

monitoring land cover and land cover changes (Wulder et al., 2008). Its 16-day revisit-

cycle, however, which can be significantly lengthened due to cloud contamination (Ju 
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and Roy, 2007), can limit Landsat’s use for monitoring biodynamics (Ranson et al. 

2003; Roy et al. 2008) and may create difficulties in mapping vegetation conditions in a 

timely manner (Gao et al. 2006; Leckie 1990; Pape and Franklin 2008). The impact of 

clouds on satellite imagery can be of major concern (Ju and Roy, 2007), especially 

notably in tropical locations and regions with variable topography. For instance, Leckie 

(1990) found that the probability of acquiring a cloud-free Landsat scene (cloud 

cover<10%) can be as low as 10% for some regions in Canada (observed during July 

and August); plus, technical difficulties, such as the scan line corrector failure of the 

Landsat ETM+ sensor in 2003 (Maxwell et al., 2007), can further reduce the availability 

of images suitable for analysis. 

Changes in land cover and ecosystem disturbance are important drivers of 

habitat distribution and species abundance (Pape and Franklin 2008) and as a result, a 

goal for terrestrial monitoring, especially habitat mapping, is to have both high spatial 

and temporal resolutions. One possible way to meet this goal is through fusing data 

from sensors with differing spatial and temporal characteristics. In general, data fusion 

or data blending combines multi-source satellite data to generate information with high 

spatial and temporal resolution. Several approaches describing existing fusion 

techniques are summarized in Table 1. An early example of a fusion model was 

illustrated by Carper et al., (1990) who combined 10 m spatial resolution SPOT 

panchromatic imagery with 20 m spatial resolution multispectral imagery by using an 

intensity-hue-saturation (IHS) transformation. The generated composite images have 

the spatial resolution of the panchromatic data and the spectral resolution of the original 

multispectral data. Other techniques to enhance the spatial resolution of multispectral 
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bands include component substitution (Shettigara, 1992), and wavelet decomposition 

(Yocky, 1996). One of the first studies designed to increase the spatial resolution of 

MODIS using Landsat was introduced by Acerbi-Junior et al. (2006) using wavelet 

transformations. The algorithm yields classified land cover types and was used for 

mapping the Brazilian Savanna (Acerbi-Junior et al. 2006). Recently, (Hansen et al. 

2008) used regression trees to fuse Landsat and MODIS data based on the 500m 16-

day MODIS BRDF/Albedo land surface characterization product (Roy et al., 2008, 

Hansen et al., 2008) to monitor forest cover in the Congo Basin on a 16 day basis. 

Table 1: Summary of data blending techniques found in the literature. 
 

Technique Sensor 1  Scale 1  
(m) 

Sensor 2  Scale 2  
(m) 

Author 

IHS 
Transforms 

SPOT Pan 10 Spot XS 20 Carper et al., 
1990 

Component 
Substitution 

XS SPOT 
Landsat 

TM 

20 
30 

SPOT Pan 
SPOT Pan 

10 
10 

Shettigara, 
1992 

Multi-
resolution 

wavelet 
decomposition 

Landsat 
TM 

28.5-120 SPOT Pan 10 Yocky, 1996 

Wavelet 
Transforms 

MODIS 1,2 
MODIS 3-7 

250 
500 

Landsat 
TM 

30 Acerbi et al., 
2006 

Downscaling 
MODIS 

MODIS 1,2 250 MODIS 3-7 500 Trishschenko 
et al., 2006 

Combining 
medium and 

coarse 
resolution 

satellite data 

MODIS 250 Landsat 
TM 

30 Busetto et 
al., 2007 

Semi-physical 
data fusion 
approach 

using MODIS 
BRDF/Albedo 

MODIS 500 Landsat 
TM 

30 Roy et al., 
2008, 

Hansen et 
al., 2008 

STARFM MODIS 500 Landsat 
TM 

30 Gao et al., 
2006 

*Pan= Panchromatic, XS= Multi-spectral 
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While there are numerous examples existing in the current literature that fuse 

data from multiple sensors, only a few techniques yield calibrated outputs of spectral 

radiance or reflectance (Gao et al., 2006), a requirement to study vegetation dynamics 

or quantitative changes in reflectance over time. The Spatial and Temporal Adaptive 

Reflectance Fusion Model (STARFM) (Gao et al., 2006) is one such model and was 

designed to study vegetation dynamics at a 30 m spatial resolution. STARFM predicts 

changes in reflectance at Landsat’s spatial and spectral resolution using high temporal 

frequency observations from MODIS. STARFM predicts reflectance at up to daily time 

steps, depending on the availability of MODIS data. MODIS sensors are present on the 

polar orbiting Terra and Aqua spacecrafts, launched in 1999 and 2002 respectively, and 

acquire data in 36 spectral bands, 7 of which are commonly used for terrestrial 

applications (Wolfe et al. 2002). Depending on the spectral channel of interest, MODIS 

has spatial resolutions of 250 m, 500 m, and 1 km at nadir, with near daily global 

coverage.  

STARFM was initially tested to predict daily Landsat-scale reflectance in the red 

and NIR region using the 500-m daily surface reflectance product (MOD09GHK) with 

one or more pairs of Landsat and MODIS images acquired on the same date (T1) and 

one or more MODIS observations from the prediction date (T2) (Gao et al., 2006). For 

more humid areas of the Earth, which are frequently cloud contaminated, it can, 

however, be useful to base the predictions on multi-day composites, such as provided 

by the 8-day MOD09A1/MYD09A1 product, to minimize cloud contamination in existing 

MODIS scenes (Vermote, 2008). Spectral information from the Landsat ETM+ sensor is 
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synthesized by matching the locations of Landsat ETM+ bands 1-5 and 7 to their 

corresponding MODIS land bands (Table 2) (Gao et al., 2006).  

Table 2: Comparison spectral bands Landsat and MODIS.  

Landsat  MODIS 

Band Spectral range Band name Band Spectral range 

1 450-520 nm Blue 3 459-479nm 

2 520 – 600 nm Green 4 545-565nm 

3 630-690 nm Red 1 620-670nm 

4 760-900 nm Near IR 2 841-876nm 

5 1550-1750 nm Mid IR 6 1628-1652nm 

7 2080-2350 nm Mid IR 7 2105-2155nm 

 

In the study presented herein, we build upon the work of Gao et al. (2006) and 

investigate the suitability of the STARFM algorithm for generating synthetic Landsat 

images that may then be used to investigate vegetation dynamics in different land cover 

types. We assess the quality of the synthetic (predicted) Landsat reflectance values for 

a number of broad vegetation classes (mainly coniferous forest), by comparing these 

predictions with reflectance values from real (observed) Landsat images acquired 

throughout one growing season. The objective of this study is to investigate the 

potential of STARFM for assessing seasonal changes (i.e. changes due to vegetation 

green up and leaf senescence) in vegetation cover and vegetation status in the boreal 

and sub-boreal forest regions for which the potential of acquiring frequent higher spatial 

resolution data (and therefore the potential for mapping of vegetation dynamics) is 

otherwise low. Algorithms like the one used in this study are important components of 
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current research efforts seeking to map high spatial resolution changes in vegetation 

cover and status with high temporal density, over larger areas. Data blending 

approaches, such as STARFM can help minimizing the technical limitations and trade-

offs associated with information needs that require data with both high spatial and high 

temporal resolutions. Applications such as monitoring seasonal changes in vegetation 

biophysical and structural attributes over large areas can benefit from the synergies of 

multiple data sources such as MODIS and Landsat. Advances in data blending can also 

influence the design of new sensors, where the advantages of different spatial and 

temporal resolutions may be fully realized in the creation of different sensors on 

different platforms, with the complementary nature of these systems in a data blending 

approach, considered from the outset of the design process.  

 

2. Methods 

2.1 Study area and image data 

Criteria for site selection included the availability of four or more consecutive Landsat 

images in the growing season of a given year with less than 10% cloud cover. Our study 

area is the Landsat WRS-2 Path 47 / Row 24, centered at approximately 51o 41’ 00” N 

latitude and 121o 37’ 00” W longitude, located in central British Columbia, Canada 

(Figure 1). The 185 x 185 km study area intersects with the 100 Mile House and Central 

Cariboo Forest Districts of the Southern Interior Forest Region. The vegetation in this 

area is dominated by coniferous tree species, including Douglas-fir (Pseudotsuga 

menziesii, Mirbel), lodgepole pine (Pinus contorta var. latifolia, Douglas ex Loudon) and 

white spruce (Picea glauca, (Moench) Voss). The climate in this area is extreme, with 
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characteristically hot, moist summers and cold winters, which often have large amounts 

of snow accumulation (Meidinger and Pojar, 1991). 
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Figure 1: Map of the study area. The study site encompasses a Landsat scene (185 x 185 km
2
 near Williams 

Lake BC, Canada  
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Five cloud-free Landsat scenes acquired between May and mid October 2001 

were available for the study site and were acquired through the USGS GLOVIS portal 

(http://glovis.usgs.gov/). Images were atmospherically corrected using the cosine 

approximation model (COST) (Wu et al., 2005) and radiometrically normalized (Hall et 

al. 1991b) with respect to the 2005 imagery in order to simplify the comparison between 

the data. The registration accuracies (RMS error) for the five Landsat scenes were 0.47 

m for the image acquired May 6, 2001 and 0.49 m for the images acquired July 9, Aug 

10 and Sept 27, 2001. 

Additionally, 19 eight-day MODIS composites (MOD09A1, using data from the 

Terra platform) for the same time period and with a spatial resolution of 500 m were 

obtained from the EOS data gateway of NASA’s Goddard Space Flight Center 

(http://redhook.gsfc.nasa.gov). Figure 2 contains an overview of the Landsat and 

MODIS scenes used in this study. Following STARFM algorithm input requirements, the 

MODIS data were reprojected to the Universal Transverse Mercator (UTM) projection 

using the MODIS reprojection tool (Kalvelage and Willems 2005), clipped to the extent 

of the available Landsat imagery, and resampled to a 30 m spatial resolution using a 

nearest neighbour approach.  

http://redhook.gsfc.nasa.gov/
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Figure 2: Acquisition dates of Landsat and MODIS scenes used for this study. Note that MODIS data were 
acquired as 8-day composites, the dates given in the figure are the first day of the 8-day acquisition period, 
respectively.  
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2.2 Land cover classification 

A Landsat derived land cover classification product developed by the Earth Observation 

for Sustainable Development of Forests (EOSD) initiative, a joint collaborative between 

the Canadian Forest Service and the Canadian Space Agency, provided information on 

land cover types in the study area (Wulder et al., 2003). The EOSD product is based 

upon the unsupervised classification, hyperclustering, and manual labelling of Landsat 

data, facilitating the classification of land cover types over larger areas (Franklin and 

Wulder, 2002; Slaymaker et al., 1996; Wulder et al., 2003). The EOSD product 

represents 23 unique land cover classes mapped at a spatial resolution of 0.0625 ha 

(equivalent to a 25 m by 25 m pixel) thereby representing circa year 2000 conditions 

(Wulder et al., 2008). The accuracy of the EOSD product was found to be 77%, 

achieving a target accuracy of 80%, with a 90% confidence interval of 74 – 80% (for 

more detailed information see Wulder et al., 2007).  

EOSD land cover data for the study area were downloaded from the EOSD data 

portal (http://www4.saforah.org/eosdlcp/nts_prov.html) and resampled to a 30m 

resolution using a nearest neighbour approach. The dominant land cover type in the 

study area is coniferous forest (comprised of Douglas-fir, lodgepole pine, and white 

spruce) with subsidiary herbal and shrub vegetation and patches of water and rocks. 

Land cover patches are generally large, the landscape can, however, be quite 

heterogeneous within some areas due to harvesting activities and related cut-blocks 

and access road networks. About 1.8% of the study area has not been classified due to 

http://www4.saforah.org/eosdlcp/nts_prov.html
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cloud contamination during acquisition of the Landsat scene used for EOSD 

classification.  This area has been excluded from data analysis. The classification 

accuracy for coniferous and deciduous forests and their associated density classes is 

~92%, the mixed forest class is classified with ~88% accuracy (Wulder et al., 2003). 

 

2.3 Data processing using STARFM 

STARFM predicts pixel values based upon a spatially weighted difference computed 

between the Landsat and the MODIS scenes acquired at T1, and the Landsat T1-scene 

and one or more MODIS scenes of prediction day (T2), respectively (Gao et al., 2006). A 

moving window technique is used to minimize the effect of pixel outliers thereby 

predicting changes of the center pixel using the spatially and spectrally weighted mean 

difference of pixels within the window area (Gao et al., 2006). The prediction algorithm 

in STARFM is given by (Gao et al., 2006),  

w

i

w

j

jijijiijww TyxMTyxLTyxMWTyxL
1 1

11222/2/ ,,,,,   (1) 

where 22/2/ ,, TyxL ww  is a Landsat pixel value predicted for the time T2, w is the size of 

the moving window and xw/2, yw/2 is the central pixel within this moving window. The 

spatial weighting function Wij determines how much each neighbouring pixel (xi,yj) in w 

contributes to the estimated reflectance of the central pixel. 2, TyxM ji  is the MODIS 

reflectance at the window location ( ji yx , ) observed at T2, while 1, TyxL ji  and 

1, TyxM ji  are the corresponding Landsat and MODIS reflectance values observed at 

the base date T1, respectively (Gao et al., 2006). The weighting function implemented in 

STARFM (when based on a single Landsat and MODIS image as T1 input) is calculated 
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from the product ( ijC ) of the spectral (Si,j) and spatial distance (Di,j)  between the central 

predicted pixel and the surrounding candidate pixel. Wij is calculated as the normalized 

reverse function of this product (Gao et al., 2006).  

   
w

i

w

j

ijijji CCW
1 1

, /1//1    (2)  

 

An area of 1500 m x 1500 m was selected as the moving window size for 

STARFM predictions (Gao et al., 2006). The uncertainties of Landsat and MODIS 

surface reflectance were set to 0.002 and 0.005 for the visible and the NIR bands, 

respectively (Gao et al., 2006). Synthetic Landsat images were predicted using the 

Landsat scene acquired at 2001/08/10 in conjunction with the MODIS scene acquired at 

2001/08/13 as T1 data. T2 was defined as the dates for which the remaining 18 MODIS 

8-day composites were available. The August MODIS and Landsat image pair was 

selected as T1 input because it had the least amount of cloud cover (close to 0%), and 

because the temporal difference between the MODIS and the corresponding Landsat 

scene was minimal (reducing the likelihood for changes in land cover resulting from 

harvesting or phenological changes).  

Clouds in Landsat data were flagged by means of a cloud mask algorithm (Irish 

2000; Irish et al., 2006), which uses subsequent filtering techniques to identify cloud 

contamination in Landsat data based on pixel brightness, surface temperature and 

several band ratios to eliminate highly reflective vegetation, senescing vegetation, and 

highly reflective rocks and sands (Irish 2000; Irish et al., 2006). Clouds in the MODIS 

imagery were identified using the MODIS quality flags. Low quality pixels (such as snow 
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or cloud contaminated) in either Landsat or MODIS data were predicted in STARFM but 

excluded from the statistical analysis.  

 

 

 

2.4 Assessment of STARFM synthetic Landsat imagery 

The four remaining Landsat scenes were used for validation (cross-comparison) to 

allow assessment of the quality of the STARFM predictions (real to synthetic Landsat 

images) made throughout the 2001 growing season. The prediction accuracy was 

assessed on a per pixel basis by comparing the reflectances of observed and predicted 

Landsat images for a subset of the study area (random sample of 10% of the vegetated 

land surface area). The prediction quality of STARFM was assessed from the difference 

between observed and predicted scenes by comparing the 4 image pairs on a pixel by 

pixel basis and per land cover type defined from the EOSD land cover product. A two-

sided t-test of the difference images was used to determine whether there is a 

statistically significant difference between observed and predicted reflectance values 

(i.e., whether the mean difference between observed and predicted data varied 

significantly from zero).  

Changes in vegetation green-up and leaf-down were described using the normalized 

difference vegetation index (NDVI) (Tucker 1979), as one of the most commonly used 

measures of vegetation cover and leaf area (Asrar et al., 1984; Daughtry et al., 1983; 

Myneni and Williams 1994; Sellers 1985a). NDVI was calculated per land cover class 
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for all 18 prediction dates and then compared to the Landsat observed NDVI values at 

the 4 validation dates throughout the 2001 growing season.  

 

3. Results 

Table 3 shows the percent coverage of the different land cover types found within 

the study area. The majority of land is covered by open and sparse coniferous forest, 

while mixed and broadleaf forest types only cover about 4% of the study area.  The 

STARFM algorithm yielded 18 high spatial resolution, synthetic Landsat images for the 

2001 growing season (May through October) using a Landsat and a MODIS scene 

acquired in August 2001 as the T1 images, and 18 eight-day MODIS composites 

between May and October 2001 as the T2 images for prediction. Figure 3 shows the five 

observed Landsat scenes (4A, 4D, 4G, 4J, 4M), the corresponding MODIS composites 

used for STARFM predictions (4B, 4E, 4H, 4K, 4N), and the predicted synthetic Landsat 

images in the right column (4C, 4F, 4L, 4O). No image was synthesized for August 13, 

as the August imagery was used as T1 input. Larger, visible differences in Figure 3 were 

due to cloud contamination in the Landsat and MODIS scenes and, in the case of the 

May image, snow cover. The quality of the synthetic Landsat images was affected by 

cloud contamination in the T2 MODIS composites, resulting in a few streaking effects in 

the synthesized images, particularly in the shorter wavebands (Figure 3C and O, upper 

portion of the image). Figure 4 shows an example of a 10 x 10 km subset of the Landsat 

scene obtained in July (Figure 4A) and the corresponding STARFM synthetic image 

(Figure 4B). STARFM maintained a high level of spatial detail in the predicted scenes, 

including areas with more heterogeneous and complex land cover types. The spatial 
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patterns related to differing land cover types were well maintained in the synthetic 

images (Figure 4). Figure 5A-L shows a per-pixel comparison between observed and 

predicted Landsat reflectance for the focus area shown in Figure 4. The rows represent 

the reflectance values for the NIR, red and green TM band, respectively, the columns 

represent the four validation dates (May 9, July 12, September 30 and October 08). 

Highest correlations between observed and predicted pixel values were found for the 

NIR band (0.73<r2<0.82; p<0.01) (Figure 5A-D), while the shorter wavebands in the 

visible part of the spectrum yielded weaker relationships. The coefficients of 

determination ranged between 0.27<r2<0.67 for the red and between 0.44<r2<0.62 for 

the green band. Prediction accuracy was highest for the scenes predicted for July 12 

and September 30 (Figure 5B-C, F-G and J-K), while the precision was lower especially 

for the visible bands at the beginning of the vegetation period (Figure 5 E,I). The 

relationship between observed and predicted pixel values closely followed the 1-to-1 

line (Figure 5 A-L) thereby showing that Landsat reflectance was accurately predicted 

by STARFM. Some deviations from this 1-to-1 line, however, were found for the red 

band towards the end of the vegetation period (Figure 5H). Table 4 shows a pixel based 

comparison between observed and predicted Landsat images for TM bands 2-5 and 

NDVI summarized for the most important land cover categories, 1) shrub and herb, 2) 

forested vegetation and 3) all landcover types combined. The first column in each sub-

table is showing the coefficient of determination for the pixel based regression between 

the observed Landsat scenes (May 06, July 09, Sept 27 and Oct 05) and the STARFM 

predicted images that whose prediction date was closest to the observed scenes (May 

09, July 12, Sept 30 and Oct 08, respectively). The relationship between observed and 
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predicted was highest for the longer wavebands (Red, NIR and SWIR, NDVI), and for 

the more heterogeneous land cover types, showing a larger range of pixel values. The 

second column is showing the intercept of the relationship, data were normalized to the 

maximum observed reflectance of each band in order to facilitate a comparison 

between different wavelengths. STARFM consistently overestimated the intercept by 

between 0 and 19% of the observed reflectance, best results were found for the longer 

wavelengths. The slope between observed and predicted pixel values followed the 1:1 

line relatively close but the predicted values slightly underestimated the observed 

reflectance in all cases. Best results were found for NDVI band, likely due to the 

normalization of the indexed values.  

Table 3: EOSD-Landcover types and percent coverage found within the study area (185 x 185 km
2
). 

 

Land cover type % cover 

Shadow  
Water  
Snow/Ice  
Rock/Rubble  
Exposed Land  
Bryoids  
Shrub Tall  
Shrub Low  
Wetland  
Herb  
Coniferous  
Broadleaf  
Mixed forest  

1.01 
3.22 
0.28 
0.22 
4.49 
0.00 
0.24 
6.94 
1.84 
9.31 

66.79 
2.25 
1.58 
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Table 4: Pixel based regression of the observed Landsat scenes (May 06, July 09, Sept 27 and Oct 05) versus 
the STARFM predicted images whose prediction date was closest to the observed scenes (May 09, July 12, 
Sept 30 and Oct 08). The first column in each sub-table is showing the coefficient of determination, the 
second column is showing the intercept, normalized to percent total reflectance of the observed image (for 
instance a value of 0.1 means the predicted image overestimated the reflectance by 10%), the third column is 
showing the slope of the relationship between observed and predicted.  

 TM 

band 

May 06 July 09 Sept 27 Oct 05 

Land 

cover 

2 r2 a b r2 a b r2 a b r2 a b 

Herb/shrub 
 

0.55 0.03 0.93 0.67 0.09 0.82 0.66 0.07 0.84 0.69 0.12 0.78 

Forest 
 

0.42 0.14 0.69 0.57 0.13 0.77 0.59 0.12 0.78 0.64 0.10 0.78 

Combined 
 

0.47 0.09 0.77 0.60 0.11 0.76 0.61 0.10 0.80 0.65 0.12 0.77 

Land 

cover 

3 r2 a b r2 a b r2 a b r2 a b 

Herb/shrub 
 

0.61 0.05 0.90 0.70 0.09 0.83 0.68 0.09 0.84 0.64 0.12 0.78 

Forest 
 

0.53 0.12 0.74 0.63 0.11 0.79 0.69 0.10 0.83 0.73 0.09 0.84 

Combined 
 

0.56 0.09 0.80 0.66 0.10 0.80 0.69 0.08 0.83 0.69 0.09 0.82 

Land 

cover 

4 r2 a b r2 a b r2 a b r2 a b 

Herb/shrub 
 

0.79 0.04 0.90 0.85 0.04 0.92 0.75 0.07 0.87 0.73 0.07 0.85 

Forest 
 

0.47 0.16 0.70 0.59 0.12 0.78 0.51 0.14 0.79 0.51 0.16 0.78 

Combined 
 

0.71 0.07 0.85 0.78 0.06 0.88 0.67 0.08 0.81 0.67 0.10 0.80 

Land 

cover 

5 r2 a b r2 a b r2 a b r2 a b 

Herb/shrub 
 

0.82 0.03 0.90 0.85 0.05 0.92 0.73 0.07 0.86 0.53 0.19 0.73 

Forest 
 

0.76 0.07 0.86 0.80 0.05 0.89 0.70 0.08 0.82 0.62 0.13 0.75 

Combined 
 

0.81 0.05 0.90 0.83 0.05 0.90 0.70 0.07 0.84 0.61 0.14 0.71 

Land 

cover 

NDVI r2 a b r2 a b r2 a b r2 a b 

Herb/shrub 
 

0.84 0.04 0.88 0.93 0.04 0.92 0.91 0.06 0.86 0.85 0.08 0.82 

Forest 
 

0.50 0.08 0.86 0.84 0.14 0.92 0.64 0.13 0.74 0.82 0.15 0.86 

Combined 
 

0.67 0.10 0.80 0.83 0.04 0.91 0.80 0.06 0.87 0.80 0.05 0.90 
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Figure 3: Comparison between observed Landsat scene (left column), observed MODIS scene (central 
column) and predicted Landsat scene (right column) for the 5 acquisition dates. No synthetic data has been 
predicted for August 13 as the Landsat input data from August have been used as T1 image (Band 
combination: NIR, Red, Green). 
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Figure 4: Comparison of fine scale structure between observed Landsat scene (acquired July 09 2008) and 
predicted Landsat scene (predicted using July 12 as prediction date). STARFM was able to represent the 
heterogeneity of Landscape well. 
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Figure 5: Per-pixel comparison between observed and predicted Landsat reflectance. The rows represent the 
reflectance values for the NIR, red and green TM band, respectively, the columns represent the four 
validation dates. Highest correlations between observed and predicted pixel values were found for the NIR 
band (0.73<r2<0.82; p<0.01) (Figure 5A-D), while the visible reflectances yielded weaker relationships 
(0.27<r

2
<0.67 for the red (Figure 5E-H), and 0.44<r

2
<0.62 for the green band (Figure 5I-L)) (p<0.01). Prediction 

accuracy was highest for the scenes predicted for July 12 and September 30 (Figure 5B-C, F-G and J-K), 
while the accuracy was lower especially for the visible bands at the beginning of the vegetation period 
(Figure 5 E,I). 
 

Figure 6A-D shows a quantitative comparison between the four real Landsat 

scenes used for validation (4A, 4D, 4J, 4M) and the corresponding synthesized scenes 

(4C, 4F, 4L, 4O), using ETM+ band 5 ( =1550-1750 nm) as an example. The mean 

deviation between the observed and predicted images ranged between 1.86 (July) and 

4.06% of the observed image (September) with a standard deviation of 2.51 and 6.46% 

of the observed image, respectively. Statistical analysis (two-sided t-test,: =0.05, 

p<0.0001, sample size 1000 of randomly selected pixels, tApril =1.5568, tJuly =1.6566, 
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tSeptember =1.5871, tOctober =1.2578 for ETM+ Band 3, tApril = 0.1242, tJuly = -0.0905, 

tSeptember = 0.5776, tOctober = 0.0086 for ETM+ Band 4) showed that there is no 

statistically significant difference between the mean observed and predicted Landsat 

reflectance, for any of the EOSD cover types considered, when excluding areas with 

cloud and snow cover. The observed effect size (Cohen’s d) was <=0.4489 which 

resulted in a type II error rate of 0.000.The colors correspond to the magnitude of the 

differences between observed and predicted images. Note that the major differences 

occurring in the images correspond to the cloud contamination present in the Landsat 

scenes (compare Figure 3D (July 9) and 4J (Sept 27)).  
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Figure 6: Difference image between synthetic Landsat scenes predicted for 2001/05/09, 2001/07/09, 
2001/09/27 and 2001/10/05 and corresponding Landsat scene. The difference between Landsat scene 
predicted for 2001/08/10 and observed at 2001/08/05 is not shown as T1=T2. Red areas show cloud cover 
existing in the T2 Landsat scene but not in the T1 images, whereas blue areas show cloud cover in the T1 
scene but not in the T2 scene. For areas clouded at either T1 or the T2, no reliable prediction can be made, 
hence clouded areas were excluded from any image statistics. 

 

Figure 7 A-F demonstrates the ability of STARFM to predict seasonal changes in 

vegetation reflectance. Data include only those pixels whose location coincides with 

vegetated land cover classes as defined by the EOSD map. Figure 7A-C shows a 
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comparison between the Landsat reflectance observed at May 6 and the Landsat 

reflectance observed at August 10, for the green (Figure 7A), red (Figure 7B) and NIR 

(Figure 7C) bands, respectively. Seasonal changes in the reflectance in vegetation are 

visible in the red and NIR band, as the Landsat image observed in August 

underestimated the reflectance in the red and NIR part of the spectrum. Figure 7D-F 

shows a comparison between the Landsat reflectance observed at May 6 and the 

reflectance values predicted for May 9 using STARFM (Figure 7D, 8E and 8F represent 

the green, red and NIR band, respectively, again only those pixels were included whose 

location coincides with vegetated land cover types). The diagrams shown in Figure 7D-

F show a better fit to the 1-to-1 line than Figure 7A-C as the additional information 

acquired from MODIS data helps to account for seasonal changes in reflectance of 

vegetation (Gao et al., 2006).    

 

Figure 7 A-F: Capability of STARFM to predict seasonal changes in reflectance. Data include only those pixel 
values whose location coincided with vegetated land cover classes as defined by the EOSD maps. Figure 7A-
C: Comparison between the Landsat TM reflectance observed at May 6 and the Landsat TM reflectance 
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observed at August 10, for the green (Figure 7A), red (Figure 7B) and NIR (Figure 7C) band. Figure 7D-F 
Comparison between the Landsat TM reflectance observed at May 6 for the green (Figure 7D), red (Figure 7E) 
and NIR (Figure 7F) bands. The diagrams shown in Figure 7D-F show a better fit to the 1-to-1 line than those 
in Figure 7A-C.    

 

Figure 8A-D shows a time series of the normalized difference vegetation index 

(NDVI) (Tucker 1979) for the most common vegetation types found within the study 

area, derived from the synthetic Landsat images predicted using STARFM (sparse, 

open, and dense forest types are summarized into one class). NDVI values obtained 

from the real Landsat scenes are shown as open squares. Seasonal changes in 

vegetation status were well described by STARFM for all vegetation cover types, with 

best results found for the broadleaf vegetation class. For example, changes in 

physiological status of the canopy during the green-up period were well described by 

the algorithm and only small deviations were found between observed NDVI and 

STARFM predicted NDVI values throughout the growing season, with deviations from 

expectation evident for the MODIS image acquired outside the growing season in 

October (2001/10/08). As expected, greatest differences in seasonality were found for 

the broadleaf vegetation class ( NDVImax=0.21), while the coniferous land cover type 

maintained a more homogeneous level of NDVI values throughout the observation 

period ( NDVImax=0.16). The variability in mean and standard deviations of NDVI values 

of adjacent 8-day intervals was low, which suggest a high level of precision for the 

predicted NDVI values. The T1 date in Figure 8 is highlighted in grey as this date was 

used to illustrate the seasonal variation in STARFM predictions which was derived from 

the T2 MODIS scene. 
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Figure 8: Eight-day time series of mean NDVI values calculated for the most common land cover types 
between DOY 120 to 280 (2001). The triangles show the mean NDVI values derived from STARFM synthetic 
images, the corresponding errorbars represent the standard deviation. The open squares mean NDVI values 
derived from the actual Landsat observations, the errorbars represent the standard deviation. The grey line 
at DOY 226 marks the T1 date which was used for the STARFM predictions. Synthetic NDVI observations fit 
well into the annual pattern of the vegetation cycle for the different land cover types. Greatest differences in 

reflectance due to seasonal effects were found for the broadleaf vegetation class ( NDVImax=0.21), while the 

coniferous land cover type maintained a more homogeneous level of NDVI ( NDVImax=0.16). 
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4. Discussion  

This study investigated the capability of STARFM (Gao et al., 2006) to predict 

seasonal changes in different land cover types observed over a 34,225 km2 study area 

in south-central British Columbia, Canada. STARFM was successfully used to predict 8-

day synthetic Landsat images between May and October 2001 based on one Landsat 

and 18 MODIS observations (Figure 3). The use of MODIS composite images rather 

than daily MODIS reflectance products yielded largely cloud free predictions throughout 

the 2001 study period and can therefore help to predict changes in reflectance of 

vegetation in more humid areas of the Earth where cloud cover prevents frequent cloud 

free observations. The use of MODIS composites rather than single observations may, 

however, impact the average reflectance brightness for a given image region, 

depending on the MODIS scenes used in the MOD09A1/ MYD09A1 product and is 

therefore at the same time also a limitation to the applied technique as the composition 

of data originating from multiple viewing angles and the variation of vegetation within the 

8-day production period which differs from the Landsat acquisition date, also provides a 

possible source of error.   

STARFM maintained a high level of spatial detail in the predicted scenes (Figure 

4). The algorithm was particularly effective at predicting the reflectance values for the 

vegetated land cover types, with differences between observed and predicted values 

being less than 4% of the observed reflectance (Figure 6). The high level of spatial 

detail maintained by the STARFM predictions (Figure 4) is indicative of the quality of the 

predicted scenes with spatial changes in landscape patterns well maintained by the 

algorithm, even in areas with more heterogeneous, complex land cover types.  
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Highly significant correlations were found between observed and predicted pixel 

values for all the examined wavebands and land cover types (Figure 5, Table 4). These 

findings are also confirmed by previous studies (Gao et al., 2006). Predictions of shorter 

wavebands, however, were found to be less precise than those made for the NIR 

region. This likely reflects the greater impact of atmospheric contamination at shorter 

wavelengths which has been reported to affect the prediction accuracy also for other 

fusion techniques (Roy et al., 2008). Atmospheric effects may also have impacted the 

significance of the relationship between observed and predicted reflectance as shown in 

Table 4 as the most significant relationships were found for the longer wavebands. In all 

cases the intercept of the relationship between observed and predicted images was >0 

(Table 4, Figure 5) which may can be interpreted as a noise signal likely due to 

atmospheric and BRDF effects. The range of values is larger in the NIR region than for 

the visible bands (Figure 5A-D, Figure 5E-L), thus making the residuals of the NIR 

predictions relatively smaller (Table 4). As a result, land cover types with a greater 

range in pixel values (shrub, herb and all classes combined) showed a higher 

correlation between observed and predicted reflectance than the forested land cover 

class with relatively homogenous reflectance dominated by green tree crowns (Table 4).  

The slopes of the relationship shown in Figure 5A-L and 8D-F and Table 4 were 

consistent and slightly smaller than one for all prediction dates, thereby suggesting that 

seasonal effects have been accurately predicted using STARFM (Gao et al., 2006). The 

comparison between Figure 7A-C and 8D-F demonstrate the gain of information by 

using MODIS data to account for seasonal changes in the reflectance of the vegetated 

land surface. These findings are confirmed also by Figure 8 and demonstrate that 
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STARFM was able to synthesize data that capture the seasonal variation in vegetation 

reflectance and the associated changes in biophysical and structural vegetation 

conditions. Vegetation green up and leaf down at the beginning and at the end of the 

vegetation period were well described by the synthesized NDVI values. The similarity to 

the NDVI computed from the observed images (Figure 8, open squares) shows that  the 

synthetic data are useful to quantify seasonal changes in reflectance induced by 

physiological changes in vegetation (Drake, 1976; Tucker, 1979; Sellers 1985) at fine 

spatial scales (Gao et al., 2006).  

The predictability of changes in the fine resolution synthetic images depends 

upon the capacity of MODIS to detect these changes, particularly when they occur in 

vegetation structure or stand composition or at sub-pixel ranges (Gao et al., 2006). For 

instance, pixel brightness of fine resolution predictions can only be adjusted at coarse 

resolution scales. Consequently, it will be difficult to identify or spatially define individual 

change events as it is not possible to depict changes occurring in the sub-MODIS pixel 

range. As a result, the algorithm in its current form seems less suited (and was not 

designed) for the prediction of changes in vegetation structure (such as originating from 

clear cut harvesting or thinning) or changes in land cover. As a possible solution to this 

restriction, future algorithms may develop spatial change masks using multi-date 

Landsat observations first and use MODIS to predict the dates at which a change 

occured (as the date when the change in pixel brightness occurred). Changes will also 

not be detected by STARFM when two contradicting changes occur within a coarse-

resolution pixel simultaneously and compensate for each other (Gao et al., 2006).  
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A further assumption made in this analysis is the assumption that the MODIS 

data used in this study represented the "true" vegetation trajectory. MODIS 

observations are, even more than Landsat, subject to variations in atmospheric 

conditions and bi-directional reflectance distribution and as a result, these effects 

introduce uncertainties to variations in the visible and NIR reflectance. Data smoothing 

techniques such as TimeSat (Jonsson and Eklundh 2004) may be helpful to address 

this issue in future research. Further uncertainties are added by spatial and spectral 

variations between the two sensors.  

The results shown in this study largely focussed on coniferous forest types, 

which are typical for large parts of Western Canada.  Further research needs to be done 

in order to investigate the potential of using STARFM also in other regions of the earth, 

such as tropical or temperate deciduous forests. Cloud contamination in Landsat or 

MODIS T1 scenes has implications for the practical use of the algorithm, as predictions 

can only be made if at least one completely cloud free observation is available for the 

period of interest. While this may be less constraining in temperate climatic zones and 

at regional scales, the availability of cloud free observations becomes a major concern 

over larger areas or when operating at global scales (Ju et al., 2008). Composition of 

multiple Landsat scenes with observation dates noted for each pixel may help to 

overcome this issue, as STARFM predictions could be made on composites of both 

Landsat and MODIS images.  

 

5. Conclusion 
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 The STARFM algorithm has been successfully used in this study to map 

seasonal changes in vegetation at a Landsat spatial resolution and 8-day time 

intervals.  

 The algorithm has maintained a high spatial level of detail in the predicted 

scenes, it seems however, less well suited to predict sudden changes in land 

cover, such as induced by stand replacing disturbance events.  

 The use of MODIS composites can be a useful alternative to daily observations, 

especially when cloud cover prevents frequent clear sky observations of a given 

area. Composites may however reduce the quality of STARFM predictions due to 

changes in pixel brightness resulting from remaining directional or atmospheric 

impacts in the different MODIS images (for instance the relationship between all 

observed and predicted Landsat images revealed a slope<1 and intercept >0). 
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