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Abstract 1 

Information needs associated with forest management and reporting requires data with a 2 
steadily increasing level of detail and temporal frequency. Remote sensing satellites 3 
commonly used for forest monitoring (e.g., Landsat, SPOT) typically collect imagery 4 
with sufficient temporal frequency, but lack the requisite spatial and categorical detail for 5 
some forest inventory information needs. Aerial photography remains a principal data 6 
source for forest inventory; however, information extraction is primarily accomplished 7 
through manual processes. The spatial, categorical, and temporal information 8 
requirements of large-area forest inventories can be met through sample-based data 9 
collection. Opportunities exist for very high spatial resolution (VHSR) (i.e., < 1 m) 10 
remotely sensed imagery to augment traditional data sources for large-area, sample-based 11 
forest inventories, especially for inventory update.  12 

In this communication we synthesize the state-of-the-art in the use of high spatial 13 
resolution remotely sensed imagery for forest inventory and monitoring. Based upon this 14 
review, we develop a framework for updating a sample-based, large-area forest inventory 15 
that incorporates VHSR imagery. Using the information needs of the Canadian National 16 
Forest Inventory (NFI) for context, we demonstrate the potential capabilities of VHSR 17 
imagery in four phases of the forest inventory update process: stand delineation, 18 
automated attribution, manual interpretation, and indirect attribute modeling. Although 19 
designed to support the information needs of the Canadian NFI, the framework presented 20 
herein could be adapted to support other sample-based, large-area forest monitoring 21 
initiatives.  22 
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I Introduction 1 

Forest ecosystems influence human well-being through the provision of natural resources 2 
as well as other economic and ecological benefits. Inventory and subsequent monitoring 3 
of forested ecosystems across large areas is paramount to the development and evaluation 4 
of effective sustainable forest management practices and policies (Gillis, 2001). Baseline 5 
data and knowledge of forest dynamics are required to monitor and better understand 6 
interactions between forests, human activities, and the atmosphere (IPCC, 2000). Early 7 
forest inventories were commodity driven and  therefore primarily relied upon in situ 8 
field measurements to estimate timber quantity and quality across small tracts of 9 
forestland (Köhl et al., 2006). Increasing concerns over various environmental issues—10 
coupled with sustainable forest management needs—have expanded the spatial, temporal, 11 
and categorical details demanded of forest inventories (Corona et al., 2003). Today, 12 
forest inventories are aimed at informing a variety of long term objectives including 13 
biodiversity monitoring, carbon accounting, habitat protection, and sustainable timber 14 
production (Wulder et al., 2004a; McRoberts and Tomppo, 2007). Supporting these 15 
objectives often requires timely forest inventory data across large spatial extents. 16 

The synoptic spatial coverage provided by remote sensing can facilitate the timely 17 
characterization of forest ecosystems across large areas (Wulder et al., 2004b; McRoberts 18 
and Tomppo, 2007). However, the efficacy of supporting large-area forest inventories 19 
with remotely sensed data depends upon the relationship between the scale of the object 20 
of interest (e.g., individual trees, disturbance events) and sensor-specific characteristics 21 
such as resolution (including spatial, spectral, and temporal aspects) and spatial extent 22 
(Coops et al., 2007). For instance, remote sensing systems that acquire images with large 23 
spatial extents will have a lower spatial resolution, and will ultimately measure less 24 
spatial detail compared to images acquired by higher spatial resolution sensors that 25 
provide detailed depictions of forest characteristics across small spatial extents (Table 1; 26 
Figure 1). In terms of operational forest inventory and assessment, objects of interest 27 
(e.g., trees) are much smaller than the pixel size of medium spatial resolution remotely 28 
sensed data (i.e., with spatial resolutions ranging from 10–30 m), thereby prohibiting the 29 
direct measurement of object properties (e.g., tree locations, tree crown dimensions) with 30 
such data. Conversely, when considering very high spatial resolution (VHSR) sensors 31 
(i.e., with a spatial resolution ≤ 1 m), objects of interest (e.g., trees) are larger than the 32 
image pixel size, making is possible to directly measure certain object properties 33 
(Strahler et al., 1986).  34 

Large-area forest inventories could benefit from the increased spatial detail 35 
provided by VHSR remote sensing. We propose a scenario whereby VHSR imagery is 36 
integrated with an existing large-area, sample-based forest inventory framework for 37 
inventory update where a priori data exist. In this communication, we review the role of 38 
remotely sensed data in a sample-based, large-area forest inventory, with a specific focus 39 
upon synthesizing the state-of-the-art in VHSR remote sensing for forest inventory and 40 
assessment. Based upon this review we develop a large area forest inventory framework 41 
that incorporates VHSR remotely sensed data. Although we focus on developing capacity 42 
to service the information needs of the Canadian National Forest Inventory, the 43 
framework presented herein is portable to other regional, national, international, or global 44 
forest inventory and monitoring initiatives. 45 
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II  Remotely sensed data in support of national forest inventories 1 

Current National Forest Inventory (NFI) systems aim to provide comprehensive 2 
characterizations of forest ecosystem conditions across large areas. Data collected by 3 
NFIs are commonly employed to assess the status and sustainability of forest resources, 4 
evaluate forest management practices, and to support national and international reporting 5 
requirements such as the State of the Forests, the United Nations Framework on Climate 6 
Change, the Kyoto Protocol, or the Montréal Process (Gillis, 2001; McRoberts and 7 
Tomppo, 2007). In order to provide inventory data in an efficient, timely manner, NFIs 8 
typically employ statistical sampling protocols to generate nationally consistent estimates 9 
of forest characteristics. NFIs also rely upon multiple sources of information, often 10 
including both in situ field measurements and remotely sensed data (Kohl et al., 2006), 11 
the latter of which can increase sampling efficiency and improve the characterization of 12 
forest resources across large spatial extents.  13 

Remotely sensed data have long been used to augment traditional field-based 14 
forest inventories. Manually deriving forest inventory data from analog aerial 15 
photography has historically been the primary application of remotely sensed data in 16 
support of forest inventories (Franklin, 2001; Hall, 2003). Since no other optical remote 17 
sensing system can compete with the spatial resolution and affordability of analog aerial 18 
photography, it remains an attractive data source for forest inventory and assessment 19 
(Hall, 2003). However, the continual development and improvement of remote sensing 20 
technology and related analysis techniques result in an increased utilization of such data 21 
in forest inventory applications. Today there are a myriad of options available for 22 
supporting NFI efforts with remotely sensed data. For example, NFIs often leverage 23 
remotely sensed data to (i) improve the accuracy, precision, and efficiency of forest 24 
inventories, (ii) develop wall-to-wall maps of forest inventory attributes, or (iii) generate 25 
basic forest inventory information in lieu of in situ field measurements (McRoberts and 26 
Tomppo, 2007). 27 

Satellite remote sensing has been recognized as an attractive data source for forest 28 
inventory and assessment as no other data acquisition system or protocol can match the 29 
spatial coverage, timeliness, and data consistency provided via satellite platforms (Cohen 30 
et al., 1996; Franklin, 2001). A number of satellite remotely sensed data sources have 31 
been used in support of forest inventory. For example, medium spatial resolution remote 32 
sensing platforms are particularly useful for estimating and mapping broad-scale forest 33 
characteristics (e.g., forest area, land cover (Wulder et al., 2008a; 2008b)) and for 34 
monitoring forest change across large spatial extents (e.g., Kennedy et al., 2007).  35 

Data collected via medium spatial resolution satellite sensors have been used in 36 
conjunction with in situ field data to generate large area estimates of forest characteristics 37 
such as vegetation cover type (Wulder et al., 2008a; 2008b), timber volume (Meng et al., 38 
2007), biomass (Zheng et al., 2004), crown closure (Xu et al., 2003), and leaf area index 39 
(Pocewicz et al., 2004), among others. The spatial resolution, extent, and comprehensive 40 
coverage provided via medium spatial resolution sensors are also ideal for characterizing 41 
and monitoring phenomena such as deforestation and reforestation across large spatial 42 
extents (Steininger et al., 2001; Schroeder et al., 2007). Since medium spatial resolution 43 
sensors do not resolve individual trees, detailed forest inventory attributes are not easily 44 
discernable, leading some to question the efficacy of medium spatial resolution imagery 45 
for forest inventory because these data do not provide information at scales relevant to 46 



 5

meet particular operational forest management and planning needs (e.g., Meyer and 1 
Werth, 1990; Holmgren and Thuresson, 1998). Furthermore, the mixed-pixel nature of 2 
medium spatial resolution data (Cracknell, 1998) can lead to errors (e.g., under-detection 3 
of subtle changes in forest condition) when employing such data to monitor changes 4 
through time (Foody, 2001).  5 

Remotely sensed images acquired via VHSR sensors (spatial resolution ≤ 1 m) are 6 
able to resolve individual trees, and thereby enable more accurate estimates of detailed 7 
forest inventory attributes (e.g., Chubey et al., 2006; Kayitakire et al., 2006; Ozdemir, 8 
2008). In addition to improving the precision of satellite based estimates of forest 9 
inventory attributes, the increased spatial detail of VHSR data could facilitate the 10 
characterization of subtle changes in forest structure through time. 11 

 12 

III  Forest inventory via VHSR satellite remote sensing 13 

VHSR satellite sensors have emerged as promising data sources for forest inventory and 14 
assessment. The sub-meter spatial resolution of new satellite sensors (e.g., QuickBird and 15 
WorldView-1; 0.61, and 0.5 m panchromatic spatial resolution, respectively) affords the 16 
detection of individual tree characteristics such as tree crown diameter and shadow length 17 
(Ozdemir, 2008), leading to improved estimates of many forest inventory attributes 18 
including crown closure, tree density, and stand volume (Wulder, 1998). The continual 19 
development of VHSR sensors and associated data processing algorithms, coupled with 20 
an increase in data availability, will likely improve our ability to conduct spatially 21 
detailed forest inventories across large spatial extents (Culvenor, 2003). 22 

There are numerous satellite platforms in orbit acquiring imagery with spatial 23 
resolutions ≤ 1 m over panchromatic wavelengths (Table 2). The ability of these 24 
acquisition systems to provide consistent, timely data with a high degree of geometric 25 
fidelity (Aguilar et al., 2008) makes them attractive data sources for forest inventory and 26 
assessment. Supporting large area forest inventories with VHSR imagery presents a 27 
number of unique challenges. For instance, small image extents will lead to high data 28 
acquisition costs as many scenes are required to characterize large areas (Table 1) 29 
(Wulder et al. 2008c). If costs are not a limitation, the off-nadir view angles and differing 30 
solar and atmospheric conditions associated with multiple scenes would require 31 
substantial image processing to reduce edge effects and to facilitate image mosaicking; 32 
otherwise, time and computationally intensive single scene processing and attribution 33 
would be required. Using VHSR images in a sampling mode and restricting image 34 
acquisition to sample plot areas (i.e., following the sampling protocol and photo plots 35 
established by the NFI program) reduces these aforementioned problems, and enables the 36 
generation of desired information in a manner analogous to national ongoing large-area 37 
forest inventory frameworks.  38 

Other challenges associated with using VHSR imagery include the use of 39 
relatively new processing techniques specifically developed for analyzing VHSR data. In 40 
some cases, these techniques may not yet be as robust as more established methods, or 41 
may not be widely available in commercial image processing software. Furthermore, the 42 
overall accuracy of many VHSR image processing techniques is dependent upon 43 
structural characteristics of the forest (e.g., forest type, canopy structure, tree size) and 44 
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upon sun-sensor-surface geometry, especially in northern environments characterized by 1 
low sun angles and open canopy, low stature forests.  2 

Incorporating VHSR satellite imagery into existing large-area, sample-based 3 
forest inventory frameworks may provide a means to increase overall inventory 4 
efficiency and precision. Image processing techniques for the automatic extraction of 5 
forest inventory attributes from VHSR images are increasingly mature, with the option of 6 
either modeling or manually interpreting attributes that are difficult to extract via 7 
automated techniques. As a caution, extracting forest inventory information from VHSR 8 
images often requires relatively new processing techniques specifically developed for 9 
analyzing VHSR data. Furthermore, the application of such techniques may be regionally 10 
specific or only applicable in certain forest structural types. Some of the most promising 11 
approaches for estimating forest inventory attributes for VHSR imagery include image 12 
segmentation, texture analysis, and shadow analysis, among others (Table 3). In the 13 
following sections, we discuss each of these methods in the context of forest inventory 14 
and assessment. 15 

1 Image segmentation 16 
Image segmentation refers to the use of automated algorithms to partition remotely 17 
sensed images into homogenous, mutually distinct spatial units. In terms of forest 18 
inventory applications, image segmentation can further be characterized as either forest 19 
stand segmentation or individual tree crown segmentation. The goal of forest stand 20 
segmentation is to partition an image into spatial units  that are homogenous in terms of 21 
forest composition and structure (i.e., forest stands). The basic assumption associated 22 
with forest stand segmentation is that spectral and spatial image features serve as 23 
reasonable proxies for forest attributes used to define stands; spatial aggregations of these 24 
image features should therefore represent forest units that are homogenous in terms of 25 
structure and composition (e.g., Pekkarinen, 2002; Chubey et al., 2006; Wulder et al., 26 
2008d). Automated stand segmentation has shown to have utility as a surrogate method 27 
for manual stand delineation from aerial photography. For example, Radoux and 28 
Defourny (2007) implemented a region-merging segmentation algorithm to partition an 29 
IKONOS image into unique forest stands, and found that the image segments conformed 30 
to 1:20,000 scale mapping standards. In a separate study, Wulder et al. (2008d) evaluated 31 
the efficacy of stand segmentation as compared to manual stand delineation techniques. 32 
They conclude that automated image segmentation of VHSR satellite imagery was a 33 
viable alternative to manual stand delineation in areas where aerial photography is 34 
difficult to acquire or where there is limited forest inventory information available 35 
(Wulder et al., 2008d).  36 

Once an image has been segmented into unique spatial units representing forest 37 
stands, many different techniques can be used to generate forest inventory attributes 38 
within each of these unique segments. These include manual interpretation, tree crown 39 
isolation, and texture analysis, among others. For example, Chubey et al. (2006) 40 
classified crown closure, stand height, and stand age based upon texture metrics 41 
calculated within stand segments derived from IKONOS imagery.   42 

Although image segmentation has shown promise for automatically delineating 43 
forest stands, some limitations have been identified in the literature. For example, when 44 
compared to manually delineated stand boundaries, automatically derived stand 45 
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boundaries can be more convoluted where there are complex or indistinct edges between 1 
objects. Edge smoothing algorithms are common (e.g., McMaster, 1987) enabling 2 
mitigation of this concern. More notable and less easily addressed is the grouping of 3 
objects that are categorically different yet appear similar on imagery. For instance, roads 4 
may be coupled with newly harvested areas, or wetland areas may be grouped with 5 
mature conifer forests. When additional algorithm developments cannot decouple 6 
features in these types of instances, some manual editing may be required (Wulder et al. 7 
2008d). Furthermore, segmenting VHSR forest scenes can be particularly challenging as 8 
there are often multiple features occurring at different scales within the same image (e.g., 9 
shadows, tree crowns, stands, lakes, rivers) (Tian and Chen, 2007), indicating a need for a 10 
multi-scale segmentation approach or for users to be mindful of the computation scale 11 
and expected features.   12 

2 Crown segmentation 13 
Crown segmentation or isolation is focused upon delineating individual tree crowns from 14 
VHSR remotely sensed data. A variety of techniques have been developed to 15 
automatically isolate individual trees. Some of the most widely applied methods include 16 
(i) local maximum filtering (Wulder et al., 2004c), (ii) multi-scale, object-based methods 17 
(Wang et al., 2004; Strand et al., 2006; Palenichke and Zeramba 2007; Chubey et al., 18 
2006; Falkowski et al., 2008), (iii) valley following algorithms (Gougeon and Leckie, 19 
2006; Leckie et al., 2003), and (iv) feature matching techniques (Greenberg et al., 2006). 20 
Following delineation, individual tree crown dimensions can be used to directly estimate 21 
many forest inventory attributes including stand density and canopy closure (Wulder, 22 
1998; Leckie et al., 2006). Following tree crown segmentation, other attributes such as 23 
timber volume, biomass, or diameter distributions can be modeled via allometry (Palace 24 
et al., 2008; Popescu, 2007). 25 

 A shortcoming of many automatic tree crown segmentation techniques is that the 26 
resultant accuracy of the segmentation is often dependent upon the structural complexity 27 
and density of the forest stands being segmented: greater delineation accuracy is attained 28 
in open single-story stands, while comparatively lower accuracy is attained in closed 29 
multi-story stands (Maltamo et al., 2004). The overlap of individual tree crowns also 30 
influences the accuracy of automated tree detection algorithms (Wang et al., 2004; 31 
Palenichke and Zeramba, 2007; Falkowski et al. 2008). Furthermore, the efficacy of tree 32 
crown detection techniques is generally lower in areas exhibiting large variation in crown 33 
shapes and sizes, or where the canopy is relatively planophile (e.g., deciduous forests 34 
(Warner et al., 1999; Culvenor, 2003)). 35 

3 Texture analysis 36 
Texture analysis refers to using local image patterns to characterize the spatial structure 37 
of remotely sensed imagery. Texture quantifies the spatial variation in image digital 38 
numbers and may be determined using a variety of methods (Wulder et al., 1996). One 39 
simple measure of texture summarizes the image digital numbers within a fixed window 40 
(i.e., kernel). The local spatial structure of the digital numbers is a function of the forest 41 
structure present and the image spatial resolution, and this link between forest structure 42 
and image spatial structure provides opportunities to glean supplementary information 43 
about forests from the imagery. For example, a mature forest and a young forest will have 44 
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different tree sizes, tree distributions, and within-stand shadowing. Computing the 1 
standard deviation of digital numbers for a small kernel of pixels will result in a larger 2 
standard deviation for a mature forest compared to a younger forest (See Cohen et al. 3 
1995; Wulder et al. 2004b). Passing such a kernel systematically over an entire image 4 
results in output that can provide complementary interpretation and computation 5 
information (i.e., spatial context information for inclusion in image segmentation).  6 

Image texture has been identified as one of the most important visual cues for 7 
manual photo interpretation (Lillesand and Kiefer, 1994). The digital calculation of 8 
texture is analogous to how human photo interpreters exploit image texture when 9 
manually interpreting aerial photography (Franklin et al., 2001). Simple first order 10 
texture measures, such as the standard deviation example described above, can be 11 
generated directly from the digital numbers present in an image. More complex measures 12 
of texture may be produced when digital numbers are placed in a virtual matrix, such as 13 
the grey level co-occurrence matrix (see Haralick et al. 1973).  14 

Texture features can be used to empirically estimate forest inventory information 15 
from remotely sensed imagery. For example, Franklin et al. (2001) used variance and 16 
homogeneity texture features to distinguish forest age classes from IKONOS imagery, 17 
while Rao et al. (2002) and Mallinis et al. (2008) demonstrated that texture features could 18 
be used to classify land cover in forested environments. In a separate study, Kayitakire et 19 
al. (2006) used several image texture features to characterize numerous forest structural 20 
parameters including age, height, basal area, and stand density from IKONOS imagery. 21 

One major limitation of using texture analysis for forest inventory purposes is that 22 
the relationship between texture features and forest structure often changes between 23 
images (Franklin, 2001). Changes in sensor type, viewing angle, and time of image 24 
acquisition (i.e., sun angle and phenologic changes) will also alter this relationship. As a 25 
result, in situ data are often required for calibration. Texture analysis is also scale 26 
dependent; texture features derived from a medium spatial resolution image will be quite 27 
different than texture features derived from a coincident high spatial resolution image 28 
(Wulder et al. 2004a).  29 

4 Shadow analysis 30 
In remotely sensed imagery, shadows cast by tree canopies can often be related to forest 31 
inventory parameters as well as biophysical characteristics. Spectral mixture analysis and 32 
geometric-optical models, which model the fraction of shadow in a forest scene, have 33 
been applied to medium resolution remotely sensed data to infer structural properties of 34 
forested canopies. For example, the Li-Strahler model, which models pixel reflectance 35 
based upon tree crown reflectance, shadows, and background reflectance components, 36 
can be inverted to predict forest cover and tree crown size from Landsat imagery 37 
(Woodcock et al., 1994; 1997). Spectral mixture analysis models pixel reflectance as 38 
linear or non-linear combinations of pure sub-pixel components (e.g., trees, soil, 39 
shadow), and has been used to estimate forest canopy cover, biomass, and leaf area index 40 
for medium resolution remotely sensed data (e.g., Hall et al., 1995; Pu et al., 2003; Chen 41 
et al., 2004). More recently, other techniques have been used to relate shadow fraction to 42 
forest structure from VHSR remotely sensed data. For example, Leboeuf et al. (2007) 43 
used image thresholding and segmentation to create a shadow fraction map, which was 44 
then employed to empirically estimate biomass across a black spruce forest in northeast 45 
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Canada, while Greenberg et al. (2005) used a shadow allometry approach to estimate 1 
crown area, tree bole diameter, stem density, and biomass from IKONOS imagery. In a 2 
recent study, Ozdemir (2008) employed shadow fraction analysis of QuickBird imagery 3 
to empirically estimate stem volume in an open canopy juniper forest.  4 

Kane et al. (2008) concluded that shadow analysis was an effective way to 5 
measure canopy complexity in a structurally diverse forest of the Pacific Northwest, 6 
USA; however, due to variations and interactions between topography, tree spacing, and 7 
tree size, the correlation between image shadows and forest inventory attributes such as 8 
tree height and stem density was low. In addition to variations in topography and forest 9 
structure, results attained via shadow analysis will also be impacted by sun-sensor-10 
surface geometry (Wulder et al., 2008e). This is of particular importance when 11 
considering the use of shadow analysis to measure forest inventory attributes via VHSR 12 
sensors capable of providing multiple look angles. For example, Wulder et al. (2008e) 13 
found statistically significant differences in stems counts derived from coincident 14 
QuickBird images acquired via different look angles. Therefore, to ensure consistency in 15 
the application of shadow analysis, satellite tasking specifications that reduce acceptable 16 
acquisitions to nadir or near-nadir images are necessary.  17 

 18 

IV  Application  19 

1 The Canadian NFI 20 
Canadian forests comprise 10% of total global forest cover, and forested ecosystems 21 
encompass approximately 60% of Canada’s land mass (Wulder et al., 2008a; 2008b). 22 
Canadian forests are an important component of many global processes including 23 
biogeochemical cycles and climate dynamics as well as local environmental systems 24 
(e.g., air and hydrological cycles). The forests of Canada are also of great economic 25 
importance, contributing 3% of Canada’s GDP and providing 373,000 direct jobs and 26 
900,000 indirect jobs (Natural Resources Canada, 2001). Currently, Canada implements a 27 
multi-phase, plot-based NFI to assess and monitor forest condition. In the first phase of 28 
the NFI, 1% of Canada’s landmass is surveyed via a systematic network of approximately 29 
19,000 plot locations. The plots are 2 x 2 km photo plots centered upon a 20 x 20 km 30 
national grid (Figure 1). In the second phase of the NFI, ground plots are installed at 10% 31 
random subset of photo plot locations, with a minimum of fifty ground plots surveyed 32 
within each Canadian ecozone. Attributes measured at each photo and ground plot 33 
location are listed in Table 4 (Gillis, 2001).  34 

In the more actively managed south of Canada photo plots are primarily 35 
inventoried based upon manual interpretation of 1:20,000 scale aerial photography. In the 36 
first step of the interpretation process, photo interpreters manually delineate forest stand 37 
boundaries within the photo plot. Manual photo interpretation techniques and allometric 38 
models are then employed to populate each delineated stand with forest inventory 39 
attributes (Table 4). Although manual interpretation techniques are effective, financial 40 
and logistical constraints often limit the acquisition of aerial photography in Canada’s 41 
north. As a result, a Landsat-based land cover classification developed by Canada’s Earth 42 
Observation for Sustainable Development of Forests (EOSD) initiative (Wulder et al., 43 
2008a) was used to estimate a limited number of forest inventory attributes (e.g., cover 44 
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type, density, volume, and biomass) in areas where recent 1:20,000 scale aerial 1 
photographs could not be acquired (Gillis, et al., 2005).  2 

2 Developing a framework for supporting Canada’s NFI with VHSR remote sensing  3 
Canada’s NFI program is currently endeavoring to supplement its sample-based forest 4 
inventory with data acquired via VHSR satellite sensors, primarily in northern Canada. 5 
The development and implementation of a forest inventory framework incorporating 6 
VHSR satellite data is intended to circumvent the aforementioned limitations associated 7 
with air photo acquisition in Canada’s north, and ultimately provide a higher degree of 8 
data consistency across both the north and south of Canada. The automated processing of 9 
VHSR satellite imagery in combination with attribute modeling and manual interpretation 10 
techniques are desired to enable such improvements. Based upon the preceding review, 11 
there is potential for supporting Canada’s NFI with samples of VHSR remotely sensed 12 
data. In order to develop a framework for updating Canada’s NFI with VHSR data, we 13 
employed the following logic:  14 

 In order to provide forest inventory estimates that are comparable to the current 15 
Canadian NFI, the VHSR sampling protocol should mimic the sampling protocol 16 
used by the current NFI (e.g., 2 x 2 km photo plots centered upon a 20 x 20 km 17 
national grid (Figure 1).  18 

 In order to achieve a high degree of data consistency, the VHSR inventory update 19 
framework should incorporate automated image processing techniques whenever 20 
possible; however, since not all forest inventory attributes can be automatically 21 
derived in a consistent manner, modeling and manual interpretation techniques 22 
should also be considered.  23 

 Given logistical constraints to collecting in situ data at the national level, the 24 
framework should employ automated processing techniques that directly derive 25 
forest inventory information from the VHSR data; methods requiring empirical 26 
data for parameterization or calibration should be avoided. 27 

 Since this is an update of the previous NFI, existing inventory data will guide the 28 
update process via the VHSR remotely sensed data.  29 

 Given the dichotomy in previous NFI data content (between north and south), the 30 
framework for update developed in Canada’s north will be slightly different than 31 
the update framework developed in Canada’s south.   32 

 A framework permitting the use of VHSR data from a variety of sensors (e.g., 33 
Table 2) will facilitate timely data acquisition across Canada's vast landmass. 34 
Allowing for the use of additional data sources may improve estimates of 35 
inventory attributes not related to forest structure (e.g., lower spatial resolution 36 
remotely sensed data could be employed to estimate species composition as well 37 
as disturbance or growth related inventory attributes).  38 

3 The four VHSR forest inventory phases 39 
Based upon the logic outlined above, the VHSR inventory update will be comprised of 40 
the following four phases (Figure 2): (i) an automated stand boundary delineation phase, 41 
(ii) an automated attribution phase where image processing techniques are employed to 42 
extract basic forest inventory data directly from the VHSR data, (iii) a manual 43 
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interpretation phase where forest inventory attributes that cannot be directly extracted 1 
from the VHSR imagery will be generated via manual image interpretation techniques, 2 
and (iv) a modeling phase where additional indirect inventory attributes (e.g., volume and 3 
biomass) are modeled from the automatically extracted and manually interpreted forest 4 
inventory data. The following section details the general VHSR inventory framework in 5 
terms of the four phases outlined above. Expected results are discussed and differences 6 
between the VHSR inventory update strategy in Canada’s north and south are 7 
highlighted.   8 
 9 
a Automated stand delineation: We propose to employ automated image segmentation to 10 
generate stand boundaries delineating homogenous forest conditions from the VHSR 11 
images. In Canada’s south, where stand boundaries were manually delineated from aerial 12 
photography during the previous NFI, the VHSR image segments will only be used to 13 
update the pre-existing segments where disturbances, or harvest-related depletions, have 14 
markedly altered stand boundaries; in all other cases, the manually generated stand 15 
boundaries from the previous NFI will be used in all other cases. In Canada’s north, 16 
where stand boundaries were not generated during the previous NFI, the VHSR image 17 
segments will be used as forest inventory units.  18 
 A variety of image processing techniques will be explored to address the 19 
previously discussed challenges associated with segmenting VHSR images (e.g., the 20 
presence of multi-scale features and boundary convolution). For example, median filters 21 
across a variety of window sizes could be applied to minimize the influence that small 22 
scale features (e.g., shadows and trees in open canopy forests) have upon the accuracy of 23 
the automated stand delineation procedure. Segmenting median filtered images, rather 24 
than the VHSR image, will likely produce more homogenous image segments and may 25 
reduce the amount of convolution in the final segmented stand boundaries. Furthermore, 26 
image acquisition parameters will restrict acceptable images to those acquired within ± 27 
15° of nadir.      28 
 29 
b Automated attribution: Following automated stand delineation, forest inventory 30 
attributes will be generated within each stand boundary. Numerous image processing 31 
techniques have been successfully employed to extract forest inventory attributes from 32 
VHSR imagery in an automated manner (Table 3), however many of these techniques 33 
generate estimates of forest inventory attributes based upon empirical relationships 34 
between VHSR images and in situ data. Given logistical constraints to collecting in situ 35 
data across the diversity of forest ecosystems and structural types found across the 36 
Canada's extensive landmass, automated image processing algorithms employing 37 
empirical relationships are not ideal for national-level implementation. Nevertheless, 38 
techniques such as crown segmentation that do not require in situ data could be used to 39 
generate estimates of basic forest inventory attributes in a nationally consistent manner. 40 
Therefore, the proposed VHSR inventory framework will also employ image 41 
segmentation to automatically isolate individual tree crowns within each delineated stand 42 
boundary. Basic forest inventory attributes will then be directly estimated based upon the 43 
segmented tree crowns within each stand. In open stands for example, tree density can 44 
simply be the number of segmented crowns within each stand (e.g., Greenberg et al., 45 
2005; Hirata, 2008), while canopy cover can be determined by calculating the ratio of 46 
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total segmented crown area to total stand area. Other inventory attributes such as mean 1 
stand crown diameter can also be directly estimated from the segmented tree crowns, 2 
while the distribution of crown sizes within a stand could be indicative of stand age class 3 
(Nelson et al., 2004). In addition to crown segmentation, shadow analysis may prove 4 
useful for extracting basic forest inventory data from the VHSR images, especially in 5 
northern environments where the interaction between low sun angles and open forest 6 
canopies result in VHSR images dominated by shadows.   7 
 8 
c Manual interpretation: Given the high degree of geometric fidelity of VHSR images, 9 
manual photo interpretation techniques could easily be applied to generate estimates of 10 
forest inventory attributes that are difficult to extract via automated image processing. 11 
For example, forest inventory attributes related to land cover, species composition, and 12 
disturbance type would be difficult to extract via the automated processing of VHSR 13 
images, especially when considering only the panchromatic image bands. However, as 14 
demonstrated by Wulder et al. (2008d), experienced photo interpreters could efficiently 15 
estimate these attributes directly from the VHSR images.  16 

The proposed VHSR inventory framework will also employ additional datasets to 17 
help guide the manual interpretation of the panchromatic VHSR images. In Canada’s 18 
south, for example, data regarding land cover and species composition generated during 19 
the previous NFI will aid in the interpretation of these attributes from the VHSR images, 20 
while data from the Landsat-based land cover classification developed by Canada’s Earth 21 
Observation for Sustainable Development of Forests (EOSD; Wulder et al., 2008a; 22 
2008b) project will guide species composition calls in Canada’s north. Furthermore, the 23 
low species diversity generally found in Canada’s northern environments (Wulder et al., 24 
2007) will further enable the efficient and accurate interpretation of forest inventory 25 
attributes related to land cover and species composition.  26 

Information available from lower spatial resolution optical remote sensing 27 
instruments is envisioned to aid in capture of disturbance information within the national 28 
inventory cycle. Lower spatial resolution imagery, such as MODIS, can be utilized to 29 
produce annual regionally-based estimates of disturbance, especially fire. The high 30 
temporal frequency of this low spatial resolution change information can be compared to 31 
long-term expectations of change rates, thereby supplementing our understanding of the 32 
spatial variability of disturbance. Further, the low spatial resolution change information 33 
can also be used to flag individual photo plots as having a likelihood of being disturbed. 34 
While the information may be too coarse to enable an update of the photo plot, the 35 
presence of disturbance can be noted and considered in the update planning.  36 
 37 
d Indirect attribute modeling: The last phase of the proposed VHSR forest inventory 38 
update framework will be to combine data generated from the previous three phases to 39 
indirectly estimate forest inventory attributes such as stem volume and biomass. In the 40 
southern portion of Canada, the current NFI protocol produces model-based estimates of 41 
tree volume and biomass through the application of provincial- or territorial-specific 42 
allometric equations parameterized via manually interpreted photo plot attributes (Gillis 43 
et al., 2005), while these attributes are modeled from EOSD data in Canada’s north. 44 
Following completion of the first three VHSR inventory phases, the same allometric 45 
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equations could be applied to generate nationally consistent estimates of volume and 1 
biomass for both northern and southern photo plots.        2 
 3 
V  Implementation 4 
Prior to the successful implementation of the previously described VHSR forest 5 
inventory update framework, a number of unique challenges must be addressed. 6 
Generating estimates of forest inventory attributes that are consistent across the wide 7 
variety of forest types and structures contained within the vast landmass of Canada will 8 
be particularly challenging, requiring a combination of stable automated image 9 
processing algorithms, consistent manual image interpretation techniques, and robust 10 
allometric models.  11 
 An understanding of how VHSR forest scene properties change as a function of 12 
sun-sensor-surface geometry will also be required for remeasurement (Wulder et al., 13 
2008), particularly for northern environments where low sun angles and open canopy 14 
forest result in VHSR imagery that is dominated by shadow. Although pointable sensors 15 
potentially increase the amount of image data available over NFI plots, images acquired 16 
from obliquely pointed sensors will introduce an additional source of variation in the 17 
VHSR image forest inventory framework that will be particularly problematic for 18 
segmentation routines. Image acquisition constraints will be used to ensure that only 19 
images with collected within ±15° are acceptable and will be acquired for the VHSR 20 
framework.      21 

The VHSR forest inventory framework described herein will incorporate elements 22 
of automated image processing, manual interpretation, and attribute modeling to update 23 
photo plot attributes inventoried during the previous NFI (Table 4). Based upon the 24 
literature review (Table 3) we expect that image segmentation can be employed to 25 
directly estimate basic forest inventory attributes from the VHSR images. Specifically, 26 
crown size, canopy closure, and stem density will be estimated from individual tree 27 
crown segments within each delineated forest stand. These basic attributes can be used in 28 
conjunction with other image analysis techniques (e.g., shadow analysis and texture 29 
analysis) to model additional forest inventory attributes such as stand age and height. For 30 
example, the distribution of crown sizes in an inventory polygon, image texture metrics, 31 
or shadow analysis, could be employed to estimate stand age (e.g., Nelson et al., 2004; 32 
Franklin et al., 2001) and stand height (e.g., Kayitakire et al., 2006; Chubey et al., 2006); 33 
although, doing so would require well-calibrated empirical models. Therefore, manual 34 
image interpretation techniques will likely be employed to estimate age and height related 35 
forest inventory attributes from the VHSR images.  Furthermore, since the NFI's update 36 
strategy will only employ panchromatic VHSR data, determining species composition 37 
and disturbance related attributes will be difficult; however, a photo-interpreter could 38 
estimate these attributes directly from VHSR images or supported by other ancillary data 39 
(e.g., previous NFI attributes). Finally, existing  models (Boudewyn et al., 2008) will be 40 
employed to estimate volume and biomass from NFI attributes (e.g., crown closure and 41 
height) updated via the VHSR inventory framework.     42 
 43 
VI  Conclusions 44 
Successful inventory and subsequent monitoring of forest ecosystems across large spatial 45 
extents provides information necessary for sustainable forest management practices and 46 
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policies. Remote sensing has increased our ability to characterize and monitor forest 1 
ecosystems across large areas in a timely manner, especially broad-scale forest 2 
characteristics, as captured using medium (or larger) spatial resolution remotely sensed 3 
data. Until recently, it has been difficult to quantify detailed forest characteristics via 4 
satellite VHSR remotely sensed data, largely due to data availability, cost, and processing 5 
requirements. However, as these limitations diminish, the utility of VHSR data for forest 6 
inventory and assessment has been realized and data acquired via VHSR have been used 7 
to measure many forest inventory attributes including crown closure, crown size, and 8 
stem density, among others (Table 3). The limited spatial extent of VHSR images 9 
typically constrains large-area forest inventory applications; however, VHSR is well-10 
suited to a sample-based large-area forest inventories such as Canada's NFI. Furthermore, 11 
the use of VHSR digital satellite data will provide new opportunities for automated 12 
attribute estimation, improving precision and consistency, while also enabling the 13 
collection of detailed data over remote areas of Canada's forests, where the acquisition of 14 
traditional data sources such as aerial photography is often precluded by logistics and 15 
cost.  16 
 Based upon our review of the state-of-the-art in VHSR remote sensing for forest 17 
inventory and assessment, we developed a framework that incorporates VHSR satellite 18 
images into a sample-based, large-area forest inventory and monitoring process. The 19 
framework integrates elements of automated image processing and segmentation, manual 20 
interpretation, and statistical modeling to generate forest inventory attributes from the 21 
VHSR satellite images. We have identified several methodological challenges that will 22 
need to be addressed as we further develop and proceed with implementation of this 23 
framework in the context of Canada's NFI. The framework presented herein could easily 24 
be adapted to support other national, international, or global forest inventory and 25 
monitoring initiatives by enabling the reporting of detailed forest ecosystem attributes 26 
and trends, and by providing forest managers and policy makers with new information for 27 
planning and decision making purposes.        28 
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km national grid. The rightmost inset shows a subset of the 0.5 m spatial resolution 
panchromatic channel of a WorldView-1 image.   
 
Figure 2. Depiction of the VHSR NFI update framework. 
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Table 1. Resolutions, extents, and costs for example sensors. 

Sensor Spatial Resolution Spectral Resolution Temporal Resolution Swath Width Cost  
MODIS 250 - 1000 m 36 bands (multispectral, thermal) 1 - 2 Days* 2330 km Free 
Landsat 7     

 185 km Free† 

  

15 m (panchromatic)      
30 m (multispectral)       
60 m (thermal) 

8 bands (panchromatic, 
multispectral, and thermal) 

16 Days 

   

IKONOS-2 1 Panchromatic 
  

1 m (panchromatic)        
4 m (multispectral) 4 multispectral 

141 Days (nadir) 
3 days (60o off-nadir)‡ 

11 km 29.00 USD km-2 

* MODIS is aboard two separate platforms (Terra and Aqua) 
† Prior to January 2009 data cost was 0.02 USD km-2 

‡ Off-nadir images have a lower spatial resolution and an increased swath width 
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Table 2. Data characteristics of select very high spatial resolution (VHSR) sensors.  

Sensor Spectral Resolution Spatial Resolution (GSD) Temporal Resolution 
Radiometric 
Resolution Swath Width 

Max Viewing 
Angle 

QuickBird Pan, B, G, R, NIR 

Pan: 0.61 m (nadir) to 0.72 m (25o 
off-nadir) 

MS: 2.44 m (nadir) to 2.88 m (25o 
off-nadir) 

Daily (off-nadir) to 
3.5 days (nadir) 

11-bit 16.5 km (nadir) ±45o off-nadir 

WorldView-1 Pan 
0.50 m (nadir) to 0.59 m (25o off-

nadir) 

1.7 days (1 m GSD) 
4.6 days ≤ 25° off-
nadir (0.59 m GSD) 

11-bit 

17.6 km (nadir) 
to 

20.8 km (25o 
off-nadir) 

±45o off-nadir 

RapidEye B, G, R, R. Edge, NIR 5 m (nadir) 
Daily (off-nadir) to 

5.5 days (nadir) 
12-bit 77 km ±25o off-nadir 

IKONOS Pan, B, G, R, NIR 
Pan: 0.82 m (nadir) to 1m (60o off-

nadir) 
MS: 4 m (nadir) 

3 days (60o off-nadir) 
to 141 days (nadir)  

11-bit 11.3 km (nadir) ±60o off-nadir 

GeoEye-1 Pan, B, G, R, NIR 
Pan: 0.41 m (nadir) to 0.50 m (60o 

off-nadir) 
4 days (60o off-nadir) 11-bit 15.2 km (nadir) ±60o off-nadir 

EROS-B Pan 0.7 m (nadir) 3 days (off-nadir) 10-bit 7 km (nadir) ±45o off-nadir 

KOMPSAT-2 Pan, B, G, R, NIR 
Pan: 1 m (nadir)  

MS: R,G,B 1 m (nadir), NIR 4 m 
(nadir) 

3 days (off-nadir) 10-bit 15 km (nadir) ±30o off-nadir 
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Table 3. Studies employing VHSR data for forest inventory and assessment. SS = stand segmentation, CS = crown segmentation, TA = 
texture analysis, SA = shadow analysis, SpecA = spectral analysis, and SMA = spectral mixture analysis. 
 

e Sensor 
Spatial 

Resolution 
Spectral 

Resolution RS Method Estimation Method Source 
Accuracy/Goodness 

of Fit Error 
 
/ 

Aerial 
Photography  

0.25, 0.5, and 
1 m 

G, R, NIR SMA, TA  
Empirical - Stepwise 
multiple regression 

Levesque and King, 
2003 

R2 = 0.96 Not Reported 

IKONOS 1 and 4 m B, G, R, NIR, Pan SS, Spec. A, TA Empirical - CART Chubey et al., 2006 Accuracy = 85% Error = 15% 

IKONOS 1 and 4 m B, G, R, NIR, Pan SA Empirical - CART Goetz et al., 2003 Accuracy = 97.3% Error = 12.7% 

Aerial 
Photography  

0.25, 0.5, and 
1 m 

G, R, NIR SMA, TA  
Empirical - Stepwise 
multiple regression 

Levesque and King, 
2003 

R2 = 0.99 Not Reported 

IKONOS 0.82 m Pan TA 
Empirical - linear 

regression 
Kayitakire et al., 2006 R2 = 0.82 

RMSE = 0.305 
Trees Ha-1 

IKONOS 1 m 
B, G, R, NIR 

(Pansharpened) 
CS 

Direct - Number of 
segmented crowns 

Greenberg et al., 2005 R = 0.87 Not Reported 

QuickBird 0.61 m Pan CS 
Direct - Number of 
segmented crowns 

Hirata, 2008 R = 0.82 
RMSE = 108.9 

Trees Ha-1 

IKONOS 0.87 Pan CS 
Direct - Number of 
segmented crowns 

Gougeon and Leckie, 
2006 

Accuracy = 83% Error = 17% 

Aerial 
Photography  

1 m Pan TA 
Empirical - Linear 

regression 
Couteron et al., 2005 R2 = 0.80 Not Reported 

Digital 
Camera 

0.25, 0.5, and 
1 m 

G, R, NIR SMA, TA  
Empirical - Stepwise 
multiple regression 

Levesque and King, 
2003 

Adj. R2 = 1.00 Not Reported 

QuickBird 0.61 m 
B, G, R, NIR 

(Pansharpened) 
CS 

Direct - Area of 
segmented crowns 

Ozdemir, 2008 R2 = 0.67 RMSE = 12.5% 

IKONOS 1 m 
B, G, R, NIR 

(Pansharpened) 
SA, CS 

Empirical - Multiple 
regression 

Greenberg et al., 2005 R = 0.71 and 0.83 
RMSE = 0.641 
and 0.627 m2 
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Table 4. Canadian NFI photo and ground plot attributes. Adapted from Gillis (2001). 
 

 Photo plot attributes Ground plot attributes 

Polygon: Site: 
     Landcover class      Land cover 
     Stand structure      Plot origin 

Stand:      Plot treatment 
     Species composition      Plot Disturbance 
     Age Large tree list: 
     Height      Species 
     Crown closure       Volume  
     Volume      Growth 

Origin:      Biomass 
     Treatment Small tree list: 
     Disturbance      Species  
     Land use      Biomass 
     Ownership Shrub and Herb: 
     Protection status      Species 
     Conversion of landuse      Percent Cover 

Exotics:      Biomass 
     Origin of exotics Woody debris: 

       Volume and biomass  

 Soil: 
      Soil features 
      Soil horizon   
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