ACARINE FAUNA IN SOUTHEASTERN MANITOBA:

I - FOREST SOILS
by E.T. Oswald and L.W. Minty

INTRODUCTION

The acarine fauna of various soil and vegetation cover types have been reported from Europe (Drift, 1951; Evans, 1951; Macfadyen, 1952; Murphy, 1953; Evans, Sheals and Macfarlane, 1961; Hayes, 1965; Madge, 1965; Marcuzzi, 1965; Greenslade and Greenslade 1967) and North America (Hammer, 1952, 1955; Hirston and Byers, 1954; Wallwork, 1959 ; Woolley, 1960; Marshall and Kevan, 1964; Dowdy, 1965; Marshall, 1968). The reports in North America are from widely scattered localities and often the faunas are based on a few random collections rather than a systematic collecting method. Consequently it is difficult to make quantitative comparisons of the faunas and their seasonal fluctuations. Since the emphasis in biological science at present is on the ecosystem, it is desirable to know what species occur in each ecosystem and how the populations fluctuate under different conditions.

The present preliminary study is a comparison of the acarine fauna of 12 forest sites in Manitoba, Canada (Fig. 1). Some of the sites differ only in vegetation cover while others differ in soil type and moisture relations. Most of the collections have been identified at least to genus either by V.G. Marshall, Department of Fisheries and Forestry, Forestry Service, Chalk River, Ontario or by E.E. Lindquist, Department of Agriculture, Entomology Research Institute, Ottawa, Ontario.

MATERIALS AND METHODS

One core sample from each of the 12 sites (Table 1) was taken every 4 weeks from 1 April 1968 to 6 January 1969. Heavy snow cover (approximately 45 cm) prevented sampling between February and April. A volumetric soil sampler designed by Vannier and Vidal (1965), modified by V.G. Marshall (personal communication) and built by Kraftsman Machine Co. Ltd., Winnipeg Manitoba with an area of $22 \mathrm{~cm}^{2}$ and a volume of 330 cm 3 was employed. The core tube of the sampler was 15 cm long but cut transversally so that each core could be divided into two samples each 7.5 cm long. The temperature of each sample was recorded prior to sampling by placing a glass thermometer at depths of approximately 3 cm and 10 cm adjacent to the sampling sites. Each core tube with its sample was inverted into a Berlese funnel for extraction. A battery of 60 -watt light bulbs was used to extract stages of mites from samples into vials. Seven days were allowed to dry the soil and complete the extraction. On every third collecting date the samples were extracted into 70% alcohol and the others into a saturated picric acid solution. Although alcohol is not as efficient for extraction purposes as picric acid, it does not discolor the mites and thus obscure some of the taxonomic characters. Mites submitted to specialists for identification were mounted on slides in Hoyer's medium (Baker and Wharton, 1952).

RESULTS

Seventy species of mites were identified consisting of 58.6% cryptostigmatids, 27.1% mesostigmatids, 12.9% prostigmatids and 1.4% astigmatids. Some additional forms, mostly larvae, could not be identified and are omitted from this report. In numbers of individuals the cryptostigmatids comprised 86% of the extracted fauna, the mesostigmatids 9%, the astigmatids 3%, and the prostigmatids 2%.

An annotated list of the species obtained in this study is presented in Table II. The sites from which each species was found and the site with the highest annual average of the species are indicted. Mites usually attain their highest densities in the surface layer but

Figure 1. Map of study area showing the sites from
which collections were made.

TABLE I
Description of Sampling Sites

Site No.	Moisture class *	Dominant vegetation	Subordinate vegetation type	Depth of organic matter	Soil type
1	dry	Jack Pine	discontinuous moss-lichen	$2-4 \mathrm{~cm}$	sand
2	dry	Jack Pine	continuous feathermoss	$2-4 \mathrm{~cm}$	sand
3	dry	Jack Pine	continuous feathermoss	$2-4 \mathrm{~cm}$	sand
4**	dry	ericaceous shrubs	continuous forbs	$2-4 \mathrm{~cm}$	sand
5	moist	White Spruce	discontinuous forb-moss	$6-9 \mathrm{~cm}$	loamy sand
6	moist	Aspen	continuous shrub-forb	$5-7 \mathrm{~cm}$	loamy sand
7	wet	Black Spruce	Sphagnum	50 cm	organic
8	wet	Black Spruce	Sphagnum	58 cm	organic
9	wet	Black Spruce	shrub-sphagnum	45 cm	organic
10	wet	Larch	Sphagnumfeathermoss	275 cm	organic
11	wet	Black Spruce	forb-moss	60 cm	organic
12	wet	Black Spruce	Sphagnum	45 cm	organic

* Dry- no free water in solum except for brief periods after rains and during snow melt; water table at about 120 cm in spring and 240 cm in autumn.
Moist- free water within 30 cm of surface for significant periods but not all of snow-free period; water table at about 25 cm in spring and 70 cm in autumn.
Wet- free water within 30 cm of surface for nearly all the snow free period; water table at about 5 cm in spring and 30 cm in autumn.
**This was a typical jack pine site but was clear-cut approximately ten years ago and there is essentially no arboreal regeneration.

Table II. Annotated List of Acarina: A - Sites, B - Site most Abundant and Annual Population Average, C-Layer, D-Population Peak. (See text for further explanation)

	Microtrombidium sp.,
ASTIGMATA	near parvum Oudemans
Acaridae	A. all except B. $5\left(330 / \mathrm{m}^{2}\right)$
Rhizoglyphus sp.	C. mostly surface
A. all	D. May \& November
B. 3 ($22,850 / \mathrm{m}^{2}$)	Tydeidae
C. surface \& subsurface	Lorryia sp.
D. December	A. $1,2,3,4,8,9,10,11$
PROSTIGMATA	B. $2\left(200 / \mathrm{m}^{2}\right)$ subsurface
Cunaxidae	C. surface \& subsurface
Cunaxa setirostris Hermann	D. none
A. all except No. 6	MESOSTIGMATA
B. 2 ($620 / \mathrm{m}^{2}$)	Ascidae
C. mostly surface	
D. July \& January	Asca aphidioides L. and
Rhagidiidae	A. garmani Hurlbutt
	A. all $110 / \mathrm{m}^{2}$)
Rhagidia sp.	B. $3\left(2,110 / \mathrm{m}^{2}\right)$
B. $6\left(830 / \mathrm{m}^{2}\right)$	C. surface \& subsurface
C. mostly surface	D. Dece
D. none	Cheiroseius sp.
Scutacaridae	A. $1,6,7,8,10,11,12$ B. $8\left(700 / \mathrm{m}^{2}\right)$
Scutacarus sp.	C. mostly surface
Rare	D. none
Stigmaeidae	Digamasellidae
Ledermuelleria rhodomela Koch A. $1,3,4,6,7,9,11,12$	Digamasellus angulosus Willmann
A. $\left.1,3,4,6, \mathrm{~m}^{2}\right)$ B. $9\left(540 / \mathrm{m}^{2}\right.$	A. 5 ($660 / \mathrm{m}^{2}$)
C. all surface	B. $5\left(860 / \mathrm{m}^{2}\right)$ s subsurface
D. January	D. December
Ledermuelleria segnis Koch	Digamasellus sp.
A. 1, 2, 3, 7, 8, 9, 10, 11	A. 1, 2, 4, 7
B. $2\left(500 / \mathrm{m}^{2}\right)$	B. $4\left(620 / \mathrm{m}^{2}\right)$
C. all surface	C. surface \& subsurface
D. none	D. January
Stigmaeus scaber Summers and S. sphagneti Hull	Laelaptidae
A. all except No. 9	Hypoaspis nolli Karg
B. 3 (540/m)	A. all except No. 9
C. all surface	B. $8(2,190 / \mathrm{m})$
D. none	C. surface \& subsurfac
Trombidiidae	D. none

Micotrombidium sp,
near parvum except Nos. $1 \& 2$
B. $5\left(330 / \mathrm{m}^{2}\right)$
C. mostly surface
D. May \& November

Tyde
A. $1,2,3,4,8,9,10,11$
B. $2\left(200 / \mathrm{m}^{2}\right)$
D. none

MESOSTIGMATA

Ascidae

A. all
C. surface \& subsurface
D. December
eiroseins. $10,11,12$
B. $8\left(700 / \mathrm{m}^{2}\right)$
C. mostly surface
D. none

Digamasellidae
A. 5
$5\left(860 / \mathrm{m}^{2}\right)$
C. surface \& subsurface
D. December
A. $1,2,4,7$
B. $4\left(620 / \mathrm{m}^{2}\right)$
D. Januar

Hypoaspis nolli Karg
A. all except No. 9
B. $8(2,190 / \mathrm{m})$
C. surface \& subsurface
D. none

Neoparasitidae

Ololaelaps sp., near
venetus Berlese
A. $2,3,6,9,10,11,12$
B. $10\left(290 / \mathrm{m}^{2}\right)$
C. mostly surface
D. none

Parholaspidae

Neparholaspis swartae Marshal

 RarePhytoseiidae
Typhlodromus sp.
A. 1, 2, 3, 4, 5, 6, 7, 9
B. $2\left(1,610 / \mathrm{m}^{2}\right)$
C. mostly surface
D. none

Rhodacaridae
Gamasellus bellavistae Emberson and G. vibrissatus Emberson
A. all except No. 4
B. $5\left(2,020 / \mathrm{m}^{2}\right)$
C. mostly surface
D. April \& December

Sejidae
Sejus americanus Banks
A. 5, 6, 7, 8, 10, 11
B. $5\left(620 / \mathrm{m}^{2}\right)$
C. mostly surface
D. none

Uropodidae
Dinychus sp.
A. $5,6,7,8,9,11,12$
B. $5\left(580 / \mathrm{m}^{2}\right)$
C. surface \& subsurface
D. none

Trachytes sp., near pyriformis Kramer
A. $6,7,8,9,11,12$
B. $12\left(660 / \mathrm{m}^{2}\right)$
C. mostly surface
D. none

Veigaiidae
Veigaia mitis Berlese
A. $1,5,7,8,9,11,12$
B. $8\left(820 / \mathrm{m}^{2}\right)$
C. surface \& subsurface
D. October

Zerconidae

Parazercon radiatus Berlese and Parazercon sp., near
sarekensis Willmann
A. all except No. 10
B. $5\left(3,720 / \mathrm{m}^{2}\right)$
C. surface \& subsurface
D. May \& December

Zercon alaskensis Sellnick and
Zercon sp., near peltatus Koch
A. all except No. 5
B. $2\left(1,690 / \mathrm{m}^{2}\right)$
C. mostly surface
D. October

CRYPTOSTIGMATA
Achipteriidae
Achipteria sp., near
nitens Nicolet
A. all except No. 11
B. $5\left(6,080 / \mathrm{m}^{2}\right)$
C. mostly surface
D. none

Brachychthoniidae
Eobrachychthonius latior Berlese Rare

Liochthonius sp.
A. 3, 4, 5, 7, 8, 9, 10, 11, 12
B. $8\left(2,330 / \mathrm{m}^{2}\right)$
C. mostly surface
D. April \& December

Camasiidae
Camisia sp.
A. $1,2,4,8,9,10$
B. $1\left(660 / \mathrm{m}^{2}\right)$
C. surface only
D. May

Heminothrus thori Berlese
A. $1,3,7,9,10,12$
B. $10\left(4,510 / \mathrm{m}^{2}\right)$
C. mostly surface
D. November

Uronothrus sp., near kochi Willmann Rare

Carabodidae

Carabodes sp. 1
A. $1,2,3,4,5,10,12$
B. $2\left(8,970 / \mathrm{m}^{2}\right)$
C. surface only
D. December \& January

Eremaeidae

Carabodes sp. 2
A. all except Nos. $7 \& 10$
B. $1\left(660 / \mathrm{m}^{2}\right)$
C. surface only
D. June

Cepheidae
Cepheus sp., near corae Jacot
A. $3,5,6,7,9,10,12$
A. $\left.3,5,6, \mathrm{~m}^{2}\right)$
B. $3\left(290 / \mathrm{m}^{2}\right.$
C. mostly surface
D. November \& April

Ceratozetidae
Ceratozetes sp. 1
A. all
B. $12\left(4,510 / \mathrm{m}^{2}\right)$
C. surface \& subsurface
D. none

Ceratozetes sp. 2
A. all
B. $8\left(12,190 / \mathrm{m}^{2}\right)$
C. surface \& subsurface
D. April

Fuscozetes bidentatus Banks
Fuscoze fuscipes Koch
A. $2,3,4,5,6,9,12$
B. $6\left(4,830 / \mathrm{m}^{2}\right)$
C. surface only
D. none

Propelops sp., near pinicus Jacot
A. $2,4,5,6,7,8,9,10,12$
B. $6\left(750 / \mathrm{m}^{2}\right)$
C. surface only
D. April

Cosmochthoniidae
Trichthonius majestus
Marshall \& Reeves
Rare
Damaeidae
Belba sp., near tatrica Kulczynski Rare
Eniochthoniidae
Hypoch thoniella minutissimus Berlese
A. all except No. 1
A. all except $5\left(5,910 / \mathrm{m}^{2}\right)$
B. mostly surface
D. April

Eremaeus sp.

Rare
Euphthiracaridae
Euphthiracarus sp.
Rare
Rhysotritia ardua Koch
A. all except Nos. $2 \& 7$
A. $10\left(1,530 / \mathrm{m}^{2}\right)$
C. surface \& subsurface
D. April

Galumnidae
Pergalumna sp.
A. all
B. $2\left(1,240 / \mathrm{m}^{2}\right)$
C. mostly surface
D. April

Gustaviidae
Gustavia sp.
A. all except No. 4
B. $6\left(1,290 / \mathrm{m}^{2}\right)$
C. mostly surface
D. December

Gymnodamaeidae
Allodamaeus sp.
A. $4,6,7,12$
B. $4\left(910 / \mathrm{m}^{2}\right)$
C. surface only
D. January

Gymnodamaeus gildersleeveae Hammer
A. 1, 2, 4
B. $4\left(1,940 / \mathrm{m}^{2}\right)$
C. surface only
D. May \& January

Haplozetidae
Peloribates sp.
A. all
B. $1\left(10,870 / \mathrm{m}^{2}\right)$
C. mostly surface
D. June \& December

Hypochthoniidae
Hypochthonius rufulus Koch
A. $7,8,9,10$
B. $7\left(2,890 / \mathrm{m}^{2}\right)$
C. surface \& subsurface
D. January

Malaconothridae
Malaconothrus sp.
A. $5,8,9,10,11,12$
B. $12\left(2,210 / \mathrm{m}^{2}\right)$
C. surface \& subsurface
D. April \& September

Mesoplophoridae
Archoplophora laevis Jacot
A. all except Nos. 1, 4, 10
B. $12\left(14,170 / \mathrm{m}^{2}\right)$
C. surface \& subsurface
D. April \& December

Metrioppiidae
Ceratoppia bipilis Hermann
A. 1, 2, 3, 7, 10, 11, 12
B. $12\left(210 / \mathrm{m}^{2}\right)$
C. surface only
D. none

Ceratoppia sp.
A. 2, 3, 4, 5, 7, 12
C. surface only

Scarce
Nanhermanniidae
Nanhermannia elegantula Banks
A. 5, 6, 7, 8, 9, 10, 11, 12
B. $10\left(6,080 / \mathrm{m}^{2}\right)$
C. surface \& subsurface
D. December

Nothridae
Nothrus silvestris Nicolet
A. $3,7,8,9,10,11,12$
B. $12\left(3,470 / \mathrm{m}^{2}\right)$
C. surface \& subsurface
D. July \& January

Oppiidae
Oppia minus Paoli and
Oppiella nova Oudemans A. all
B. all $\left(17,930-67,390 / \mathrm{m}^{2}\right)$
C. surface \& subsurface
D. none

Oribatulidae

Scheloribates sp., near
pallidulus Koch
A. all except Nos. 7, 10, 11
B. $3\left(2,270 / \mathrm{m}^{2}\right)$
C. mostly surface
D. April \& December

Pelopidae

Eupelops sp.
A. $1,2,3,4,7,9,10,11$
B. $1\left(6,030 / \mathrm{m}^{2}\right)$
C. mostly surface
D. April \& November

Phthiracaridae

Hoplophorella sp.
Rare

Phthiracarus sphaerulus Bank
A. all except No. 2
B. $5\left(4,750 / \mathrm{m}^{2}\right)$
C. surface \& subsurface
D. April \& December

Steganacarus diaphanum Jacot Rare

Tectocepheidae
Tectocepheus velatus Michael A. all
B. $2\left(7,690 / \mathrm{m}^{2}\right)$
C. mostly surface
D. none

Trhypochthoniidae
Trhypochthonius tectorum Berlese
A. all except Nos. 6, 11
B. $2\left(2,900 / \mathrm{m}^{2}\right)$
C. mostly surface
D. none
ometimes are nearly as abundant in the subsurface layer. Three categories are used in than 50% of II. those found only in the surface layer, those with subsurface densies the surface layer , surface layer, and those with subsurface densities 50% or greater of In some cases two The time of annual population peaks are also indicted for each species. In and were counted ery similar annul could not be distinguished under a dissecting scope and together.

The most common species, comprising 71% of the acarine fauna, were Archoplophora laevis, Ceratozetes spp., Nanhermannia ele spp., Peloribates sp., Phihiracarus sphae Parazen and Rhizoglyphus. Species represented These were all cryptostigmatids except Par Eobrachychthonius latior, Eremaeus sp., by very few individuals included Belba sp., Lobra swartae Scutacarus sp.,Steganacarus Euphthiracarus sp., Hoplophorella sp., Neparholaspis
diaphanum, Trichthonius majestus and Uronothrus sp.
There was no clearcut separation to habitat preference at the suborderled to dry sites marked preference was often observed by some species. The species restricted to abundant were Gymnodamaeus gildersleeveae and Uronothrus sp., and those relatively moselons sp., Eupelops sp., in dry sites were Belba sp., Carabodhypochthonius tectorum and Typhlodromus sp. These Peloribates sp., Scheloribates sp., Trhypochthone frequently occurred in the surface samples. The latter species when found in wet supochthonius rufulus and Trichthonius majestus, and species restricted to wet sites wre He Archoplophora laevis, Ceratozetes sp. 2, those relatively most abundant there , Malaconothrus sp., Nanhermannia elegantula, Cheiroseius sp., Eobrachychthonius latior, Malaconothrus sp., Nas sp., and Veigaia mitis. Nothrus silvestrus, Achipteria sp., Sejus americanus, moist sites.
Digamasellus angulosus was the only species conined to moist sits. winter and spring and Generally the various acarine groups were more abundant in seasonal fluctuations

Ge in late summer and early autumn (Fig. 2). Similar trind Block (1966) in England scarce fore soil mites were also observed by Madge (1965) and $18^{\circ} \mathrm{C}$ in July and were among forest soil the samples generally attained a high of about 18 C in The temperatur frozen from mid minus $9^{\circ} \mathrm{C}$ in January. From lake temperatures but the only appreciable differe consistently higher than the subse temperatures were slightly occurred during late April. From Nove
lower than the subsurface temperatures

DISCUSSION

Although most of the species found in this investigation have been reported from Although most of the various parts of North Ame have not previously been reported from Canada and others may 1965; Marshal, 1968) some have nora laevis, Digamasellus angulosus, Fuscozetes bidentatus, be new to science. Archoplophora laejumericanus were among those not listed by Hammer Ledermuelleria rhodomela and Sejus ame Marshall (1968) as occurring in Canada; however 1952), Marshall and Kevan (1964) or Marshall (1968) as occurring in Canada, however most of their work was on the cryptostigmata and only two of these mites are (1970) uborder. Trichthonius majestus was recently described by Marshall and Reeves (1970) Several genera including Cepheus, Euphthiracar
and Rhizoglyphus contain undescribed species. The ned dry sandy sites had a yearly average of 75,032 mites $/ \mathrm{m}^{2}$ in the top 15 cm with ndistur these being in the surface 7.5 cm . The highest average at one collecting period, 8% of combining surface 79.593 mites $/ \mathrm{m}^{2}$ in the top 15 cm with 73% in the top 7.5 cm and highest yearly average, $5,53,480$ mites $/ \mathrm{m}^{2}$. The cut over jack pine site had the smallest peak collection period of 145,480 of 40,992 mites $/ \mathrm{m}^{2}$. The moist sites had a yearly average population with an annual average collection average of 160,907 mites $/ \mathrm{m}^{2}$. It is difficult to of $74,615 \mathrm{mites} / \mathrm{m}^{2}$ and a peak collection aved in other areas and sites because of the compare these figures with studies conducted in other areas and sites 1961,1962) and differences in techniques used

Figure 2. Average populations in surface and subsurface samples for each site type on 11 collecting dates and the average temperature of the for each site type on
aluated several extraction techniques and found the number of Murphy (1962) have evaluated several extraction the method but that different methods were better for species and individuals to vary with the method bued influencing the number of mites extracted include the different soil types. Other factors of sampling, the disturbance of the sample, and the depth, area, and phenological time of sampling, (1954) reviewed the number of mites collecting medium employed farious sites and indicated the lack of comparative estimations obtained in several studies of various sites and indicated the lack of compar mites in forest of population size among different studies. The reported number of mites in forest communities varies between $20,000 / \mathrm{m}^{2}$ and $341,000 / \mathrm{m}^{2}$ (Marshall and Kevan, 1964;Dowdy, communities varies between 1965; Madge, 1965; Block, 1966; Marcuzzi, 1966; Berg and Ryke, 1967; Greenslade and Greenslade, 1968). The degree of variance that can be ascribed to habitat differen
studies can not be evaluated because the techniques empla few studies, mostly in the last few
The ecology of soil mites is not well known but soil community. One of the greatest years, have been made on their importance to the soil communith populations in the hinderances appears to be the difficulty to rear single species from field populations in the laboratory so that life history and other biological studies can be conducted in detail. Often nymphal stages require a specific food material and perhaps environmental conditions that differ from the adult (Sengbusch, 1954; Hartenstein, 1962; Murphy Rodriquez, 1964). Indications are that the feeding been obtained through inconclusive among species but much of the specific data has bee raw organic matter are among aboratory analysis. Fungi, algae, protozoa, insect larva, (1962 the materials that soil mites have been found to feed upon (Evans et al., 1961 , Kevan, 1962 Crossley and Witkamp, 1964; Wallwork, 1967). They have also been found to serve as Crossley and Witkamp, 1964, Wome cestodes (Freeman, 1952; Allred,1954) and as vectors of various plant diseases (Sengbusch, 1954). Dowdy (1965) found species of Allodamaeus, Tectocepheus, Trhypochthonius and Zercon to be more abundant on the vegetation than in the soil during at least part of the year. It is perhaps worth noting that the mites associated with stored cereal products, including grain, (Sinha, 1963; 1964) constitute an entirely with stored and species diversification the roles performed by soil mites must be quite variable but important to the ecosystem.

ACKNOWLEDGMENTS

The authors wish to thank Dr. R.N. Sinha and Dr. P.S. Barker of the Canadian Department of Agriculture and Dr. H.R. Wong and Dr. R.J. Heron of the Department of Fisheries and Forestry, Forestry Branch for valuable criticism of the manuscript.

