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Abstract

Snow cover is often measured as snow water equivalent (SWE), which refers to the amount of 
water  stored  in  a  snow-pack  that  would  be  available  upon  melting.  Snow cover  and  SWE 
represent  the  source  of  local  snow  melt  release,  and  are  sensitive  to  regional  and  global 
atmospheric circulation, and changes in climate. Monitoring SWE using satellite-based passive 
microwave radiometry has provided nearly three decades of continuous data for North America. 

The availability of spatially and temporally extensive SWE data enables a better understanding 
of the nature of space-time trends in snow cover,  changes in these trends,  and linking these 
trends to underlying landscape and terrain characteristics. To address these interests, we quantify 
the spatial pattern of SWE by applying a local measure of spatial autocorrelation to twenty five 
years of mean February SWE derived from passive microwave retrievals. Using a method for 
characterizing the temporal trends in the spatial pattern of SWE, temporal trends and variability 
in  spatial  autocorrelation  are  quantified.  Results  indicate  that  within  the  Canadian  Prairies, 
extreme values of SWE are becoming more spatially coherent, with potential impacts on water 
availability, and hazards such as flooding. These results also highlight the need for Canadian 
ecological management units that consider winter conditions.

Résumé 

Une couche de neige est fréquenment mesurée en équivalence d'eau de la neige (SWE) pour 
référer  a  la  quantité  d'eau  provenant  de  la  fonte  d'un  banc  de  neige  empaquetée. SWE est 
important pour mesurer les conditions atmosphériques régionales et globals, le climate, et les 
cycles hydologiques. La surveillance du SWE en utilisant satellites a la base de micro-ondes 
rediométriques a forni des données continues au cours de deux décennies en Amérique du Nord.

Le  fait  de  posséder  des  données  provenant  de  l'espace  et  celles  du  SWE  nous  fournit  la 
possibilité d'une meilleure compréhension des tendances actuelles et futures de chutes de neige 
reliées  aux  caractéristiques  de  différents  terrains.  On  quantifie  les  tendances  du  SWE avec 
statistiques de l'espace spatial en appliquant des mesures locales d'autocorrélation aux données 
recouvertes en Février au cours de 25 ans. Utilisant une méthode innovatrice pour caractériser les 
tendances temporel des modèles spatiales en SWE, on quantifie les tendances et variabilité dans 
l'autocorrélation du SWE. Toutes les données indiquent qu'à l'intérieur des Prairies Canadiennes, 
en cas de SWE excessifs, certaines régions a pu devenir plus susceptibles d'inondation. De plus, 
les résultats  signalent  le besoin qu'à la gérance Canadienne des unités écologiques  de porter 
attention aux conditions hivernales.

Introduction

The spatial and temporal distributions of terrestrial snow cover impacts local snowmelt release 
(Luce et al. 1998), global and regional atmospheric circulation (Barnett et al. 1989; Derksen et 
al.  1998a), as well as global and local climate and hydrological cycles (Derksen and McKay 
2006; Derksen et al. 2000; Wulder et al. 2007; Serreze et al. 2000). The sensitivity of terrestrial  
snow cover  to atmospheric  conditions  and overlying air  temperatures  also makes it  a useful 
indicator  of  climate  change  (Derksen  et  al.  2000;  Goodison  and  Walker  1993).  As  such, 
examining  the  spatial  distribution  of  terrestrial  snow cover  over  time  aids  in  understanding 
current and future trends in climate (Wulder et al. 2007). 

Snow cover is often measured as snow water equivalent (SWE), which refers to the amount of 
water  (commonly  expressed as a depth in millimetres)  stored in  a  snow-pack that  would be 
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available  upon melting (NSIDC 2007). Due to issues with  in situ data collection,  traditional 
methods for snow cover and depth measurement are spatially and temporally sparse (Walker and 
Goodison 2000; Wulder et al. 2007). However, as climate and hydrological models have become 
more accurate, high quality SWE datasets over large areas throughout Canada (Derksen et al. 
2000; Derksen and McKay 2006; Walker and Goodison 2000) and the northern hemisphere (Tait 
1996;  Pulliainen  and  Halliskainen  2001)  have  been  developed  using  passive  microwave 
radiometry.

In  Canada,  much  of  the  total  annual  precipitation  falls  in  the  form  of  snow,  so  snowmelt 
represents  a  significant  portion  of  the  total  water  available  for  streamflow,  agricultural  use, 
reservoir management, and natural processes (Brown et al. 2000; Derksen and McKay 2006; Tait 
1996). To address data requirements in various communities, the Climate Research Division of 
Environment Canada established a program to develop algorithms for estimating SWE in open 
environments, as well as coniferous, deciduous, and sparse classes of forest cover (Walker and 
Goodison 2000; Goïta et al. 2003). 

These algorithms have been used to generate weekly SWE maps for diverse application areas 
including  water  resource  management,  hydropower  generation,  and  weather  forecasting 
(Goodison et al. 1990; Pietroniro and Leconte 2005).

The Scanning Multichannel Microwave Radiometer (SMMR 1978-1987), and the Special Sensor 
Microwave/Imager (SSM/I, 1987-present) provide over two decades of continuous satellite data 
for  North  America  from  which  SWE  can  be  derived.  Previous  space-time  SWE  research 
emphasized spatial trends of snow cover and SWE over short time periods (e.g., Derksen et al. 
1998a, 1998b), or coarse-scale spatial trends (i.e. regional analysis) of snow cover and SWE for 
longer time-series (e.g., Brown 2000; Laternser and Schneebeli 2003).

The characteristics of the satellite passive microwave record means a new perspective on the 
spatial-temporal trends in SWE can be investigated. For instance, it is possible to apply measures 
of  spatial  autocorrelation  to  quantify  if  and  how  SWE  values  deviate  from  a  random 
geographical distribution (Boots 2002). In the present study, measures of spatial autocorrelation 
are used to identify clusters of extreme high and low SWE values and to investigate trends over 
multiple years. This type of analysis can be used to locate areas of SWE anomalies relative to 
average conditions within the study region. By characterizing temporal trends in SWE clusters 
over  time,  it  is  possible  to  examine  persistence  and/or  variability  of  these  spatial  patterns, 
outlining areas where SWE may be more or less sensitive to climate variability. Furthermore, by 
comparing the spatial-temporal patterns in SWE with environmental data, such as land-cover, 
ecosystems, and elevation, hypotheses on the nature of SWE distribution and variability can be 
formulated.

The general goal of the present paper is to quantify how the spatial patterns of SWE vary across 
the study region, and how these spatial patterns vary through time. The specific objectives are:

• to quantify the level of spatial association and identify trends in locations of significant 
clusters of high or low SWE for each year in the time series,

• to  characterize  the  relationship  between  existing  ecological  management  units  and 
spatial-temporal trends in SWE, and

• to quantify how spatial-temporal trends in SWE relate to elevation.
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A measure  of  spatial  association  is  used to  describe  geographical  variation  in  the  dominant 
spatial  patterns  of  SWE.  Prevailing  temporal  trends  in  SWE  spatial  association  are  then 
quantified  using  a  novel  method  for  quantifying  temporal  trend  over  multiple  time  periods. 
Locations with space-time trends that indicate the potential for sensitivity to climate variability 
are highlighted and the underlying landscape and terrain characteristics are related to trends in 
the space-time patterns of SWE.

Study Area and Data

Study area

The study region is constrained to the interior regions of the Canadian prairies, and is comprised 
of both the Prairies and Boreal Plains ecozones (Figure 1). These ecozones were selected due to 
strong interannual variability in SWE in large portions of these zones (Wulder et al. 2007). The 
Prairie and Boreal Plains ecozones are characterized by relatively flat, rolling plains and low-
lying  valleys.  Vegetation  is  primarily  restricted  to  shrubs  and  sparse  treed  areas,  with  cold 
winters and short warm summers. In the Prairie ecozone, approximately 25 percent of the total 
precipitation falls as snow (Wiken et al. 1996), and the timing of this is generally constrained to 
the winter months and impacts ecological processes in the spring during runoff. Furthermore, 
according to Wulder et al. (2007), regions which may be classified as either open prairie or open 
tundra appear to contain the most temporally variable SWE estimates. As such, these areas are 
particularly susceptible to the impacts of climate change. 

Brightness temperature data

The primary data source used for the present analysis is brightness or absolute temperatures (in 
Kelvin)  acquired  by  both  the  SSM/I  passive  microwave  radiometer  on  board  the  Defense 
Meteorological  Satellite  Program  (DMSP)  F13  satellite  and  the  SMMR passive  microwave 
radiometer on board the NIMBUS-7 satellite. The estimation of SWE from dry snow is primarily 
a function of changes in the scattering of naturally emitted microwave radiation caused by snow 
crystals,  such  that  as  the  depth  and  density  of  the  snow  increases,  the  amount  of  volume 
scattering  also  increases  (Foster  et  al.  1999).  Given  this  relationship,  detected  microwave 
brightness temperature decreases with increasing snow depth due to the greater amount of snow 
crystals available for volume scattering of the microwave signal (Derksen et al. 2000). Shorter 
wavelength energy (37 GHz / 8108 μm) is more readily scattered by crystals in the snow pack 
than longer wavelength energy (19 GHz / 15789 μm). Thus, to quantify SWE, the difference 
between the shorter wavelength microwave energy and the longer wavelength energy can be 
used.  Although  the  estimation  of  SWE  from  passive  microwave  is  theoretically  simple, 
operational  issues  arise  in  practice.  Potential  complications  may  develop  from  a  range  of 
physical parameters including: snow wetness, snow crystal size, depth hoar, and ice crusts, as 
well as the underlying land cover, topography, and overlying vegetation (Derksen et al. 2000).

The SSM/I and SMMR data are provided in the Equal Area Scalable Earth Grid (EASE-Grid) 
format (see Armstrong and Brodzik 1995) with a spatial resolution of 25 km. Data are obtained 
from the National Snow and Ice Data Center (Knowles et al. 1999; Armstrong et al. 1994-2002). 
The difference between the 37 GHz and 19 GHz vertically polarized channels were investigated 
in this study. These are the conventional frequencies used to estimate SWE in most algorithms 
(Goodison 1989). We decided to utilize brightness temperature difference (37-19 GHz) instead 
of SWE values retrieved using the Environment Canada open prairie algorithm (Goodison and 
Walker 1995) in order to remove one layer of data processing and directly apply the statistical 
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techniques to the satellite measurements. The prairie SWE algorithm is a linear equation, so the 
brightness  temperature  difference  is  a  direct  proxy  for  SWE:  a  larger  difference  represents 
greater  SWE.  Using  mean  February  brightness  temperature  differences  allowed  spatial  and 
temporal variability in spatial association to be measured when snow extent and depth for this 
region of  North America  is  expected  to  be near  the  maximum (McCabe and Legates  1995; 
Derksen et al. 2003).

Ecoregions and ecoprovinces

In order to provide a finer-scale spatial context in which to consider the impacts of terrestrial 
characteristics on the spatial-temporal pattern of SWE , the study area is further broken down 
into terrestrial ecoprovinces and ecoregions. Ecoprovinces are largely based on characterizing 
major  assemblages  of  structural  or  surface  forms  and  faunal  realms,  as  well  as  vegetation, 
hydrology, soil, and macroclimates (Marshall et al. 1998). Ecoprovinces were created as part of 
an  ecological  framework  to  address  the  environmental  concerns  of  the  Commission  for 
Environmental  Cooperation  (CEC) by Canada,  Mexico  and the  United  States  (Marshall  and 
Schut  1999).  Subsequently,  ecoregions  subdivide  the  terrestrial  ecoprovinces,  and  are 
characterized by distinctive large order landforms or assemblages of regional landforms, small 
order macro or mesoclimates, vegetation, soil,  and water features (Wiken et al. 1996). These 
ecological units are useful for describing the major driving factors of an ecosystem, and as such 
are useful for conservation planning and analysis (Kerr and Deguise 2004). The six terrestrial 
ecoprovinces, and twenty nine ecoregions in the study area are presented in Table 1; in addition, 
Figure 1 shows the individual ecoregions.

Elevation

Spatial-temporal patterns in SWE are also interpreted using elevation, enabling an assessment of 
the  relationship  between  SWE  spatial-temporal  features  and  ground  surface  characteristics. 
Elevation data are obtained from a digital elevation model (DEM) with a 1 km spatial resolution.  
The DEM (GTOPO30) is a global digital elevation model produced as part of a collaborative 
effort led by the US Geological Survey's (USGS) EROS Data Center (Gesch et al. 1999). It is 
reported to be accurate to within ± 30 vertical metres in most areas (Defense Mapping Agency 
1986; US Geological Survey 1993). The DEM will be used to determine elevation, which may 
have some bearing on the amount and type of snow deposition. 

Methods

Quantifying spatial patterns

Quantifying the spatial interaction of localized areas within a study region provides information 
on the location, type, and magnitude of local SWE extremes. Aspatial analysis generalizes spatial 
trends, but by implicitly considering the spatial distribution of SWE within a study region, new 
patterns and variability emerge, and can be quantified. The Getis and Ord Gi* statistic (Getis and 
Ord 1992; Ord and Getis 1995), is a local measure of spatial association designed to highlight 
spatial clusters of similarly high or low values that are extreme relative to average trends in the 
data (Boots 2002). The Gi* statistic assigns a measure of the level of spatial association at each 
individual pixel, highlighting areas which display strong brightness temperature gradients (both 
high and low).
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In general, the Gi* statistic is designed to compare spatially local averages to global averages by 
considering  both  the  locational,  and  attribute  relationship  between  each  pixel  (i)  and  its 
surrounding neighbours (j) (Boots 2002). Formally, the Gi* statistic is given as

Gi=∑
j

w ij y ij/∑
j

y ij
, [1]

where wij defines the locational (spatial) relationship between i and j, and is given a value of one 
if  i and  j are  neighbours,  and  zero  otherwise,  whereas  yij  defines  the  attribute  (aspatial) 
relationship between i and j., In this sense, the Gi* statistic is the sum of pixel values within a 
neighbourhood centered on  i,  relative to the sum of all  pixel  values within the study region 
(Boots 2002). Ord and Getis (1995) derive a standardized version of the Gi* statistic and values 
are reported in a z-score standardized form. Using z-scores, analysis using  Gi* is suitable for 
comparison between different time periods and datasets. For details on this standardized form, 
see  Ord  and  Getis  (1995).  All  reported  Gi* results  in  the  current  paper  are  given  in  the 
standardized form.

In order to maintain the finest spatial grain of analysis possible while maintaining stability of the 
Gi* statistic, the locational relationship in this analysis is based on all pixels within a 3 x 3 grid  
(75 km x 75 km) surrounding the target location i. This ensures statistical neighbourhoods have a 
minimum  of  9  pixels  (inclusive),  which  is  the  above  the  suggested  minimum  number  of 
neighbours required to maintain validity of the statistic (Boots 2002; Griffin et al. 1996). Due to 
issues of spatial dependence and multiple testing, which are problematic for many local spatial 
statistics, it is often best to consider  Gi* results as exploratory rather than confirmatory (Boots 
2002; Sokal et al. 1998a, 1998b).

When interpreting  the standardized  Gi*  z-score values,  a high value of  Gi* (strong positive) 
indicates clustering of extreme high values, and a low value of  Gi* (strong negative) indicates 
clustering of extreme low values. Mid range values of Gi* can be caused by both clustering of 
values that are near the average global value, as well as an absence of clustering (Tiefelsdorf and 
Boots 1997). Therefore, the Gi* statistic is useful for capturing spatial clusters of values that are 
extreme relative to the mean.

In the current analysis, Gi* z-score values are categorized into three classes: greater than or equal 
to 2 standard deviations from the mean indicates a cluster of high values, less than or equal to -2 
standard deviations from the mean indicates a cluster of low values, and greater than -2 and less 
than 2 standard deviations from the mean indicates no significant clustering in extreme values. 
This classification allows the statistics highlights areas of significant clustering with respect to 
the mean, and is the standard approach to interpreting Gi*.

Interannual spatial association

Computing the  Gi* statistic for each successive year (yi – yn) in the study period provides a 
means  for  interannual  comparison  of  the  spatial  pattern  in  extreme  SWE  values.  To  aid 
interpretation, a cluster of SWEs is defined as a grouping of spatially adjacent significant values 
(both  high  and  low).  Scatterplots  which  examine  the  relationship  between  the  number  of 
significant pixels in the study region (significant spatial autocorrelation in both high and low 
SWE),  and the number of significant  clusters (  both high and low SWE) were generated  to 
compare how clusters of extreme SWE change relative to the overall abundance or absence of 
extreme values. Exploratory analysis through iteratively plotting different time periods, indicated 
that  relationships  between  the  number  of  clusters  and  pixels  differed  in  two  primary  time 
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periods:  1979-1988 and  1989-2002,  and  by  generating  scatterplots  for  each  time  period  we 
highlight how the spatial processes of SWE change through time. To compare differences in the 
slope of the observed relationships (number of clusters vs. pixel, comparisons between different 
temporal windows were performed using standard t-tests.

Temporal variability and trends

Changes in the level of spatial association through time were quantified to assess interannual 
trends in Gi* results. A spatial grid of individual time series’ was generated, each with its own 
temporal signature. These time series were then individually analyzed for temporal trends and 
variability using methods which treat each pixel within the study region as a separate temporal 
vector. 

Several measures were used to quantify temporal trends in the SWE data. The observed SWE 
time series’ were compared to hypothetical random SWE time series to assess the hypothesis that 
the temporal SWE observations are independent and identically distributed along the time series, 
and  thus  equally  likely  to  have  occurred  in  any  order  (Kendall  and  Ord  1990).  To  assess 
hypotheses of randomness in the time series, turning points were used. Turning points may be 
defined as either a peak or trough within a time series, and usually refers to a value which is 
either greater than (peak) or less than (trough) its neighbouring values (Kendall and Ord 1990). 
The test  statistic  (p)  is  a  count  of  the number  of  peaks  and troughs in  the time series,  and 
according to Kendall  and Ord (1990), as the total  number of time periods (n) increases,  the 
distribution of the test statistic approaches normality, with an expected value of (2n – 4)/3, and 
variance equal to (16n – 29)/90. Thus, the statistic may be represented as a standard variate, such 
that the expected number of peaks E(p) is subtracted from the observed value, and divided by the 
square root of the variance in p:

z  p =
p−E p 

[ var  p  ]1/2
. [2]

Two descriptive measures provide further insight into the temporal patterns of SWE observed in 
the study area: relative variability, and the modal state of each individual the temporal vector. 
The relative variability of SWE spatial association, which is simply the count of the number of 
state changes (the number of times a value increases or decreases from a previous value in the 
time series), and the modal state of the time series.

Comparison with ecoregions and elevation

Comparing  the  frequency  distribution  of  temporal  metrics,  between  ecoregions,  and  the 
frequency distribution of elevations for different temporal metrics, enables characterization of 
spatial  and  temporal  features.  Ecoregions  were  intersected  with  variability  in  SWE  spatial 
autocorrelation for each pixel in the study region. A quantitative comparison of the distribution 
of pixels with statistically significant variability (both high and low) in  Gi* z-scores over each 
ecoregion was performed using a Mann-Whitney U test (Hollander and Wolfe 1999; Mann and 
Whitney 1947). This highlights ecoregions with significantly different distributions of variability 
in computed Gi* z-scores. In addition, relationships between the temporal trends in SWE spatial 
autocorrelation  and  elevation  were  quantified  using  the  Mann-Whitney  U  test  to  compare 
variations in elevation for both variability and modal state classes. A similar comparison was 
performed for variability classes, to compare elevation frequency distributions.
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Results

Interannual spatial association

The spatial distribution of clustering in extreme SWE values is variable over the study region 
and through time. The relationship between individual significant pixels and significant clusters 
gives an indication of the pattern of spatial association within the study region in any given year.  
Initial analysis revealed a break in the observed relationship between 1988 and 1989. Figure 2a 
shows  the  relationship  between  the  number  of  individual  significant  pixels  (spatial 
autocorrelation  in both high and low SWE),  and the  number of significant  clusters  of SWE 
values (spatial autocorrelation in both high and low SWE) from 1979-1988. As the number of 
individual  significant  pixels  increases,  the  number  of  contiguous  clusters  also  increases, 
indicating  that  pixels  with  positive  spatial  autocorrelation  in  extreme  high  SWE values  are 
occurring as smaller isolated pockets, rather than contributing to existing clusters. The observed 
relationship for significant spatial autocorrelation of pixels and clusters of high SWE (black line) 
is significant at a 95 percent confidence level (t = 7.016, p-value = 0.000); whereas, significant 
spatial autocorrelation in low SWE (grey line) is not significant (t = 0.314, p-value = 0.762).

Figure 2b presents the number of individual significant pixels (spatial autocorrelation in both 
high and low SWE) with respect to the number of significant clusters (spatial autocorrelation in 
both high and low SWE) for  the years 1989-2004.  The relationship  between the number of 
individual significant pixels and the number of individual clusters is inversely related in both 
cases, such that, in general, as the number of significant pixels (and total area that the clusters 
occupy)  increases,  the  number  of  clusters  decreases.  This  indicates  that  the  scale  of  spatial 
association  in  extreme  SWE  is  increasing  through  time,  and  that  significant  pixels  are 
contributing to larger, spatially coherent clusters. As a result, the difference in the slope of the 
relationship between the two time periods (a and b) for significant spatial autocorrelation in high 
SWE is significant (t = 22.609, p-value = 0.000). This is further evidence that prior to 1989, 
SWE spatial structure was different, with extreme events less spatially coherent than during the 
1989-2004 time period.

Relationships with ecoregions and elevation

Characterization  of  the  relationship  between  existing  ecological  management  units  and  the 
spatial-temporal trends in SWE, was given by an initial evaluation of relative variability for each 
ecoregion  using  the  Mann-Whitney  U  test.  When  comparing  the  distribution  of  relative 
variability values within each ecoregion with the distribution of relative variability values of all 
other ecoregions, in most cases no significant differences were observed (p-values >0.05). Only a 
single ecoregion in the periphery of the north western portion of the study region was found to 
display a significantly different  distribution of relative variability  values (z-value = -6.71, p-
value = 0.000). The Clear Hills Upland, located in the Boreal Plains ecozone displayed a range in 
relative variability values which was significantly smaller than the rest of the study region, and 
showed  no  significant  variability  along  the  time  series.  Figure  3  shows  the  distribution  of 
variability values throughout the study region. The distribution of variability values throughout 
the study region shows strong spatial  dependence, with similar levels of variability occurring 
together across the landscape (Moran's I = 0.559 p-value = 0.010). For information on the Moran 
statistic, see (Cliff and Ord 1981). However, the distribution and boundaries of the ecoregions do 
not coincide with the distribution of variability values (see Figure 1 for ecoregion boundaries).
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The distribution of elevations for modal state classes showing significant spatial autocorrelation 
in both high and low SWE values were found to be significantly different from each other, as 
well as from the study area as a whole (p-values <=0.05). Figure 4 shows the distribution and 
summary  statistics  of  elevations  for  significant  spatial  autocorrelation  in  high  SWE  values 
(Figure 4a), and low SWE values (Figure 4b) respectively. While the number of pixels in the 
study region displaying spatial autocorrelation in high SWE values (n = 423) is larger than the 
number of pixels displaying significant spatial autocorrelation in low SWE values (n = 231), the 
level of dispersion is lower for spatial autocorrelation in low SWE values (CV = 0.22 vs. CV = 
0.48). This is partly influenced by the bimodal shape of the distribution of elevations in Figure 
4b. Statistically significant spatial association in low SWE values occurs primarily over regions 
where elevations are ±1 standard deviation (>860 m or < 341 m) from the mean elevation (601 
m);  therefore,  spatial  autocorrelation  of low SWE values  is  restricted  to  the more ‘extreme’ 
elevations in the study region, particularly in the lowland regions, where over 40 percent of the 
data in this class are found.

Classifying  variability  into  two statistical  classes:  significantly  high variability  in  the spatial 
association of SWE through time (high variability), and significantly low variability in the spatial 
association  of  SWE through time (low variability),  allows differences  in  the distributions  of 
elevations between these two classes to be assessed. The Mann-Whitney U test indicates that the 
distribution of elevations for the low variability  class is significantly different from the high 
variability  class  (z-value  =  -4.13,  p-value  =  0.00).  Figure  5  characterizes  how  elevation  is 
different between the high and low variability classes. Although the distributions of elevations 
for both classes are negatively skewed, the range in elevations is significantly different between 
the two classes (max. (high variability) = 1334 m vs. max. (low variability) = 2438 m). As well, 
the elevations in Figure 5b fall into two clear groupings, with the majority of values occurring 
close to the mean (645 m), and the rest of the values, in regions with significantly high elevations 
(±  2  standard  deviations  from the  mean).  The  differences  in  the  range  and  distribution  of 
elevations between these two classes are likely due to the spatial distribution of the variability 
values:  all  pixels  which  are  characterized  by  significantly  high  variability  in  SWE  spatial 
association are located in the northwestern and southeastern portions of the study region, with no 
pixels having high variability in SWE values through the central portion of the study region. This 
is contrasted by pixels which are classified as having significantly low temporal variability in 
SWE  values,  which  are  located  randomly  throughout  the  study  region,  and  occur  only  in 
relatively small, isolated clusters of approximately 200 km2 on average.

Discussion 

Significant spatial association occurred within the study region in most years, and the level of 
spatial association in SWE varies through both space and time. While the number of individual 
pixels  showing significant  spatial  autocorrelation  in both high and low SWE was increasing 
throughout the study period, they tended to coalesce into larger, contiguous regions of extreme 
(both high and low) SWE. These larger regions appear to coalesce towards the center of the 
study  area,  and  are  potentially  important  indicators  of  snow cover  response  to  atmospheric 
circulation (e.g., Dewey 1977; Namias 1985; Liu and Yanai 2002; Gong et al. 2004), 

The relationship between the number of individual  significant  pixels and contiguous clusters 
showing  spatial  autocorrelation  in  high  SWE  displayed  significant  variation  through  time. 
Extreme high SWE tended to become more spatially constrained after 1989, and large clusters 
occurred through the middle of the study region, in the northern portion of the Prairies ecozone, 
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and Southern portion of the Boreal Plains ecozone. While this temporal transition appears to 
correspond closely with the SMMR and SSM/I transition eras, we are confident that the effects 
of this transition are mitigated first by the temporal averaging employed in the analysis (mean 
February values), and secondly through regridding the data to the 25 km EASE-Grid, such that 
the regridding absorbs any difference in the sampling characteristics of the sensors. Indeed, the 
clustering  shift  corresponds  with  a  transition  in  regional  southern  prairie  SWE  anomalies 
observed both from passive microwave retrievals and conventional measurements (Figure 6). A 
period of predominantly negative anomalies shifted to predominantly positive anomalies during 
the late  1980’s in  both data  records.  The SWE anomalies  were calculated  from the  satellite 
passive microwave data record using the prairie-specific retrieval algorithm of Goodison and 
Walker (1995) applied to brightness temperatures (1980-2006) corrected for homogeneity using 
the approach of Derksen and Walker (2003). The conventional observations represent regional 
averages of maximum snow depth from all available in situ observations (see Brown and Braaten 
1998).

After  1989,  the  clustered  region  primarily  comprises  the  Moist  Mixed  Grasslands,  Aspen 
Parklands  and  Boreal  Transition  ecoregions  of  the  Central  Grassland  and  Parkland  Prairies 
ecoprovinces, and to a lesser extent, the Slave River Lowland ecoregion in the northern reaches 
of the Boreal Plains Ecozone. In general, this group of ecoregions extends in a broad arc from 
southwestern Manitoba, north westward through Saskatchewan to its northern apex in central 
Alberta. As the climate continues to become more variable, the potential for flooding may be 
significantly altered in regions supplied by these areas (Olsen et al. 1999; Barnett et al. 2005). 
This relationship was not observed in the spatial autocorrelation of low SWE values, where the 
relationship between individual significant pixels and significant clusters remains non significant 
over  both  time  periods  (1979-1988 and 1989-2004),  suggesting  that  the  level  and extent  of 
clustering in dry winter conditions does not appear to be confined to any specific region.

While in some instances the Canadian terrestrial ecoregions may help to characterize some of the 
variability and trends in the spatial association of SWE, to a large degree these ecological units 
do  not  provide  sufficient  explanation  for  the  observed  spatial-temporal  patterns  in  SWE. 
Differences  in  the  variability  of  SWE  spatial  autocorrelation  across  the  study  region  were 
observed, and displayed a significant spatial component. These differences were generally not 
related to ecoregions, which highlights the need for ecological management units which take into 
account  SWE and other  dominant  winter  processes.  Ecoregions,  and  many  other  ecological 
management units, are generally based on spring and summer conditions, and as a result do not 
properly represent snow and winter conditions. In many regions of Canada, a large portion of the 
year is spent with snow, and any models or management strategies that include winter processes 
would  benefit  from  a  new  classification  systems  which  partitions  the  landscape  with 
consideration to SWE, and other winter conditions.

Several trends emerged in the relationships between space-time trends in SWE and elevation. 
Firstly, regions of high and low temporal variability in SWE spatial patterns display significantly 
different distributions of elevation, suggesting that processes relating to SWE variability may be 
linked  with  elevation  and/or  some  associated  phenomenon,  for  example  temperature  or  net 
radiation.  Classifying pixels  by modal  state  provides further  evidence for a  linkage between 
elevation  and the spatial-temporal  aspects  of  SWE spatial  association.  Regions  of consistent 
spatial  autocorrelation  in  high  SWE  were  shown  to  be  significantly  different  in  terms  of 
elevation  from  regions  of  consistent  spatial  autocorrelation  in  low  SWE.  A  clear  spatial 

10



separation of regions of consistently high modal state from regions of consistently low modal 
state was observed, and elevation was shown to be a strong determinant of this relationship. Low 
modal states occurred only in elevations extreme relative to the study region mean, and showed 
no overlap with regions of high consistent SWE spatial autocorrelation. In general, elevation has 
proven to be a relatively effective indicator of SWE spatial-temporal patterns across the study 
region, and while elevation has often been linked to SWE, the current analysis shows that as 
climate variability continues to increase over time. Elevation may also be a useful indicator of 
changing trends in SWE spatial  and temporal  patterns,  with the greatest  levels  of variability 
anticipated to occur over elevation extremes (relative to the study region mean), such as upland 
and lowland regions.

Conclusions

Despite  difficulties  in  characterizing  SWE spatial-temporal  features  using  current  ecological 
management units, several dominant patterns in SWE spatial autocorrelation do emerge, and are 
captured by the various temporal metrics employed in the current analysis. Results revealed that 
the number of locations having significant spatial autocorrelation within the study region have 
increased both in number and size throughout the study period. These regions have continued to 
grow and coalesce  into  larger,  contiguous  regions  of  extreme SWE,  particularly  after  1989, 
where  extreme  high  SWE  has  tended  to  become  increasingly  constrained  to  the  grassland, 
parkland,  and transition  zones  of  the  Central  Grassland  and  Parkland  Prairies  ecoprovinces. 
These changes have potential impacts on runoff prediction, flood forecasting, and water resource 
management,  which  need  to  take  into  account  the  spatial  nature  of  SWE.  Furthermore,  the 
relationships between the temporal characteristics of SWE and elevation have revealed that the 
level of SWE variability in a particular region may be significantly impacted by the distribution 
of  elevations  in  that  region,  providing evidence  for  elevation-controlled  SWE processes  not 
captured by the ecoregions. The observed relationship between SWE variability and elevation, 
coupled with knowledge of the changing spatial  configuration of SWE clusters through time 
indicates that regions of variable topography, such as those located in the northwestern portion of 
the  Central  Boreal  Plains  ecoprovince,  may  be  differentially  impacted  by  changing  climate 
conditions.

Future research will  use the detected spatial-temporal  patterns of SWE to distinguish unique 
regimes of snow cover across Canada. SWE regimes describe the regular spatial and temporal 
patterns  of  SWE accumulation  in  individual  regions,  and are  a  major  control  of  spatial  and 
temporal patterns and processes in many ecosystems (Walker et al. 1999). Knowledge of the 
distribution of these SWE regimes will help analysts answer key questions regarding their impact 
on human and ecological processes. Further, based upon these findings, new ecological units 
could be developed that also integrate winter snow cover characteristics with the existing suite of 
determinants mainly based upon summer land cover conditions. 

The methods demonstrated in this article may have benefit to other research which focuses on 
large  area,  spatial-temporal  datasets  collected  over  long time  periods.  By  characterizing  the 
temporal  signature of spatial  patterns over multiple  time periods,  it  is possible  to generate a 
mappable representation of the spatial-temporal  data which is both intuitive and informative. 
Furthermore, by employing more complex temporal modeling and trend detection techniques as 
part of this overall methodology, analysts in fields such as water resource management, wildlife 
management,  climate  change  research,  and  forestry  may  quantitatively  characterize  trends 
through time, and develop new knowledge to support management.
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Figure Captions

Figure 1: Terrestrial ecoregion boundaries across the study region. Each number is the unique 
identifier for the corresponding ecoregion, these values are given in Table 1. Subset depicts the 
study region within the Boreal Plains and Prairies Terrestrial Ecozones of Canada.

Figure  2:  Relationship  between  the  number  of  individual  pixels  which  show  statistically 
significant spatial autocorrelation in both high (black) and low (grey) SWE, and the number of 
contiguous clusters of statistically significant pixels. Note: relationship from 1979-1988 (a) is 
significantly different than from 1989-2004 (b).

Figure 3: Spatial distribution of SWE temporal variability across the study region for 1979 to 
2004.  Lighter  values  correspond  to  significantly  high  temporal  variability  in  SWE  values, 
whereas darker values correspond to significantly low temporal variability in SWE values.

Figure 4: Distribution and summary of elevations for regions with statistically significant spatial 
autocorrelation in both high (a), and low (b) SWE. CV = Coefficient of variation.
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Figure 5: Distribution and summary of elevations for regions with significantly high variability 
(a), and significantly low variability (b). CV = Coefficient of variation.

Figure 6: Time series of southern Prairie SWE anomalies observed both from passive microwave 
retrievals (grey) and conventional measurements (black). Note shift from negative to positive 
anomalies during the late 1980s in both data records.

Table Caption

Table 1: List of Ecoregions and associated Ecozone and Ecoprovince. 
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Figure 1: Terrestrial ecoregion boundaries across the study region. Each number is the unique 
identifier for the corresponding ecoregion, these values are given in Table 1. Subset depicts the 
study region within the Boreal Plains and Prairies Terrestrial Ecozones of Canada.

Figure  2:  Relationship  between  the  number  of  individual  pixels  which  show  statistically 
significant spatial autocorrelation in both high (black) and low (grey) SWE, and the number of 
contiguous clusters of statistically significant pixels. Note: relationship from 1979-1988 (a) is 
significantly different than from 1989-2004 (b).
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Figure 3: Spatial distribution of SWE temporal variability across the study region for 1979 to 
2004.  Lighter  values  correspond  to  significantly  high  temporal  variability  in  SWE  values, 
whereas darker values correspond to significantly low temporal variability in SWE values.

Figure 4: Distribution and summary of elevations for regions with statistically significant spatial 
autocorrelation in both high (a), and low (b) SWE. CV = Coefficient of variation.
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Figure 5: Distribution and summary of elevations for regions with significantly high variability 
(a), and significantly low variability (b). CV = Coefficient of variation.

Figure 6: Time series of southern Prairie SWE anomalies observed both from passive microwave 
retrievals (grey) and conventional measurements (black). Note shift from negative to positive 
anomalies during the late 1980s in both data records.
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Table 1: List of Ecoregions and associated Ecozone and Ecoprovince. 

Ecozone Ecoprovince Ecoregion Description
Boreal Plains Central Boreal Plains Slave River Lowland (136) Subhumid mid-boreal ecoclimate, with cool summers and long, cold winters.

Boreal Foothills Clear Hills Upland (137) Cool, short summers and cold winters with severe temperatures moderated by frequent chinooks.

Central Boreal Plains Peace Lowland (138) Subhumid, low boreal ecoclimate, marked by warmer summers than the surrounding areas.

Central Boreal Plains Mid-Boreal Uplands (139-141) Upland area, with subhimid mid-boreal ecoclimate, short, cool summers and cold winters.

Central Boreal Plains Wabasca Lowland (142) Lowland area, with subhumid mid-boreal ecoclimate, and cool summers and long, cold winters.

Central Boreal Plains Western Boreal (143) Poorly drained, low-relief plain, with cool, short summers and cold winters.

Central Boreal Plains Mid-Boreal Uplands (144) Upland area, with subhimid mid-boreal ecoclimate, short, cool summers and cold winters.

Boreal Foothills Western Alberta Upland (145-146) Upland area, marking transition between mid-boreal and mid-cordilleran vegatation.

Central Boreal Plains Mid-Boreal Uplands (147) Upland area, with subhimid mid-boreal ecoclimate, short, cool summers and cold winters.

Eastern Boreal Plains Mid-Boreal Lowland (148) Upland area, with subhimid mid-boreal ecoclimate, short, cool summers and cold winters.

Central Boreal Plains Boreal Transition (149) Transition zone, with subhumid low boreal ecolimate, and warm summers and cold winters.

Central Boreal Plains Mid-Boreal Uplands (150-154) Upland area, with subhimid mid-boreal ecoclimate, short, cool summers and cold winters.

Eastern Boreal Plains Interlake Plain (155) Subhumid low boreal ecoclimate, with warm summers and cold winters.

Prairies Parkland Prairies Aspen Parkland (156) Transitional grassland ecoclimate, with short, warm summers, and long, cold winters.

Central Grassland Moist Mixed Grassland (157) Northern extension of open grasslands in Interior Plains, with semiarid moisture conditions.

Central Grassland Fescue Grassland (158) Part of Rocky Mountain foothills, with warm summers and mild winters controlled by chinooks.

Central Grassland Mixed Grassland (159) Semiarid grasslands region, with summer moisture deficits, and low annual precipitation.

Central Grassland Cypress Upland (160) Upland region, with cooler, more moist climate than surrounding ecoregions.

Parkland Prairies Aspen Parkland (161) Transitional grassland ecoclimate, with cold winters with continuous snow cover.

Eastern Prairies Lake Manitoba Plain (162) Transitional zone, with warmest and most humid regions in the Canadian prairies

Parkland Prairies Boreal Transition (163-164) Elevated upland area, with  high annual precipitation.


