
 

 

 

 

Preliminary risk rating for mountain pine 
beetle infestation of lodgepole pine forests 

over large areas with ordinal regression modelling 
Colin Robertson1, Michael A. Wulder2,  

Trisalyn A. Nelson1 and Joanne C. White2 

Mountain Pine Beetle working paper 2009-19 
 
 
 
 
 

1 Spatial Pattern Analysis & Research (SPAR) Laboratory 
Dept of Geography 

University of Victoria 
PO Box 3060, Victoria, BC V8W 3R4, Canada 

 
2 Pacific Forestry Centre  
Canadian Forest Service 

Natural Resources Canada 
506 West Burnside, Victoria, BC V8Z 1M5, Canada 

 
 
 

MPBI Project # 7.36 
 
 

Natural Resources Canada 
Canadian Forest Service 
Pacific Forestry Centre 

506 West Burnside Road 
Victoria, British Columbia  V8Z 1M5 

Canada 
 
 
 

2009 
 

© Her Majesty the Queen in Right of Canada 2009 
Printed in Canada



 

  ii

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Library and Archives Canada Cataloguing in Publication 
 
 

Preliminary risk rating for mountain pine beetle infestation of lodgepole  
pine forests over large areas with ordinal regression modelling  
[electronic resource] / Colin Robertson ... [et al.]. 
 
 
(Mountain pine beetle working paper ; 2009-19) 
"MPBI Project # 7.36". 
Includes bibliographical references. 
Type of computer file:  Electronic monograph in PDF format. 
Issued also in printed form. 
Includes abstract in French. 
ISBN 978-1-100-13452-9 
Cat. no.:  Fo143-3/2009-19E-PDF 
 
 

1. Mountain pine beetle--British Columbia.  2. Lodgepole pine--Diseases  
and pests--Risk assessment--British Columbia.  3. Mountain pine  
beetle--British Columbia--Forecasting.  4. Mountain pine beetle--Effect of  
forest management on--British Columbia.  5. Forests and forestry--Risk  
management--British Columbia.  6. Forest management--British Columbia.   
I. Robertson, C. (Colin), 1978-  II. Pacific Forestry Centre   
III. Series: Mountain Pine Beetle Initiative working paper (Online) 2009-19 
 
SB945 M78 P73 2009                        634.9'7516768                        C2009-980226-0  



 

  iii

Abstract 
The mountain pine beetle (Dendroctonus ponderosae Hopkins) is endemic to lodgepole pine 
(Pinus contorta var. latifolia Engelmann) forests in western Canada. However, the current beetle 
epidemic in this area highlights the challenges faced by forest managers who must prioritize 
stands for mitigation activities such as salvage harvesting, thinning, and direct control methods. 
In western Canada, the operational risk rating system for mountain pine beetle is based on 
biological knowledge gained from a rich legacy of stand-scale field studies. Owing to the large 
spatial and temporal extents of the current epidemic, new research into large-area mountain pine 
beetle processes has revealed further insights into the landscape-scale characteristics of beetle-
infested forests. In this research, we evaluate the potential for this new knowledge to augment an 
established system for rating the short-term risk of tree mortality in a stand due to mountain pine 
beetle. New variables explored for use in risk rating include direct shortwave radiation, site index, 
diameter at breast height, the temporal trends in local beetle populations, Biogeoclimatic 
Ecosystem Classification, and beetle-host interaction variables. Proportional odds ordinal 
regression was used to develop a model for the Vanderhoof Forest District in west–central British 
Columbia. Prediction based on independent data was assessed with the area under the receiver 
operator curve (AUC), indicating good discriminatory power (AUC = 0.84) for predicting 
damage due to mountain pine beetle. 

Keywords: mountain pine beetle, landscape-scale, ordinal regression, risk rating, infestation 

 
Résumé 

Le dendroctone du pin ponderosa (Dendroctonus ponderosae Hopkins) est endémique aux forêts 
de pins tordus latifoliés (Pinus contorta var. latifolia Engelmann) de l’Ouest canadien. Cependant, 
l’épidémie actuelle de dendroctone du pin dans cette région met en lumière les difficultés 
auxquelles doivent faire face les aménagistes forestiers qui ont la tâche de prioriser des 
peuplements à des fins d’atténuation, comme les coupes de sauvetage, les coupes d’éclaircie et les 
méthodes de contrôle direct. Dans l’Ouest canadien, le système de notation du risque opérationnel 
du dendroctone du pin ponderosa est fondé sur des connaissances biologiques provenant d’un 
vaste héritage d’études à l’échelle des peuplements forestiers. En raison du facteur temporel et du 
vaste espace occupé par l’épidémie actuelle, une nouvelle recherche de processus pour une vaste 
étendue infestée par le dendroctone du pin ponderosa a ouvert d’autres perspectives, à l’échelle 
de l’écopaysage, concernant les caractéristiques des forêts infestées de dendroctone. Dans la 
présente recherche, nous évaluons les possibilités pour cette nouvelle connaissance d’augmenter 
un système établi de notation du risque, à court terme, de mortalité d’arbres d’un peuplement 
attribuable au dendroctone du pin ponderosa. Les nouvelles variables étudiées pour être utilisées 
dans l’évaluation du risque comprennent le rayonnement direct de courtes longueurs d’onde, 
l’indice de qualité de station, le diamètre à hauteur de poitrine, les tendances temporelles dans les 
populations locales de dendroctones, le Système de classification biogéoclimatique des 
écosystèmes et les variables de l’interaction de l’espèce hôte du dendroctone. La régression 
ordinale de chances proportionnelles fut utilisée pour élaborer un modèle pour le Vanderhoof 
Forest District dans le centre-ouest de la Colombie-Britannique. Des prévisions fondées sur des 
données indépendantes ont été évaluées avec la surface sous la courbe (AUC), indiquant une 
bonne puissance discriminatoire (AUC = 0,84) pour prévoir les dommages attribuables au 
dendroctone du pin ponderosa. 

Mots clés : dendroctone du pin ponderosa, échelle de l’écopaysage, régression ordinale, 
évaluation du risque, infestation 
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1 Introduction 
Management of lodgepole pine (Pinus contorta var. latifolia Engelmann) forests in western 
Canada in recent years has been dominated by a mountain pine beetle (Dedroctonus ponderosae 
Hopkins) epidemic that, by 2006, had impacted more than 9 million ha (Westfall 2007). 
Management of any forest disturbance requires decision support tools that help managers predict 
future forest scenarios, set priorities, and evaluate management strategies. In the context of 
mountain pine beetle, forest managers must know the ability of a forest stand to support an 
epidemic mountain pine beetle population (i.e., susceptibility), and the possibility of host tree 
mortality consequent to an existing beetle infestation (i.e., risk). Susceptibility is determined 
using stand and site characteristics independent of surrounding beetle population levels. 
Conversely, risk is determined by considering stand susceptibility in the context of the beetle 
population within both the stand and its vicinity (Bentz et al. 1993). A risk rating system is a 
decision support tool that identifies stands at greatest risk of timber losses as a result of a 
mountain pine beetle infestation (Shore et al. 2006). 

1.1 Mountain pine beetle risk rating 
Many risk rating systems for mountain pine beetle have been developed over the past three 
decades. Safranyik et al. (1975) initially used weather station data to model and map the beetle 
outbreak hazard in western Canada. Amman et al. (1977) used stand characteristics such as 
elevation, age, and diameter at breast height (dbh) to develop a three-class risk classification 
system (i.e., low, moderate, high). Other risk rating systems also relied on stand characteristics 
and adopted similar approaches to rating stand risk as a categorical variable (e.g., Mahoney 1978; 
Berryman 1978a; Stuart 1984; Anhold and Jenkins 1987). Bentz et al. (1993) evaluated the 
accuracy of three categorical risk rating systems (Amman et al. 1977; Mahoney 1978; Berryman 
1978a) and one continuous variable risk rating system (Schenk et al. 1980), and found them all to 
provide poor estimates of pine mortality, primarily because they failed to consider spatial 
relationships between host stands and beetle populations. Furthermore, the study concluded that 
the empirical development of these risk rating systems limits their portability to other geographic 
areas.  

Shore and Safranyik (1992) introduced a continuous variable risk rating system that incorporated 
elements of previous systems with a strong theoretical basis for characterizing susceptibility and 
risk. Shore and Safranyik (1992) define risk as the short-term expectation of volume loss due to 
mountain pine beetle attack. Their risk rating system has two components: stand susceptibility, 
defined as the inherent characteristics of a stand of trees that affect its likelihood of attack by 
mountain pine beetle; and beetle pressure, which is a measure of the size and proximity of the 
mountain pine beetle population to the stand. Susceptibility in Shore and Safranyik (1992) is 
determined using stand density, age, composition, and geographic location. Each variable has a 
direct link to biological processes associated with mountain pine beetle. Stand density affects tree 
competition for light and nutrients, so less dense stands tend to have larger, more vigorous trees; 
however, low-density stands diminish the microclimate required to facilitate pheromone-mediated 
attacks, landing, and emergence rates (Bartos and Amman 1989). Intermediate stand densities of 
750 to 1500 stems/ha are thought to be more conducive to beetle-induced tree mortality (Anhold 
and Jenkins 1987), giving rise to a nonlinear relationship between risk and stand density. Stand 
age relates to the beetle’s preference for large diameter trees (Safranyik et al. 1974), and it has an 
inverse relationship with tree vigor after maturity, which determines a tree’s ability to resist 
infection by beetle-introduced fungi (Shrimpton 1973). Once trees reach physiological maturity, 
they become susceptible to attack, although the rate and likelihood of attack is affected by other 
variables such as climate (Shrimpton and Thomson 1983). Stand composition is included in the 
Shore and Safranyik model because stand risk relates to the amount of near-term volume loss, so 
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greater amounts of pine contribute to higher risk ratings. The composition variable is measured as 
the percentage of a stand’s basal area composed of large-diameter pine. The location factor 
incorporates the impact of geographic location on beetle survival. At higher elevations and 
northern latitudes, beetles are exposed to colder temperatures, thereby increasing winter mortality 
and disrupting the beetle's development cycle (Amman 1973). 

Beetle pressure in Shore and Safranyik (1992) is based on the number of beetles within and near 
the stand. Beetle population is estimated by the number of infested trees, and the likelihood of 
attack is calculated by the distance between the stand being rated and the infestation. The 
maximum distance at which beetles from surrounding areas can enter the stand being assessed is 
3 km. Susceptibility variables and beetle pressure are multiplied to determine the overall risk 
rating for a stand of trees. Recent model refinements have replaced discrete look-up tables with 
continuous equations for each of the susceptibility variables, the beetle population variable, and 
for the risk calculation in an effort to reduce the impact of class boundaries on final risk 
assessments (Shore et al. 2006). However, the fundamental elements of the Shore and Safranyik 
model remain unchanged: four equally weighted susceptibility variables and a spatial measure of 
the beetle population determine a relative ranking of stand risk.  

With the explosive growth of mountain pine beetle populations in western Canada, the risk rating 
system has become a recommended forest planning tool (BCMOF 1995). However, there are 
considerable limitations to implementing the Shore and Safranyik system over large areas. First, 
the relationships in the model are derived from field research over small geographic areas (Shore 
and Safranyik 1992; Shore et al. 2000). Extrapolating these relationships to new regions may 
neglect regional variations in mountain pine beetle processes. Secondly, the data inputs required 
for operational modeling across large areas often do not exist, and substitute variables available in 
forest inventory data are generally poor replacements (Nelson et al. 2006). Hence, there is an 
information need for a decision support tool capable of assessing risk over large areas. 

1.2 Recent Research 
Research conducted over the last decade may enhance existing risk rating systems. The growth of 
geographic information systems (GIS) as a tool for managing complex spatial and attribute 
information, combined with increasing efficiencies in automated and semi-automated data 
collection technologies, has enabled forest managers and researchers to link theoretical and 
empirical knowledge of ecological processes (e.g., Blackburn and Milton 1996). Additionally, 
recent advances in analytical methods for spatial data facilitate spatially explicit analysis of forest 
disturbances across large spatial and temporal scales (e.g., Nelson and Boots 2005).  

1.2.1 Landscape scale red attack modeling 
Previous studies have investigated the potential for locating and estimating the severity of red 
attack, i.e., the characteristic fading of a beetle-attacked tree's foliage which typically occurs 
within 6 to 8 months following attack. Variables useful for predicting red attack damage over 
large areas may help predict areas at risk of beetle attack. While remotely sensed data have been 
used in many studies for detecting and mapping red attack damage at a range of spatial scales 
(Sirois and Ahern 1988; Franklin et al. 2003; Skakun et al. 2003; White et al. 2006; Wulder et al. 
2006b), here we highlight studies that have used imagery in conjunction with ancillary terrain and 
radiation information (White et al. 2006; Wulder et al. 2006a; Coops et al. 2006). Elevation, 
slope, and direct radiation have all been significant predictors in logistic regression models of red 
attack damage (see Table 1). Additionally, Coops et al. (2006) investigated the relationship 
between probability of attack, forest structure, and forest susceptibility variables using regression 
tree models and found site index and slope to be most important for explaining variation in the 
probability of red attack. Negron and Popp (2004) used a similar approach for ponderosa pine 
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(Pinus ponderosa Lawson) and found stand density index (SDI) and quadratic mean diameter to 
be most important for estimating the plot scale probability of infestation. 

Table 1. Overview of recent studies and variables for predicting mountain pine beetle red attack damage. 
Publication Scale Primary 

Data 
Source 

Dependent 
Variable 

Significant 
Predictors 

Method Accuracy 
(95% CI) 

Wulder et al. 
2006 
 

landscape Landsat7, 
DEM 30m 

Red attack 
presence 

+elevation, -
slope 

Logistic 86% (5%) 

White et al. 
2006 

landscape SPOT5 
10m, DEM 
25m 

Red attack 
presence 

+direct 
radiation, 
-elevation 

Logistic 71% (9%) 

Coops et al. 
2006 

landscape Landsat7, 
Landsat5,
DEM 30m 

Red attack 
presence 

+direct 
radiation, 
+elevation 

Logistic 69% (N/A) 

Coops et al. 
2006 
 

landscape VRI Probability of 
red attack 

Site index, 
slope, basal 
area, crown 
closure 

CART N/A 

Coops et al. 
2006 
 

landscape VRI Probability of 
red attack 

Location 
factor, age 
factor, basal 
area factor, 
density factor 

CART  N/A 

Negron and 
Popp 2004 
 

Plot Field plot Probability of 
red attack 

Stand density 
index, 
quadratic 
mean diameter 

CART N/A 

 
1.2.2 Data uncertainty, accuracy, and large-area spatial analysis 
Large-area application of forest risk models relies on operational data which often have varying 
levels of accuracy and completeness. For instance, detailed variables such as stand density and 
basal area by species are not available in most provincial or national forest inventory products. 
Nelson et al. (2006) explored the impact of operationally available data representative of large 
areas on the Shore and Safranyik susceptibility model. The authors found that lack of detail 
prevented the surrogate variables from being more than moderately correlated with the true 
variables, thereby highlighting the importance of including operationally available variables in 
landscape scale models. In an investigation of the accuracy of the Shore and Safranyik risk model 
computed with similar large-area data, Dymond et al. (2006) found the risk index to be within 
30% to 43% true positive for high risk (>5), and 93% accurate for low risk (>0, <5) for predicting 
presence of infestation. However, the severity of infestation was not evaluated against the risk 
index. Wulder et al. (2006c) compared two methods for estimating the beetle pressure component 
of risk, the distance-based method used in Shore and Safranyik (1992), and a density-based 
method employing Voronoi polygons. The density-based estimate was found to have greater 
correspondence with infestation occurrence.  

1.2.3 Epidemiology and population dynamics 
The current state of knowledge on biology and epidemiology of the mountain pine beetle is 
succinctly reviewed in Safranyik and Carroll (2006). New research indicates that the four-stage 
population cycle of the mountain pine beetle (endemic, incipient-epidemic, epidemic, and post-
epidemic) is based on complex interactions with the host tree and an assemblage of secondary 
bark beetles. The nature of large area sampling of mountain pine beetle populations 
(identification of red attack damage by aerial survey) makes it difficult to detect beetle 
populations at endemic levels, where spatially disparate assemblages of only a few trees are 
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infested. The most important aspect of the population cycle for modeling risk is the epidemic 
threshold: the point at which the growth in the beetle population exceeds the stand’s ability to 
resist mass attacks of its large, healthy trees (Berryman 1982). Large-diameter trees promote 
exponential growth in brood production, thereby enabling an epidemic when suitable host and 
climatic conditions exist (Safranyik et al. 1974). In population dynamics, this is the shift from one 
stable equilibrium (endemic) to another stable equilibrium (epidemic) (Berryman 1978b). The 
critical threshold between these equilibria is governed by events that increase beetle populations 
(e.g., warm winter temperatures) or decrease stand resistance (e.g., drought). For modeling the 
risk of mountain pine beetle damage, it is important to represent the dynamic nature of this 
critical population threshold to accurately forecast future infestation advance or collapse (Raffa 
and Berryman 1986; Bentz et al. 1993; Logan et al. 1998; Nelson et al. 2007). 

1.2.4 Range expansion, geographic variation and novel habitats 
A key contributor to sustaining western Canada’s current beetle epidemic is an increase in 
climatically suitable habitat, enabling beetle range expansion (Carroll et al. 2006). Historically, 
the range of the primary host species exceeded the limits to mountain pine beetle range imposed 
by climate conditions. This has important implications for modeling risk, as it is common for 
processes (e.g., dispersal) at range margins to differ from those in traditionally colonized areas 
(Thomas et al. 2001). Indeed, latitudinal variation in mountain pine beetle developmental rates 
has been shown by Bentz et al. (2001). This perhaps supports other recent research pointing to 
large scale spatial synchrony of epidemic beetle populations (Aukema et al. 2006). Mountain pine 
beetle spatial processes such as dispersal, pheromone dynamics, and host selection are influenced, 
if not determined, by environmental factors. It might therefore be expected that spatial patterns 
representing these processes will vary in different environments. Robertson et al. (2007) found 
spatial patterns of dispersal processes to have different frequencies in different Biogeoclimatic 
Ecosystem Classification (BEC) subzones. It may be useful for large-scale models of risk to 
identify regional variations in the spatial patterns used to represent dynamic beetle processes (i.e., 
Wu et al. 2005). 

2 Material and Methods  
2.1 Study area and data  
The study area for our model development is the Vanderhoof Forest District, in central British 
Columbia, Canada (Figure 1). The approximately 1.38 million ha Vanderhoof Forest District has 
lost a substantial volume of lodgepole pine from mountain pine beetle attack. Forest inventory 
data is available for this area and mountain pine beetle monitoring data is spatially and temporally 
exhaustive, providing a comprehensive view of beetle population levels. This area is dominated 
by forests of lodgepole pine and spruce (Picea engelmannii x glauca Moench. Voss), with a 
median age of 105 years. Three main BEC zones are represented in Vanderhoof, ranging in 
elevation from 680 to 1800 m: Sub Boreal Spruce (SBS), Sub Boreal Pine Spruce (SBPS), and 
Engelmann Spruce-Subalpine Fir (ESSF). The Vanderhoof Forest District is proximal to the 
outbreak’s epicentre, which is thought to be just to the west near Entiako Park and Protected Area 
and Tweedsmuir Provincial Park (Aukema et al. 2006).  
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Figure 1. Biogeoclimatic ecosystem classification (BEC) subzones of the Vanderhoof Forest District. 
 

Forest inventory information for the Vanderhoof Forest District conforms to the current 
provincial vegetation resource inventory (VRI) standards. VRI is a seamless spatial coverage of 
forest stands where a combination of aerial photo interpretation and field plot verification is used 
to estimate attribute information (BCMSRM 2002). This dataset was last updated with harvest 
and natural disturbances in 2002. Forest stands in the VRI, defined as homogenous units by 
photointerpreters, made up the unit of analysis for all modeling. Attributes from the inventory 
used in modelling include stand composition, age, density, dbh, crown closure, and site index.   

Mountain pine beetle populations were estimated from aerial overview survey (AOS) data 
collected in the study area as part of a province-wide forest health survey conducted annually 
throughout British Columbia (BCMoF 2000). Broad areas of red attack damage are delineated on 
1:100 000 or 1:250 000 basemaps by trained observers (Wulder et al. 2006c). Severity codes are 
assigned to indicate the proportion of infestation for each area. These broad AOS data are 
collected primarily for strategic purposes and are used to direct the subsequent acquisition of 
more detailed survey information. In Vanderhoof, detailed surveys were conducted using 
helicopters equipped with GPS receivers, where regions of beetle attack were recorded and 
classed by severity. Information contained in the AOS and helicopter-GPS surveys were 
combined to produce a raster layer indicating the cumulative area of infestation in the Vanderhoof 
Forest District for each year from 1999 to 2005. The area of infestation values were averaged at 
the forest stand level. All model predictions were made for the year 2005 based on data up to and 
including 2004.  
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The BEC system stratifies landscapes based on vegetation, soils, and climatic and site 
characteristics. BEC zones are characterized by a common regional climate. Subzones, the finest 
spatial unit in the BEC system, represent geographically related ecosystems (Eng and Meidinger 
1999). The BEC data used in this analysis were mapped at a scale of 1:20 000 in 2003. The main 
BEC zone in the Vanderhoof Forest District is the Sub Boreal Spruce (SBS), making up 84% of 
the total area. Figure 1 illustrates where different subzones are located within the study area. 

Elevation base data in the form of a digital elevation model were used for all topographic 
variables. This data set was obtained from the Government of Canada geographic data portal 
GeoBase, and conforms to Canadian Digital Elevation Data 1:50 000 standards. Elevation values 
are referenced to the Canadian Vertical Geodetic Datum 1928. The data was resampled to 100 m 
grid cell resolution. The DEM was used to generate direct solar radiation using the methods of 
Kumar et al. (1997). 

2.2 Materials and Methods 
2.2.1 Modelling risk for large areas 
Our approach to modelling stands at risk of mountain pine beetle attack is based on Shore and 
Safranyik (1992). We investigate the potential for model improvements based upon knowledge 
gained from recent research, while also overcoming some previously noted limitations when 
determining risk over large areas. Risk in Shore and Safranyik (1992) model is a continuous value 
indicating the relative risk of volume loss due to beetles and is based on basal area. A difficult 
issue in dealing with data constraints of landscape-wide forest inventory is selecting a dependent 
variable. Since basal area is often not available in forest inventories, our dependent variable was 
calculated as the average value of percent mortality pixels for each polygon, scaled by the 
percentage of pine associated with the polygon. These values were then linked back to damage 
classes (Table 2), so they become the AOS severity classes scaled by the amount of pine in each 
VRI polygon, hereafter referred to as damage level. VRI polygons without any pine were 
excluded from the analysis.  

Table 2. Damage level classes based on amount of infestation and percentage of pine. Percent area 
mortality in AOS data is multiplied by the percentage of pine in each VRI polygon. 

 
Damage Level % pine x % area 

mortality 
None 0 
Trace x ≤ 1 
Low 1< x ≤10 
Medium 10 < x ≤29 
Severity 29 < x ≤49 
Very Severe >49 

 
The modeling framework for the inclusion and structure of covariate variables was based on the 
breakdown of the mountain pine beetle-lodgepole pine system described by Raffa and Berryman 
(1986) and others, as either host/stand variables or beetle population variables. Simulations in 
Raffa and Berryman (1986) demonstrate how tree and beetle interactions influence the overall 
beetle population. Extending this idea to the stand scale, we capture this interaction by combining 
stand variables with beetle population variables (interaction variables). A list of new variables 
used in this analysis is presented in Table 3. 

 



 

  7

Table 3. New variables included in model development. 
Variable name Category Rationale 
BEC Subzone 

(BEC) 
Stand Resistance The beetle life cycle is principally determined by temperature. 

BEC zones may represent suitably scaled delineations for 
identifying variations in the productivity of beetle populations. 

Annual direct 
shortwave 

radiation (SWR) 

Stand Resistance Changing climate may impact the effect of elevation on beetle 
populations. Direct radiation may indicate variability in the 
productivity of beetle populations more accurately than 
elevation alone. 

% pine infested in 
2004 (PPI04) 

 

Beetle Population The proportion of pine infested represents both beetles and 
the amount of pine remaining in the stand. 

Damage level in 
2004 (INC0304) 

 

Beetle Population Aerial increase in infestation in 2004 as recorded in aerial 
surveys. 

Damage level in 
2003 (INC0203) 

 

Beetle Population Aerial increase in infestation in 2003 as recorded in aerial 
surveys. 

# years infestation 
present in 2004 

(INFDUR) 
 

Beetle Population Indicator of the infestation trend. 

# red attacked 
trees in stand in 
2004 (NUMRED) 

 

Beetle Population Estimate of the local beetle population. 

Site index (R_SI) Interaction High site indices represent productive stands and, under 
epidemic conditions, productive beetle populations. 

Crown closure 
(R_C) 

Interaction Stand canopies determine the amount of radiation received on 
the bole and impact pheromone mediated dispersal.  

Quadratic mean 
diameter at breast 
height (R_QDBH) 

Interaction Mountain pine beetles attack large diameter pine 
disproportionately. Tree diameters above 25.4 cm are thought 
to be infestation sources, while those below this threshold are 
infestation sinks (Safranyik et al. 1974) 

 

2.2.1.1 Stand Resistance Variables 
Stand resistance typically indicates stand vigour, which is inversely related to the ability of 
mountain pine beetles to overcome a tree's defences. New variables related to the stand’s ability 
to defend against beetle attacks include its BEC subzone and the amount of annual direct 
shortwave radiation (SWR) (Wulder et al. 2006a). Other stand resistance variables known to be 
intimately linked with the state of the beetle population, such as site index, crown closure, and 
dbh, are included instead as interaction variables.  

2.2.1.2 Beetle Population Variables 
The integrated beetle population data contains cumulative area infested levels for each year from 
1999 to 2005. From this data, we estimated the spatial and temporal trends in beetle population 
levels. Beetle population variables provide information about the local characteristics of the 
infestation; those used in modelling included percent pine infested in 2004 (PPI), infestation in 
2004 (INC0304), infestation in 2003 (INC0203), duration of infestation (INFDUR), and the 
number of red attacked trees in 2004 (NUMRED). 
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2.2.1.3 Interaction Variables 
Stand variables whose impacts on beetle populations are tied to the population state were 
modelled as interaction variables. We used a sigmoid function to scale interaction variables, w, 
on a scale [0,x],  where x is the percentage of pine in the stand.  

     ))/)2/((1 zrzzrtc
xw −++

=     (1) 

 

The threshold value of the variable z is denoted as t, and the range of z that defines how quickly 
w reaches x is defined by zr. A constant c defines initial values and was determined 
experimentally from the data available. This sigmoid function represents the threshold nature of 
mountain pine beetle population interaction with variable z by defining two parameters: the initial 
increase of the weight as variable z increases, and the value of z at which exponential increase in 
weight occurs. The beetle population variable defines the slope of the curve (zr) and the threshold 
value (t) of z is defined based on previous mountain pine beetle research. The highest weights are 
associated with stand conditions that promote beetle brood production when the population state 
is at epidemic levels. Variables modelled as interactions were crown closure (R_C), site index 
(R_SI), and quadratic mean diameter at breast height (R_QDBH). Figure 2 presents the details of 
the interaction variable curves. 
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Figure 2. Interaction variable curves.  
Note: For each, the maximum weight is defined by the percentage of pine in the stand. Additional parameters are based on the 

beetle population in 2004 (bp2004), the associated VRI variables, and threshold values. The threshold value indicates when 
rapid increase begins and x - bp2004 defines the number of units in the VRI variable required to reach the max weight. If 
bp2004 is high, the weight increases faster than if bp2004 is low. Site index threshold was based on the most important value 
for predicting red attack damage in regression tree analysis in Coops et al. 2006. Quadratic mean diameter threshold was 
based on a similar minimum dbh threshold of attack in Safranyik et al. (1974) (10cm), and so that the weight increase is 
proportional to the percentage mortality increase for each unit increase in diameter (increase of 5 at peak growth period). 
Crown closure threshold of 20 was set experimentally as no theoretical values were found. 

 
2.2.2 Ordinal Logistic Regression 
The dependent variable for our analysis, damage level, represents the amount of pine mortality 
due to mountain pine beetle in six distinct classes (none, trace, low, moderate, severe, very 
severe). The ordered nature of this variable warrants the use of an ordinal regression model. An 
ordinal model is an extension of binary logistic regression, an approach which has been 
successfully employed for predicting locations of mountain pine beetle red attack damage 
(Wulder et al. 2006a; Coops et al. 2006). In the ordinal model, as in binary logistic, the 
combination of linear predictor variables relates to the expectation of the dependent variable 
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through a link function, usually the logit function. Since there are multiple ordered responses, 
multiple equations need to be resolved in ordinal regression (Guisan and Harrell 2000).  

Two common ordinal regression models involving dependent variables derived from a continuous 
phenomenon have been categorized. The proportional odds (PO) model (Walker and Duncan 
1967) is based on cumulative probabilities, and the continuation ratio (CR) model (Armstrong 
and Sloan 1989) is based on conditional probabilities. CR models are suited for situations where 
the dependent variable Y must pass through one category to reach the next (Guisan and Harrell 
2000). The standard PO model assumes that the slopes of each independent variable X are equal 
for all levels of Y. Since we are modelling the dynamics between Y and X explicitly through the 
interaction variables and the progression of damage level need not pass through one level to reach 
the next (given our temporal resolution), we selected the PO model, defined as follows. 

   
)])(exp[1(

1)|(
Xba

XjYP
j +−+

=≥   (2) 

 

Or rather, that the probability of the observed Y falling in a class greater than or equal to class j 
given the explanatory variables in X is similar to a logistic model where {Y ≥ j, 1 and {Y < j, 

0 for all levels of j in the ordinal dependent variable Y. Thus in the case where j = 1, the PO 
model is equivalent to the logistic model. For additional levels of j, the coefficients, b, stay the 
same while the intercept term, a, varies. All models were developed using functions in the Design 
package (Harrell 2001) for the statistical software R (Ihaka and Gentelman 1996). The PO model 
assumes that the independent variables vary linearly with the ordinal response variable. To check 
this assumption, we plotted the mean of each of the final predictor variables for each damage 
level against the expected value under ordinality. Confirmation of the PO assumption can be 
determined if the observed means are similar to the expected.   

Despite the more relaxed assumptions for ordinal regression (similar to logistic) compared to 
ordinary least squares (OLS), one remaining requirement is that observations are independent. 
Since we know mountain pine beetle processes are structured spatially, we might also expect 
damage level to be spatially autocorrelated, and therefore there is the potential for inflated 
parameter estimates due to reduced degrees of freedom (Cliff and Ord 1981; Legendre 1993). 
Following the approach laid out in Bigler et al. (2005), we applied the Huber-White covariance 
estimator for cluster-correlated data, where each stand polygon was treated as a cluster (Huber 
1967; White 1982). Correlated responses were corrected using the Huber-White method as 
implemented in the Design package for R (Harrell 2001). All reported model parameter estimates 
are corrected versions.  

2.3 Model Development, Selection and Validation 
Models were developed using a random sample of approximately 50% of the polygons in the 
Vanderhoof VRI data (n = 23,683). Edge polygons were excluded to avoid any edge effects in the 
neighbourhood effect variable. Significance of predictor variables was assessed with the Wald x2, 
which tests the null hypothesis that the coefficient is zero. The relative importance of variables 
was determined with x2-df on significant variables in the model. The overall fit of the model was 
assessed with the Nagelkerke R-Square (R2) (Nagelkerke 1991). Furthermore, model fit was also 
assessed with a measure of association for ordinal data, Goodman-Kruskal Gamma (Goodman 
and Kruskal 1954), which accounts for the ordered nature of the data (i.e., L predicted as M is 
less wrong than L predicted as VS); calculated as: 

    )/()( QPQP +−=γ     (3) 
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Where P is the number of concordant pairs and Q is the number of discordant pairs, so it ranges 
from 0 to 1, where 1 indicates perfect prediction. Predictions no better than random will have  γ  
near 0. In our analysis, P corresponds to the number of pairs classified in a class adjacent to the 
true damage level, while Q is the number of pairs where the predicted class is not adjacent to the 
true damage level. Ties, or correctly predicted classes, are ignored. Gamma can be interpreted as 
contribution of the independent variables in reducing errors incurred when predicting the 
response randomly. 

To assess our model as a means of developing a large-area risk index, we compared a baseline 
model where damage level is related to the Shore and Safranyik Pine Risk Index (PRI), a 
modification of the 1992 risk rating system, to the best model obtained by adding the new 
variables outlined in Table 3. The component variables of PRI were also included separately 
during model development to assess their individual impact on risk. This allowed us to determine 
the relative enhancements additional variables may play in risk rating for large areas. Potential 
co-linearity in variables was assessed with Pearson’s r for each pairwise combination of variables. 
For values of r > 0.7, we tested variables separately during model development. As a final test to 
determine the impact of the interaction variables on model results, they were replaced by 
untransformed versions and models were re-estimated and assessed.  

Model testing on independent data (i.e., the remaining 50% of the VRI polygons; n = 23 729) was 
also undertaken to assess the predictive accuracy of the adjusted model. The final adjusted model 
used for prediction used significant variables with coefficients ≥ 0.01. Prediction accuracy was 
assessed for each level of the dependent variable to assess the variation in model sensitivity to 
different damage levels. Prediction accuracy was measured by calculating sensitivity, specificity 
and classification accuracy for each damage level based on a 50% probability threshold.  

We also assessed prediction accuracy with the area (AUC) under the receiver operator 
characteristic (ROC) curve for each set of predictions (Fielding and Bell 1997; Manel et al. 2001; 
Allouche et al. 2006; Coudun and Gegout 2007; Wunder et al. 2007). The ROC is a plot of the 
true positive rate on the y axis against the false positive rate on the x axis. The AUC is a threshold 
independent measure of overall accuracy with values from 0.5, indicating a random model, to 1, 
indicating perfect prediction. The AUC avoids the need for an arbitrary selection of a single 
probability threshold and provides information about the nature of both sensitivity and specificity 
(Manel et al 2001; Allouche et al. 2006). ROC plots for each predicted damage level are 
presented to assess the trade-off between sensitivity and specificity. Hosmer and Lemeshow 
(2000) suggest the following general guide to interpreting the AUC: a value > 0.9 is outstanding 
prediction, 0.8 – 0.9 is an excellent model, and 0.7 – 0.8 is an acceptable model. 

3 Results and Discussion 
3.1 Results 
3.1.1 Baseline model  
The fit of the baseline model is summarized in Table 4a. Overall, PRI in 2004 related weakly to 
forest damage level in 2005. PRI was a significant predictor variable (x2 = 2603.66, p < 0.0001) 
of forest damage, yet the model explained a small proportion of the overall variability (R2 = 0.11). 
The ordinal association measure was low, with γ = 0.26. The adjusted parameter estimate for PRI 
indicates a very slight increase (1.54%) in the odds of an increase in damage level will occur with 
one unit increase in PRI. The baseline model was not assessed for predictive accuracy on the 
independent data. 
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3.1.2 Adjusted model  
Pearson’s correlation matrix of all new variables revealed colinearity in NUMRED and INC0304. 
NUMRED was subsequently dropped from model development. The fit of the adjusted model 
incorporating additional variables is summarized in Table 4b. With all variables, the model was 
moderately successful (Nagelkerke R2 = 0.47, γ  = 0.57) at explaining the variation in damage 
level. The relative importance of model variables is presented in Figure 3. Increased probability 
of an increase in damage level of forests in 2005 was associated mostly with R_C, INC0203, 
BEC subzones in the ESSF zone, MSxv, SBPSdc, SBSdw, SBSmc, R_SI and BP. The plots of 
the independent variable means against the expected for each damage level indicated that the PO 
assumption was justified for most variables (Figure 4). Parameter estimates are provided in Table 
4b. Re-estimating the full model with interaction variables replaced by the untransformed 
variables from the VRI (site index, crown closure, quadratic mean dbh) yielded a weaker model 
with much less explanatory power (Nagelkerke R2 = 0.21, γ  = 0.37).  

Table 4. Model coefficients and estimates. 
a)  Baseline Model. Nagelkerke R2 = 0.11, K-W γ = 0.26. 

Parameter coefficient Wald Sig. S.E. 
Y ≥ T  0.8941   37.73 0.000 0.024 
Y ≥ L -0.3184 -14.55 0.000 0.022 
Y ≥ M -1.4177 -61.07 0.000 0.023 
Y ≥ S -2.4484 -91.21 0.000 0.027 
Y ≥ VS -3.7628 -107.51 0.000 0.035 
PRI  0.0153   51.03 0.000 0.000 

 
b)  Adjusted Model. Nagelkerke R2 = 0.47, K-W γ = 0.57. 

Parameter coefficient Wald Sig. S.E. 
Y ≥ T -0.8820 -12.83 0.000 0.069 
Y ≥ L -2.5582 -35.88 0.000 0.071 
Y ≥ M -3.9838 -54.66 0.000 0.073 
Y ≥ S -5.3274 -70.54 0.000 0.076 
Y ≥ VS -6.9153 -85.44 0.000 0.080 
PRI -0.0047   -9.45 0.000 0.000 
BP  2.3129  30.87 0.000 0.075 
Inc0203 -6.1958 -40.34 0.000 0.154 
Inc0304 -1.1121   -5.15 0.000 0.216 
R_QDBH  1.1073    9.67 0.000 0.114 
R_C  4.8708  67.80 0.000 0.072 
R_SI -2.6736 -30.27 0.000 0.088 
ESSFmvp  1.1219    2.20 0.028 0.510 
ESSFxv  1.1601    3.11 0.002 0.373 
MSxv  0.4191    1.89 0.059 0.222 
SBPSdc  0.2374    2.00 0.046 0.119 
SBPSmc -0.6227 -10.57 0.000 0.059 
SBSdk -0.6039 -12.89 0.000 0.047 
SBSdw  0.3819    8.47 0.000 0.045 
SBSmc  0.2810    7.10 0.000 0.040 
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Figure 3. Variables in new model. 

Note: The measure of variable importance in the model, x2 – df, takes into 
consideration the extra degrees of freedom in BEC subzone variable 
(categorical predictors), and is equivalent to the x2 test for continuous 
predictor variables. 

 

 
Figure 4. Plots of independent variable means ordinally for adjusted model.  
Note: The PO assumption is confirmed if the observed (solid) matches the predicted (dotted) under the assumption of 

proportional odds. This can be roughly confirmed for 4 out of the 6 variables, suggesting the PO model was 
appropriate.  
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3.1.3 Prediction Accuracy 
The adjusted model performed reasonably well when using a 50% probability of damage 
threshold for the cutoff (Table 5). The percentage of correctly classified cases ranged between 
75%–93%. Examining the prediction performance for positive against negative cases revealed 
widely varying prediction accuracies. The sensitivity, or true positive rate, ranged from 1%–98%, 
while the specificity, or true negative rate, ranged from 48%–100%. Sensitivity declined with 
increasing damage level, while specificity showed the opposite trend. The variability in these 
measures demonstrates their sensitivity to prevalence, common to most measures derived from 
contingency tables (Allouche et al. 2006).  

Table 5. Prediction accuracy for different damage levels using 50% probability threshold.  
Damage level Sensitivity Specificity Correct Classification Rate 
T 98% 48% 91% 
L 84% 60% 76% 
M 67% 80% 75% 
S 38% 92% 81% 
VS 1% 100% 93% 
Note: Sensitivity is the percentage of correctly predicted true positives, and specificity is the percentage of correctly 
predicted true negatives. Correct classification rate is the total percentage of correctly predicted cases. 
 

Predictions made on cumulative damage levels yielded an average AUC of 0.84. This falls in the 
range of an ‘excellent’ predictor. The ROC curves for each damage level are presented in Figure 
5. Predictions of polygons with at least a trace amount of damage, analogous to predicting red 
attack presence, yielded an AUC of 0.93. Predictions made at other damage levels ranged from 
0.80 to 0.83. All of these scores indicate good prediction accuracy for the adjusted model.  

 
Figure 5. ROC curves for 2005 mountain pine beetle forest damage 

levels predicted from separate model alpha coefficients.  
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Spatial distributions of predicted probabilities for each cumulative damage level are presented in 
Figure 6. Polygons in each map indicate the probability value that is equal to or above the 
specified damage level. There is large spatial variation in damage level. A large patch of non 
susceptible pine is discriminated fairly well at the low damage level. Prediction probabilities for 
very severe are quite low, indicating underprediction in areas with very severe damage. However, 
overall predictive accuracy for the very severe class was high because so much of the area was 
classified as true negative (Table 5). The 50% probability threshold used to derive contingency 
table scores in Table 5 was too low to capture the predictions of very severe damage output by the 
model. This highlights the difficulty of using a fixed probability threshold for predicting multiple 
ordinal classes. Depending on infestation level or user information need, the threshold may be 
made more or less conservative. The probability values may also be mapped to spatially identify 
trends in infestation levels and as an aid to planning or mitigation activities.   

 

 
Figure 6. Maps of predicted probabilities for each damage level.  
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3.2 Discussion 
The improvement of the adjusted model over the baseline model highlights the importance of 
additional variables for assessing the risk of mountain pine beetle infestation over large areas. 
Components of PRI such as tree age, location, stand density, and stand composition are derived 
from many field experiments and have been validated empirically (Safranyik et al. 1974 and 
others), yet when used for modeling stand risk in this analysis, the PRI did not perform well, 
either as an index or when broken into its individual factors. Only one (BP) out of the five most 
important predictors of damage level was from the baseline model (Figure 3). Reasons for this 
disparity are likely based on data quality rather than biological factors associated with the beetle. 
Specifically, performance is likely impacted by how well different variables are represented in the 
forest inventory and the nature of mountain pine beetle aerial detection surveys. For example, 
crown closure may be more accurately estimated than stems per hectare via air photo 
interpretation. Additionally, the nonlinear relationship between risk and stem density in PRI, 
representing intraspecific competition yielding weaker, less productive beetle broods (Shore and 
Safranyik 1992), may not be important for modeling the overall trend of the infestation over large 
areas. Stands with many moderately productive trees or fewer very productive trees, as long as 
they are above the diameter threshold, will contribute to an increased beetle population the 
following year.  

The objective of this research was to incorporate knowledge gained from recent mountain pine 
beetle research, and new methodological approaches, to identify variables important for 
predicting risk of mountain pine beetle infestation over large areas. The adjusted model 
(Nagelkerke R2 = 0.47, γ  = 0.57) demonstrated an improved fit over the baseline model 
(Nagelkerke R2 = 0.11, γ  = 0.26), indicating the importance of some of the new variables in 
predicting risk over large areas. The adjusted model performed well when used for predicting 
mountain pine beetle damage level on independent data (AUC = 0.84). The ROC curves for 
model predictions at different cumulative damage levels in Figure 5 show that the model predicts 
best for at least trace amounts, which is similar to a binary logistic model predicting locations of 
red attack. Interestingly, the next best predictions were for polygons with ‘at least severe’ and ‘at 
least very severe’ damage levels.  

The use of ordinal regression modelling provides a framework for exploring the probability of 
occurrence of different levels of mountain pine beetle infestation. The PO ordinal model specifies 
constant regression coefficients and regression intercepts that vary with different levels of the 
dependent variable. We applied the adjusted model to independent data and assessed prediction 
accuracy for different damage levels. Using the AUC as our measure of predictive accuracy 
avoided the need to select an arbitrary probability threshold. This is important for mountain pine 
beetle risk assessment because the main source of beetle population data, aerial overview surveys, 
is collected in ordinal mortality classes. We were able to explore the variation in these classes, 
and build a new model of risk for large areas that predicts new occurrences of mortality classes. 
In our analysis, mortality classes were scaled by the percentage of pine in each polygon to yield 
damage level.  

Probabilities derived from the adjusted model for cumulative levels of damage were mapped for 
the entire study area (Figure 6). Each map shows the probability that each polygon is at greater 
than or equal to a given damage level. Examining the difference between these maps sheds light 
onto the spatial distribution of mountain pine beetle risk over a very large area. While beyond the 
scope of this current research, spatial investigation of the differences between these probability 
maps may yield insights into the importance of various model input variables (Wulder et al. 2007).   
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The interaction variables R_C and R_SI were both important predictors of damage level. The s-
curve functions defining the interaction variables appear to have captured the dynamics of 
damage level increases. When interaction variables were replaced with untransformed versions, 
the model fit declined markedly. R_C was the most important variable in the model (Figure 3). 
Increases in R_C were associated with an increased probability of an increase in damage level. 
This supports results from Powell et al. (2000), which found crown closure to be positively 
related to stand risk to mountain pine beetle attack. The interaction between beetle population 
level and crown closure indicates that high crown closure, high percentage of pine, and a large 
increase in infestation in the year previous is positively associated with increases in damage level. 
Perhaps modelling crown closure in this way captures the period during which stand resistance 
declines, yet phloem thickness remains sufficient to sustain the epidemic (Berryman 1982), or 
indicates that beetle populations have grown to the point where even an effective host resistance 
is no defense against beetle mass-attack (Safranyik and Carroll 2006). For predicting risk over 
large areas, R_C may be a more useful variable for risk rating than variables based on stand 
density. This is important because crown closure is more commonly available than stand density 
in forest inventory data  

The site index interaction variable, R_SI, was also an important predictor of damage level. Site 
index has been identified in previous models of red attack damage as an important variable at the 
stand level (Coops et al. 2006). In our model, R_SI was inversely related to the increases in beetle 
damage. This suggests that high site index combined with high percentage of pine is associated 
with lower odds of a stand sustaining an increased damage level. This is expected if site index 
accurately reflects the site conditions of the stand and contributes to increased tree vigour and 
concomitant stand resistance to beetle attack. Furthermore, site index is a difficult variable to 
include in models of large area risk because it generally refers to site productivity of the leading 
species. Thus, where lodgepole pine is not the leading species, site index does not represent site 
productivity for lodgepole pine. In the Vanderhoof Forest District, lodgepole pine is a leading 
species in over 50% of stands. Species composition is less of an issue in our model because the 
upper bound of R_SI is defined by the percentage of pine, so stands where site index describes a 
non-pine leading species will have a maximum R_SI value less than 0.50.  

BEC subzones were also important factors for predicting damage level. Negative associations 
were found in the SBPSmc and the SBSdk. The SBPSmc occurs along the south eastern edge and 
south western edges of the study area (Figure 1). This zone is dominated by dry lodgepole pine 
forests, and the site productivity in the SBPS is generally low. Stressed and stunted trees in this 
zone may be limiting the broods of beetles, and the cold climate of the SBPS may be causing 
greater mortality of beetles in this area relative to other zones (Steen and Demarchi 1991). The 
SBSdk occurs throughout study area at lower elevations, following the Nechako river valley. 
Here, conditions for lodgepole pine are more favourable with higher site productivity, yet mixed 
forests are also more common (Meidinger et al. 1991). Since a high damage level is related to the 
amount of pine in each stand, the risk level may not increase past a certain level in these areas. 
All other subzones had positive associations with damage level. The importance of climate and 
location in the mountain pine beetle system is well known. The BEC subzones in our model of 
stand risk offer a suitably scaled stratification of the landscape for exploring regional variation in 
mountain pine beetle processes, and subsequently, for predicting the future course of epidemics. 

Interestingly the most important beetle population variable in the model was the increase in 
infestation in 2003, two years previous to the prediction year. Over large areas, locations 
previously infested are more likely to be infested than locations that have not already been 
subjected to attack (White et al. 2006). It is possible that the winter conditions (brood over-
wintering success) in 2002 were similar to those in 2004, resulting in similar outcomes. 
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Mitigating the spread of mountain pine beetles into new areas may be facilitated by focusing 
efforts on known areas of infestation to effect local reductions in beetle populations (as well as 
the proportion of beetles eligible for long range transport). The effort and expense in seeking 
endemic infestation levels at the leading edge, which may be less “dangerous” as fewer beetles 
exist locally for mass attack, and the proportion of beetles that do engage in long-range transport 
(estimated at 2.5% by Safranyik et al. 1992) will not be sufficient in number to overwhelm the 
defenses of a mature pine (especially in climatically difficult, new range, environments). Much 
research has indicated that short range dispersal is the primary means of infestation spread over 
large areas. Perhaps the largest, most intense landscape infestations should be the focus of 
management activities aimed at reducing the spread of beetle populations into new areas. 

Modeling beetle-host interactions at the stand level with interaction variables also improved our 
model. Incorporating ecological complexity into models of risk requires a trade-off with accuracy. 
Our formulation captures some of the dynamics of this ecological complexity, yet remains 
relatively simple to implement with operational data. Future risk assessment models may benefit 
from exploring interaction variables further. 

Including BEC subzones in the model provides evidence that incorporating information about 
local ecological characteristics is vital to any model of mountain pine beetle infestation. For 
British Columbia, the BEC system offers a suitably scaled classification which could serve this 
purpose. However, incorporating the full BEC system into a mountain pine beetle risk model 
requires detailed analysis of the suitability of each subzone for mountain pine beetle. One option 
would be to map mountain pine beetle climate suitability classes (Carroll et al. 2006) to BEC 
subzones and use these as a component in a large area risk index. Alternatively, regional variation 
in mountain pine beetle populations may be too complex to model accurately with one model. A 
better approach may be to develop region-specific models of risk. 

4 Conclusions 
In this research, we developed a model using operationally available data for predicting mountain 
pine beetle damage over a large area. Our objective was to identify new variables related to 
mountain pine beetle risk, with the aim of ultimately developing an index, similar to the Shore 
and Safranyik PRI, which could easily be applied to large areas throughout the mountain pine 
beetle range. The results of our model have several implications for predicting the spatial pattern 
of mountain pine beetle infestations.   

The addition of variables describing the temporal trend in beetle population improved our ability 
to predict future patterns of infestation. Detection and mapping of beetle red attack damage levels 
have been topics of extensive research and many sources of data are available to accurately 
characterize past infestations (AOS, satellite remotely sensed data, helicopter-GPS, and air photo 
interpreted products). Most beetle monitoring programs have been collecting data for many years 
and, for many locations, multiple years of survey data have been compiled. Additionally, the use 
of various remotely sensed data sources facilitates retrospective analyses for spatial and/or 
temporal gaps in the historical survey record. The integration of various sources of survey data 
allows temporal and spatial trends in the beetle infestation to be extracted and used for risk 
assessment. In our analysis, the beetle population from two years previous to the prediction year 
was most important for discriminating damage level.  

Through this research, we have demonstrated the utility of including readily available data sets 
for representing beetle population trend, interaction with hosts, and a stratification of the 
landscape to aid in operational risk rating of mountain pine beetle infestation. We follow Shore et 
al. (2006) in acknowledging the stochastic nature of the prediction mountain pine beetle 
infestation likelihood. The complex interactions between forest conditions, climate, and insects 
have many random or poorly understood elements, and as a result, any improvement in model 
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predictive ability, especially those facilitated through readily available additional support data, 
are welcomed and of use to the science and management communities interested in mountain pine 
beetle movement and impacts. 
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