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INTRODUCTION 1 
Remotely sensed data is a proven source of information for detailed characterization of 2 
vegetation type (e.g., Gould, 2000; Luther et al., 2006), structure (e.g., Gamon et al., 3 
2004; Healey et al., 2006), and condition (e.g., Rossini et al., 2006; Wulder et al., 2006a). 4 
The spatial, spectral, and temporal resolution at which the data is acquired is critical in 5 
how these vegetation properties are observed and may ultimately determine the success 6 
of a particular remote sensing application. Therefore, when undertaking applications with 7 
remotely sensed data, it is imperative to have a clear understanding of the information 8 
need that is to be satisfied, thereby allowing for the selection of the most appropriate 9 
imagery and analysis methods.  10 

Previous Chapters have detailed the capture and characteristics of optical 11 
remotely sensed data (Ch. 2, 3, 7) over a range of spatial and spectral resolutions from 12 
both airborne and satellite platforms (Ch. 8-10, 14). Approaches to image processing (Ch. 13 
15) and applications (Ch. 16-18, 20) have also been discussed. In this Chapter, we discuss 14 
the use of remotely sensed data for assessing vegetation conditions at landscape and tree 15 
levels, and the considerations that need to be made depending on a given information 16 
need. The goal of this chapter is to address the key issues that should be considered when 17 
using remotely sensed data to characterize vegetation, and through this, understand how 18 
operational applications may be undertaken.  19 

 20 
IMAGE RESOLUTIONS AND DATA SELECTION 21 

Remotely sensed data can be characterized by the image spatial resolution (pixel size), 22 
spectral resolution (wavelength ranges utilized), temporal resolution (when and how 23 
often are images collected), and radiometric resolution (the degree of differentiation 24 
within the dynamic range of the sensor). Vegetation is a complex target with a large 25 
amount of inherent spectral and spatial variability, and vegetation is typically 26 
characterized by strong absorption in the visible wavelengths, particularly the red 27 
wavelengths of the electromagnetic spectrum and high reflectance in the near-infrared 28 
(NIR) wavelengths. The amount of absorption or reflectance is controlled by vegetation 29 
type, amount, density, structure, and vigor. At the leaf scale, pigment concentrations, 30 
water content, and structure all contribute to variations in absorption, transmittance, and 31 
reflectance. In this section, we discuss the characteristics of remotely sensed data and 32 
consider how these various characteristics influence the remote sensing of vegetation. 33 

Of the four resolutions typically used to characterize remotely sensed data, spatial 34 
resolution arguably has the greatest impact on the information content of remotely sensed 35 
data, particularly for vegetation targets. Strahler et al. (1986) posit a scene model, based 36 
on spatial resolution, for understanding the information content of remotely sensed data. 37 
In this model, there are either many objects per pixel (an L-resolution environment) or 38 
conversely, many pixels per object (an H-resolution environment) (Figure 1). The target 39 
objects of interest are therefore important for assessing the utility of a given spatial 40 
resolution for a selected application. Table 1 provides some examples of commonly used 41 
remotely sensed data sources and the type of vegetation information one may expect to 42 
extract from these data sources. 43 

 Recent advances in the development of satellites with fine to very fine spatial 44 
resolution (e.g. < 2 m), combined with the widespread availability of digital camera and 45 
scanning technologies, and increasingly sophisticated computer processing techniques, 46 
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have contributed to an increase in the use of high spatial resolution imagery to estimate 1 
traditional and non-traditional vegetation attributes (Wulder et al., 2004a). However, with 2 
increased spatial resolution comes added complexity with respect to defining 3 
homogenous vegetation classes. While the increased textural information available in fine 4 
or very fine spatial resolution image data allows for improved interpretation based on the 5 
shape and texture of ground features, the current techniques used to process and analyze 6 
satellite image data, such as the use of standard vegetation indices or per-pixel based 7 
classifiers (e.g., maximum likelihood) may not be effective when applied to high spatial 8 
resolution image data (Goetz et al., 2003). In this H-resolution environment (Strahler et 9 
al., 1986), with many pixels per object (e.g. tree), there will be a large amount of spectral 10 
variability associated with individual trees (e.g., pixels representing sunlit crown, shaded 11 
crown, and the influence of factors such as branches, cones, and tree morphology). This 12 
variability confounds the development of unique spectral signatures for tree or vegetation 13 
classification (Culvenor, 2003).  14 
 Temporal resolution provides an indication of the time it takes for a sensor to 15 
return to the same location on the Earth's surface. The revisit time is a function of the 16 
satellite orbit, image footprint, and the capacity of the sensor to image off-nadir (e.g., not 17 
directly beneath the sensor, but at an angle). The timing of image acquisition should be 18 
linked to the target of interest; some disturbance agents may have specific bio-windows 19 
(e.g., fire, defoliating or phloem feeding insects) during which imagery must be collected 20 
in order to capture the required information (Wulder et al., 2005), while other 21 
disturbances may be less time specific (e.g., harvest). For ongoing programs designed to 22 
monitor forest change before and after a disturbance event, the acquisition of images 23 
should occur in the same season, over a series of years (known as anniversary dates). 24 
Anniversary dates are critical to ensure the spectral responses of the vegetation remain 25 
relatively consistent over successive years (Lunetta et al., 2004). The reduction in image 26 
radiometric quality for off-season imagery resulting from low sun-angles and reduced 27 
illumination conditions compromises the ability to capture changes clearly. Selection of 28 
scenes captured at the same time each year may reduce issues related to sun angle, 29 
shadow, and overall scene brightness.  30 

The temporal characteristics of an imaging system are also important.  For some 31 
applications, the capacity to incorporate multi-temporal images can be advantageous. For 32 
example, analysis of vegetation at both leaf-on and leaf-off periods can provide important 33 
information on the land cover, especially for seasonally variable vegetation, such as 34 
deciduous species (Dymond et al., 2002). Aerial-acquisitions are in general more flexible 35 
regarding timing than satellite-acquisitions, with the ability to collect images on demand, 36 
for example, coincident with insect outbreaks or fires (Stone et al., 2001). For satellite 37 
images, there tends to be a trade-off between image spatial resolution and the typical 38 
repeat period for image acquisition. Generally, high spatial resolution imagery, including 39 
that from satellites such as IKONOS and QuickBird, is acquired from sensors that are 40 
able to view off-nadir, and therefore have the potential to revisit a location every 1 to 3.5, 41 
days depending on the latitude of the target location.  Note however, that shorter revisit 42 
times come at the cost of off-nadir viewing.  True-nadir image revisit time for QuickBird 43 
and IKONOS is 144 days, compared to 16 days for moderate resolution satellites such as 44 
Landsat.  45 
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Spectral resolution provides an indication of the number and the width of the 1 
spectral wavelengths (bands) captured by a particular sensor. Sensors with more bands 2 
and narrower spectral widths are described as having a higher spectral resolution. 3 
Currently, most operational remote sensing systems are multispectral and have a small 4 
number of broad spectral channels: Landsat-7 Enhanced Thematic Mapper Plus (ETM+) 5 
data has seven spectral bands in the reflective portion of the electromagnetic spectrum 6 
and one band in the thermal-infrared region. Hyperspectral data (e.g., instruments with 7 
more than 200 narrow spectral bands (Lefsky and Cohen, 2003) are becoming more 8 
widely available (Vane and Goetz, 1993) both on spaceborne (such as the HYPERION 9 
sensor on the EO-1 platform) and airborne platforms such as HyMap (Cocks et al., 1998), 10 
CASI (Compact Airborne Spectrographic Imager) (Anger et al., 1994), and the NASA 11 
Advanced Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) (Vane et al., 1993). 12 
Since phenomena of interest (e.g. foliage discolouration) may be manifested in a specific 13 
portion of the electromagnetic spectrum, the number, width, and location of a particular 14 
sensor's spectral bands along the electromagnetic spectrum, will therefore determine 15 
whether the data from a given sensor is suitable for characterizing the phenomena.  16 

Radiometric resolution may be interpreted as the number of intensity levels that a 17 
sensor can use to record a given signal (Lillesand and Kiefer 2000) and provides an 18 
indication of the information content of an image. Most remotely sensed data currently 19 
used for vegetation applications (e.g. Landsat, SPOT-5) have a minimum 8-bit 20 
radiometric resolution; if a sensor uses 8 bits to record data, there are 28 or 256 digital 21 
values available, ranging from 0 to 255. The finer the radiometric resolution of a sensor 22 
the more sensitive it is to detecting small differences in reflected or emitted energy 23 
(QuickBird has 11-bit data).  24 

 25 
INFORMATION NEEDS AND APPLICATIONS CONSIDERATIONS 26 

The growing number and types of remotely sensed data sources available simplify 27 
matching a data source to a particular information need. Since image characteristics 28 
determine the nature of the information that may be extracted from an image, this section 29 
demonstrates the importance of clearly defining the information need, as a precursor to 30 
the selecting appropriate data and analysis approaches. Methodological options may then 31 
be considered once the information need is clearly identified. Several logistical issues 32 
may emerge when acquiring remotely sensed data to address a specific information need. 33 
These issues include the scale at which the target must be measured (e.g., landscape-level 34 
or tree-level information); the attributes of interest (change, condition, spatial extent); 35 
cost; timeliness; and, repeatability. Independent of the information need defined, there 36 
will also be application specific data requirements. Many of these logistical issues stem 37 
from the acquisition and processing of these required data sources. While focused on a 38 
specific application, these issues may be considered as generic for remote sensing 39 
applications of vegetation.   40 

The timing of image acquisition can have an impact on the quality of data 41 
extracted. Image acquisition characteristics often require compromise when images are 42 
being selected, since non-optimal years or seasons will have an impact on the nature and 43 
quality of information captured. Images collected during the winter months (e.g., 44 
October-March) can have a lower dynamic range (particularly true at more northerly 45 
latitudes), which can reduce spectral overlap between different cover types. Areas of 46 
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shadow will also be larger, especially in areas of high topography, further reducing the 1 
dynamic range. Off-year imagery (that is, imagery from a different year than planned, 2 
even when creating a longer time interval) is typically preferred over off-season imagery, 3 
as off-season imagery generally requires more processing, includes phenological 4 
artifacts, and will reduce overall mapping quality (Wulder et al., 2004b).  5 

Depending on the spatial extent of the area of interest and the required resolution, 6 
more than one scene may be needed to meet the information needs.  For example, if the 7 
information need requires characterization of the temporal change in beetle damage over 8 
a large spatial extent, at least two dates of imagery will be required to measure the 9 
change, and multiple images will likely be required to fully cover the area of interest. By 10 
necessity, the infilling of image areas obscured by clouds and shadows could further 11 
increase the number of scenes required to facilitate complete spatial coverage of the area 12 
(Homer et al. 1997). Moreover, if the information need requires a high level of detail, the 13 
number of images further increases, given that remotely sensed data with a higher spatial 14 
resolution typically have a smaller image extent. Multiple images present several image 15 
processing challenges such as edge effects, geometric co-registration, image radiometric 16 
normalization, phenological and annual differences, and data handling issues.  17 

The costs associated with the acquisition and processing of remotely sensed data 18 
are not insignificant. A landscape-level project generally requires the use of multiple 19 
scenes, presenting numerous image processing challenges. Tree-level characterization 20 
necessitates the use of higher spatial resolution imagery, which is generally much more 21 
expensive to acquire than data with a lower spatial resolution. While data acquisition will 22 
undoubtedly represent the bulk of the costs, additional costs may be associated with 23 
ancillary data processing (e.g., for calibration and validation), data management, and 24 
image analysis. Expertise in processing different types and potentially large volumes of 25 
remotely sensed and other geographic data, within a geographic information system 26 
(GIS)   is also often required.  27 

Ancillary data is required for calibration and validation of the analysis methods 28 
for most projects. Ancillary data sources are important for generating masks that will 29 
restrict the image analysis and aid in vetting the calibration and validation data points. 30 
Masks are often used to constrain the variability in spectral response resulting from cover 31 
types that are not of interest, such as water or cloud. The use of masks reduces the 32 
number of false positives and enables the processing of pixels where there is real change 33 
in the object of interest rather than a transition, for example, from cloud or shadow. The 34 
set of points remaining enables the interpretation of the results to be made under an 35 
assumption that the calibration and validation is not impacted by extraneous conditions.  36 
Rogan and Miller (2006) provide a summary of considerations and opportunities for 37 
integrating spatial and remotely sensed data to meet applications needs.  38 

 39 
APPLICATION OPPORTUNITIES: SPECTRAL CHARACTERISTICS 40 

Different portions of the electromagnetic spectrum may be exploited to satisfy different 41 
information requirements. In this section, we present some brief examples of how the 42 
visible, near-infrared, and shortwave-infrared portions of the spectrum have been used in 43 
a variety of applications, and how these various portions of the electromagnetic spectrum 44 
may be combined algorithmically in a vegetation index to further enhance feature 45 
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discrimination. A more detailed of vegetation response in each portion of the 1 
electromagnetic spectrum may be found in Chapter 3.  2 

Visible wavelengths 3 

The visible portion of the electromagnetic spectrum spans 400nm-700nm with the 4 
spectral reflectance of vegetation in this part of the spectrum heavily influenced by leaf 5 
pigmentation, specifically chlorophylls a and b. These pigments reflect highly in the 6 
green portion of the spectrum (500nm) and absorbs the blue (450nm) and red (670nm) 7 
wavelengths (Hoffer, 1978). Other pigments that influence leaf absorption and thus 8 
reflectance include carotene, xanthophyll, and anthocyanins (Blackburn, 1998). 9 
Information on pigments, especially chlorophyll, has been used in applications ranging 10 
from agriculture to natural vegetation studies. Pigments are integral in the physiological 11 
function of a leaf, and can be used as indicators of its physiological state. For example, 12 
the amount of chlorophyll can be used as an indicator of plant productivity as it is linked 13 
to the amount of photosynthetically active radiation absorbed by the leaf, and thus to the 14 
photosynthetic rate (Gamon and Qiu, 1999). 15 

A study by Zarco-Tejada et al. (2005) measured the chlorophyll content of the 16 
European grapevine at leaf and canopy levels to determine its physiological condition. 17 
For the leaf level, field based measurements of the pigment concentration were made, and 18 
a spectrometer was used to measure the reflectance properties of individual leaves. 19 
Concurrent canopy level data was acquired by three airborne hyperspectral imaging 20 
systems: CASI, ROSIS (Reflective Optics System Imaging Spectrometer), and DAID-21 
7915 (Digital Airborne Imaging Spectrometer). Upon linking the leaf and canopy level 22 
data it was found that the best indictors of chlorophyll content used ratios calculated 23 
within the 700-750 nm range of the hyperspectral imagery. 24 

Near-infrared wavelengths 25 

The near infrared (NIR) portion of the electromagnetic spectrum ranges from 700nm-26 
1200nm. Vegetation is characterized by high reflectance in the NIR, controlled primarily 27 
by leaf structure; reflectance in these wavelengths occurs at cell walls and at the 28 
interfaces between air and water within the leaf (Slaton et al., 2001). In a typical 29 
vegetation spectral response curve, the “red edge” is the steep portion of the curve in the 30 
transition from red to NIR wavelengths. The slope of this curve can indicate plant stress 31 
and chlorophyll concentration (Carter and Knapp, 2001). The red edge is followed by the 32 
NIR plateau, and this portion of the spectrum has been associated with changes at the 33 
cellular level, including hydration, health, and arrangement, as well as biomass (Rock et 34 
al., 1986). The NIR part of the spectrum has been shown to have a high correlation with 35 
hardwood forest biomass (Zheng et al., 2004), and as an indicator of leaf area index. 36 
Roberts et al. (1998) correlated leaf age with increasing NIR absorbance in tropical 37 
vegetation. Since the NIR can be used to assess vegetation health, it is also an important 38 
tool in monitoring tree defoliation due to pests or environmental conditions. For example, 39 
the NIR reflectance has been used to detect defoliation levels due to Jack Pine budworm 40 
in Wisconsin, USA (Radeloff et al, 1999) and a fungal pathogen in Australia (Coops et 41 
al., 2006).  42 
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Shortwave infrared wavelengths 1 

The shortwave portion of the spectrum ranges from 1300nm – 2400nm, is strongly 2 
influenced by the absorption by water. The moisture contained within a leaf absorbs 3 
shortwave infrared radiation, making this range of the spectrum useful in estimating plant 4 
water content (Ustin et al., 2004). Vegetation water content is especially important when 5 
trying to assess forest fire risk (Maki et al., 2004), and for determining water deficiency 6 
in agricultural crops. Tian et al. (2001) used the SWIR reflectance (between 900-1850nm 7 
and 1700-2500nm) of wheat leaves to determine moisture stress. 8 

Indices are commonly used with a wide range of remotely sensed data types to 9 
integrate multiple wavelength ranges that inform upon vegetation characteristics of 10 
interest (Asner et al., 2003). Studies have shown that spectral indices or ratios using the 11 
visible wavelengths are sensitive to changes in leaf pigmentation (Blackburn, 1998). For 12 
example, Chapelle et al., (1992), found that by using a ratio of soybean reflectance 13 
spectra and reference spectra, corresponding to the absorption bands of individual 14 
pigments, they were able to estimate the concentration of chlorophyll and carotene in the 15 
soybean plants. Recent research has resulted in the development of a function for 16 
assessing the sensitivity of spectral vegetation indices to biophysical parameters (Lei and 17 
Peters, 2007). 18 
 19 

APPLICATIONS EXAMPLE: SPATIAL CHARACTERISTICS 20 
Based on differing information needs for differing management objectives, digital 21 
satellite remote sensing offers a complementary technology for detection and mapping of 22 
a range of vegetation related phenomena. Remotely sensed data can facilitate mapping of 23 
individual trees or small groups of trees, as well as providing the capacity to cover large 24 
spatial areas - ensuring a census, rather than a sample of areas of interest (Wulder et al., 25 
2006b). In addition, remotely sensed data can be easily integrated with other spatial data 26 
(such as roads, elevation and climate data) (Dial et al., 2003; Tao et al., 2004) and forest 27 
inventory data (Wulder et al., 2005). Furthermore, through the use of more automated 28 
processing and interpretation functions, there may be a reduction in interpreter subjective 29 
bias (White et al., 2005), which may increase the consistency and reliability of mapping 30 
between different areas or dates (Wulder et al., 2006a).  31 

In this section, we present two examples of applications that have used remotely 32 
sensed data to map mountain pine beetle (Dendroctonus ponderosae) damage to 33 
lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia Engelm.) forests in British 34 
Columbia, over two different spatial extents. The first example is mapping damage 35 
caused by epidemic levels of infestation over very large areas at the landscape level using 36 
remotely sensed data with a spatial resolution of 30 m, while the second example is 37 
mapping low levels of infestation, at the forest stand level, where individual trees or 38 
groups of trees have been infested and killed by the beetle. 39 

Landscape level application example 40 

Over large areas, information on the location, extent, and severity of mountain pine beetle 41 
damage is required to determine the resources needed to address the infestation and to 42 
allocate those resources effectively. This information is also used for timber supply 43 
review, forest inventory update, biodiversity conservation, land use planning, and as 44 
baseline information to parameterize and validate the assumptions associated with 45 
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predictive models. Landscape-level information is also used to direct the location and 1 
intensity of more detailed surveys, designed to satisfy operational information needs. 2 

When mountain pine beetles attack and kill a healthy pine tree, the tree's foliage 3 
will initially remain green, eventually fading to red (typically within six to eight months 4 
after the initial attack). The red coloration of the foliage is characteristic of beetle damage 5 
and is termed as the red attack stage; this dramatic change in foliage colour enables 6 
detection and mapping of beetle damage (Figure 1 provides examples of red attack trees). 7 
Provided appropriate imagery is selected to coincide with the manifestation of the red 8 
attack stage, the damage can be mapped over large areas in an accurate and timely 9 
fashion using Landsat Thematic Mapper (TM) or ETM+ imagery and change detection 10 
methods (Skakun et al., 2003; Wulder et al., 2006b).  11 

The creation of a large-area product detailing the location and spatial extent of red 12 
attack damage involves the consideration of several logistical issues related to the 13 
mapping of a large area, many of which are not often faced in small, research-driven 14 
projects. Generating a consistent product over large areas involves the use of multiple 15 
scenes collected on different dates and potentially in non-optimal seasons. Other 16 
considerations are data availability and quality of available imagery. Imagery that is 17 
suitable for the detection and mapping of mountain pine beetle red attack damage must be 18 
acquired during the appropriate bio-window for mountain pine beetle (Wulder et al., 19 
2006a).  20 

The Enhanced Wetness Difference Index (EDWI) has been effectively used to 21 
detect a range of forest disturbance types (Franklin et al., 2001; 2002; 2003; 2005; 22 
Skakun et al., 2003; Wulder et al., 2006b). The EDWI is based on the Tasseled Cap 23 
Transformation (TCT) coefficients developed by Huang et al. (2002a), which compress 24 
Landsat spectral data into a reduced number of bands associated with physical scene 25 
characteristics (Crist and Cicone 1984). Though this transformation was originally 26 
constructed for agricultural applications, it has been used to reveal some key forest 27 
attributes (Cohen et al, 1995). The EDWI is calculated based on a combination of two 28 
dates of Landsat images, making geometric matching of multiple scenes a critical pre-29 
processing step, even with orthorectified imagery, to ensure that the images are properly 30 
co-registered. 31 

The mapping approach developed to capture red attack damage involves a 32 
sequence of steps including pre-planning, image scene selection, image pre-processing, 33 
and analysis (Figure 2). The EWDI approach performs best over areas with more 34 
homogeneous and extensive attack. Scenes with excessive cloud and haze should be 35 
avoided, and any areas of cloud, cloud shadows, haze, topographic shadows, or snow 36 
cover should be masked out. Masks must also be generated from forest inventory and 37 
harvesting data to identify areas of suitable hosts. 38 

Generally speaking, when applying the EWDI large positive values indicate 39 
wetness loss while small EWDI values show no change of wetness, and large negative 40 
EWDI values represent wetness gain. Therefore, the areas with large positive values in 41 
the EWDI image are likely to be the mountain pine beetle red attacked areas (Skakun et 42 
al., 2003). Mountain pine beetle red attack, however, is not the only disturbance that 43 
results in a loss of wetness, as other forest management activities will also manifest as 44 
decreases in moisture (e.g. forest harvesting). 45 
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The EWDI values of the attacked and non-attack pixels can be approximated by a 1 
Gaussian distribution, and can be separated by thresholding (Skakun et al. 2003). To 2 
determine the EWDI thresholds, calibration and validation data are required for both red 3 
attack and non-attacked pine stands. Once the threshold has been set, the accuracy of the 4 
output can be verified using reserved validation data. An accuracy assessment provides 5 
information on the success of the detection methods used and identifies possible sources 6 
of error, and is also valuable for comparing and evaluating different mapping techniques 7 
and in the development of new methods. 8 

Tree-level application example 9 

Successful mitigation of mountain pine beetle attack relies on accurate detection of 10 
infested trees, and information on the number and location of attacked trees. This detailed 11 
information is critical for a range of activities, including sanitation logging, the 12 
implementation of silvicultural regimes designed to reduce the susceptibility of host trees, 13 
as well as treatments to directly control populations. In all of these cases, information on 14 
the location and health status of individual tree crowns is critically important. 15 

The advent of high spatial resolution satellite data, since the launch of the 16 
IKONOS satellite in 1999, has resulted in an increased capacity to detect individual trees 17 
from space. Airborne digital imagery, such as that obtained by digital cameras sensitive 18 
to both the visible and near infrared regions of the spectrum, also provides the capacity to 19 
deliver this detailed individual tree information. This spatially driven data is useful for 20 
identifying small disturbances focused over a limited spatial extent and can aid as a 21 
surrogate for field based measurements (Asner and Warner, 2003) or validation efforts 22 
(Morisette et al., 2003).  23 

White et al. (2005) use IKONOS 4 m multi-spectral data to detect mountain pine 24 
beetle red attack damage using image classification. In their study, an unsupervised 25 
clustering technique was applied to detect red attack damage in forest stands with low 26 
and moderate levels of attack, and then compared these estimates to red attack damage 27 
estimates generated from air photo interpretation. Results indicate that within a one-pixel 28 
buffer (4 m) of identified damage pixels, the accuracy of red attack detection was 70.1% 29 
for areas of low infestation (stands with less than 5% of trees damaged) and 92.5% for 30 
areas of moderate infestation (stands with between 5% and 20% of trees damaged).  31 
Analysis of red-attack trees that were missed in the classification of the IKONOS 32 
imagery indicated that detection of red-attack was most effective for larger tree crowns 33 
(diameter >1.5 m) that were <11 m from other red attack trees. 34 

In mountain pine beetle infested forest stands, Kneppeck and Ahern (1989) 35 
compared manually derived counts of red attack trees from airborne scanner imagery 36 
(with a 1.4 m and 3.4 m spatial resolution) to counts estimated by manual interpretation 37 
of 1:10,000 air photos. Counts of red attack trees from the 1.4 m resolution imagery were 38 
higher (136%) than those derived from the air photo interpretation, while counts from 3.4 39 
m resolution imagery were lower (71%). The results from this study indicated that 40 
detailed surveys can benefit from a multi-stage sampling approach where a small sample 41 
of ground counts is used to adjust estimates generated from other data sources.   42 

Coops et al. (2006) used helicopter GPS survey measurements of beetle infested 43 
pine trees in north-central British Columbia to indicate areas of attack and non-attack 44 
stands on QuickBird 2.4 m multispectral data (blue, green, red, near-infrared). The 45 
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authors tested the ANOVA separability of four classes: sunlit non-attacked crowns, dense 1 
red-attack crowns, fader crowns, and shadowed crowns, using four QuickBird spectral 2 
bands and the NDVI and red/green spectral ratios. Spectral thresholds were used to 3 
generate a binary map of red-attack and non-attack. The results show that the ratio of the 4 
red to green QuickBird spectral bands was the most significant band combination for 5 
detecting red-attack beetle damage and the information derived from the QuickBird 6 
imagery showed good correspondence with both forest health survey data and trends 7 
derived from broader spatial resolution Landsat imagery.   8 

 9 
CONCLUSION 10 

In this Chapter, we have described the capacity of remotely sensed data to characterize 11 
and monitor vegetation condition and have demonstrated how information needs 12 
influence the choice of remotely sensed data and analysis methods. Regardless of 13 
whether the scope of the application is over large areas or at the level of individual trees, 14 
there are several logistical issues related to data acquisition and processing that must be 15 
addressed. The focus on meeting information needs using remotely sensed data poises the 16 
remote sensing community to support sustainable forest management and to play a role in 17 
informing policy makers.  18 
 19 
The use of remotely sensed data for vegetation characterization has matured rapidly from 20 
scientific investigations to operational usage. It is this very success that is producing 21 
some of the grand challenges that remain and continue to emerge. The ability to make 22 
subtle characterizations of vegetation condition and structure at fine scales has created a 23 
demand for this detailed information over large areas. As we described in this chapter, a 24 
contradiction in what is desired and what is available may develop, with the typical 25 
economies associated with remote sensing being lost if highly detailed characterizations 26 
are desired over large areas. A means of addressing this desire for large-area 27 
characterizations of finely detailed information is through sampling and modeling; 28 
whereby, fine resolution imagery (with high spatial and spectral resolution) is 29 
strategically sampled to enable large-area extrapolations with moderate spatial resolution 30 
imagery (or other spatial data sources). These and other forms of data integration will aid 31 
in meeting increasingly demanding needs for characterizing vegetation over a wide range 32 
of scales.  33 
 34 
 35 
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 TABLE CAPTIONS 

Table 1.  Example instrument-related spatial resolution ranges and levels of plant 
recognition in to be expected across a range of image scales (after Wulder, 1998). 
Note, as a heuristic, coarse, moderate, and fine spatial resolution ranges may be 
considered as pixels sided > 1000 m, 1000 – 100 m, and < 10 m, respectively. 
 

FIGURE CAPTIONS 

Figure 1. Examples of image spatial resolution over a forested scene with crowns of 
varying condition. Superimposed pixel sizes range from 30 m (Landsat) (L-
resolution model with many objects per pixel) to 4 m (IKONOS multispectral) to 1 
m (IKONOS panchromatic) (H-resolution model with many pixels per object).  
 
Figure 2. Summary of steps included in the processing flow to generate a map of 
mountain pine beetle red attack damage from two dates of Landsat TM/ETM+ 
imagery. 
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Table 1.  Example instrument-related spatial resolution ranges and levels of plant 
recognition in to be expected across a range of image scales (after Wulder, 1998). 
Note, as a heuristic, coarse, moderate, and fine spatial resolution ranges may be 
considered as pixels sided > 1000 m, 1000 – 100 m, and < 10 m, respectively. 
 

Type or Photo Scale 
Approximate Range of Spatial 

Resolution (m) 
General Level of Forest 

Vegetation Discrimination 

Coarse Resolution Satellite 
Images 

1000 (AVHRR) 
250 - 1000 (MODIS)  

Broad land cover patterns 
(regional to global mapping)  

Moderate Spatial Resolution 
Satellite Images 

30 (Landsat)  
20 (SPOT multispectral) 
10 (SPOT panchromatic) 

Separation of extensive masses of 
evergreen versus deciduous 
forests (stand level characteristics)

Fine Spatial Resolution Satellite 
images (e.g. IKONOS) 

> 1 (panchromatic); 
> 4 (multispectral) 

Recognition of large individual 
trees and of broad vegetative types

Airborne Multispectral Scanners > 0.3  
Initial identification of large 
individual trees and stand level 
characteristics 

Airborne Video > 0.04 
Identification of individual trees 
and large shrubs 

Digital Frame Camera > 0.04 
Identification of individual trees 
and large shrubs 

1:25,000 to 1:100,000 Photo 0.31 to 1.24* 
Recognition of large individual 
trees and of broad vegetative types

1:10,000 to 1:25,000 Photo 0.12 to 0.31 
Direct identification of major 
cover types and species occurring 
in pure stands 

1:2,500 to 1:10,000 Photo 0.026 to 0.12 
Identification of individual trees 
and large shrubs 

1:500 to 1:2,500 Photo 0.001 to 0.026 
Identification of individual range 
plants and grassland types 

*based upon a typical aerial film and camera configuration utilizing a 150 mm lens 
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Figure 1. Examples of image spatial resolution over a forested scene with crowns of 
varying condition. Superimposed pixel sizes range from 30 m (Landsat) (L-resolution 
model with many objects per pixel) to 4 m (IKONOS multispectral) to 1 m (IKONOS 
panchromatic) (H-resolution model with many pixels per object).  
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Figure 2. Summary of steps included in the processing flow to generate a map of 
mountain pine beetle red attack damage from two dates of Landsat TM/ETM+ imagery. 
 


