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Abstract 

Forest fragmentation can generally be considered as two components: 1) compositional 
change representing forest loss, and 2) configurational change or change in the 
arrangement of forest land cover. Forest loss and configurational change occur 
simultaneously, resulting in difficulties isolating the impacts of each component. 
Measures of forest fragmentation typically consider forest loss and configurational 
change together. The ecological responses to forest loss and configurational change are 
different, thus motivating the creation of measures capable of isolating these separate 
components. In this research, we develop and demonstrate a measure, the proportion of 
landscape displacement from configuration (Py), to quantify the relative contributions of 
forest loss and configurational change to forest fragmentation. Landscapes with 
statistically significant forest loss or configurational change are identified using neutral 
landscape simulations to generate underlying distributions for Py. The new measure, Py, is 
applied to a forest landscape where substantial forest loss has occurred from mountain 
pine beetle mitigation and salvage harvesting. The percent of forest cover and six LPIs 
(edge density, number of forest patches, area of largest forest patch, mean perimeter area 
ratio, corrected mean perimeter area ratio, and aggregation index) are used to quantify 
forest fragmentation and change. In our study area, significant forest loss occurs more 
frequently than significant configurational change. The Py method we demonstrate is 
effective at identifying landscapes undergoing significant forest loss, significant 
configurational change, or experiencing a combination of both loss and configurational 
change. 
 

1 – Introduction 

Forest loss and change in the configuration of forest land cover are often 
considered collectively as fragmentation. Forest loss and fragmentation are known to 
impact wildlife survival, habitat quality (Fahrig, 1997), and an organism’s ability to 
navigate the landscape (Schumaker, 1996).  However, species respond differently forest 
loss and configurational change (Fahrig, 1997). Studies aimed at quantifying the effects 
of forest fragmentation frequently employ landscape pattern indices (LPIs) to measure 
forest loss (compositional change) and change in the arrangement (configurational 
change) of forest on the landscape.  

Tracking changes in raw LPI values over time is frequently used to monitor forest 
fragmentation (e.g., Frohn and Hao, 2006); however, the comparison of raw LPI values is 
problematic due to interdependencies between the composition of the landscape and 
resulting configuration values (Gustafson and Parker, 1992; Hargis et al., 1998).  Current 
research suggests that comparison of raw LPI values should be avoided (Gergel, 2007), 
and new methods for comparing LPI values (e.g., Remmel and Csillag, 2003) or maps of 
land cover (e.g., Csillag et al., 2006; Remmel and Csillag, 2006) may be useful for 
adding statistical context to landscape pattern analysis.  

The continuing use of LPIs is a testament to their broad applicability (Cardille and 
Turner, 2002), ease of implementation (McGarigal and Marks, 1995; Mladenoff and 
DeZonia, 2004), and computational simplicity (McGarigal and Marks, 1995).  Forest 
fragmentation studies frequently employ LPIs as a means of quantitative analysis of 
landscape change (e.g., Gillanders et al., 2008; Nagendra et al., 2006; Serra et al., 2008), 
however a statistical framework is generally absent (Csillag and Boots, 2005). 
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Statistically significant change in fragmentation is difficult to identify with a single 
measure because of the interdependency between the amount forest loss and resulting 
change in configuration LPIs. In order to properly identify significant landscape change 
composition must be considered in the context of configuration to account for the 
dependency of configurational change on forest loss. 

To illustrate the importance of considering both composition and configuration 
when characterizing forest fragmentation consider the following example. Edge density 
(ED) is a common metric used to characterize forest fragmentation. In binary simulated 
landscapes ED has been shown to have the relationship portrayed in Figure 1, with edge 
density values peaking when the proportion of forest is 50%. If a landscape that is 
predominantly forest (T1 in Figure 1) were to undergo small (T2a in Figure 1), or large 
(T2b in Figure 1), amounts of forest loss, two markedly different landscapes would result. 
Similar values for the configuration metric ED and similar changes in ED would be 
expected in both scenarios. The problem of identical LPI values is common to many LPIs 
frequently used in fragmentation studies and can be clearly seen using simulated 
landscapes (Figure 2). In real landscapes (taken from our study area) increased variability 
in LPI is observed and the problem identical LPI at multiple composition levels is more 
apparent (Figure 2 insets).  

<< Approximate location Figure 1 >> 
<< Approximate location Figure 2 >> 

Trajectory analysis of LPI values, introduced by Cushman & McGarigal (2007), 
provides a useful framework for quantifying temporal trends in landscape pattern. 
Cushman & McGarigal identify four metrics for describing the trajectory of a landscape 
(displacement, velocity, acceleration, and divergence). We build upon the displacement 
measure, which characterizes the distance between the location of a landscape and its 
starting point in LPI attribute space. Displacement can be used to measure the magnitude 
of change a landscape has incurred, but does not describe the nature of this change. Based 
on displacement, we develop an approach for quantifying forest fragmentation that 
separately identifies landscapes undergoing significant forest loss or configurational 
change. 

The objective of this research is to introduce a method for quantifying forest 
fragmentation by isolating the separate processes of forest loss and configurational 
change using LPIs.  We introduce a metric: Py, the proportion of landscape displacement 
from configuration, which identifies significant changes as either forest loss or 
configurational change. An application using a region in British Columbia, Canada, 
which has been subject to mountain pine beetle (Dendroctonus ponderosae) infestation, 
and subsequent salvage and mitigation harvest activities is used to highlight this 
approach. Over this region we demonstrate how the Py approach improves interpretation 
of fragmentation measured with LPIs by identifying landscapes that have simply 
experienced forest loss or more complex configurational change.  
 

2 – Material and Methods 

2.1 – An Approach for Characterizing Forest Fragmentation 

2.1.1 – Displacement (Di) 
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Displacement (Di), is computed by measuring the distance between T1 and T2 
LPI values on a two-dimensional plane where the x-axis is composition, and the y-axis is 
a configuration LPI [1].  

22

yxi ddD +=               [1] 

Di is the displacement of the landscape for configuration index i, and dx is the change in 
composition between the two time periods, and dy is the change in configuration index i. 
Di is used to measure the magnitude of overall change, but is also used for the derivation 
of Py. Di calculated in this manner, exclusively considers change in a configuration LPI  
with change in composition, as has been recommended  (Gergel, 2007; Remmel and 
Csillag, 2003).  
2.1.2 – Proportion of Displacement from Configuration (Py) 

 From [1] the following relationship exists: 
222

yxi ddD +=                    [2] 

Based upon this understanding, we define the proportion of the displacement from 
configuration (Py) [3], which ranges from 0 – 1: 
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Py measures the relative amount of configurational change given the overall displacement 
(including change in forest amount). Low Py values indicate change due primarily to 
forest loss, high Py values indicate change due primarily to configurational change, and 
medium Py values indicate both forest loss and configurational change have occurred. 
2.2 – Study Area 

Located within the interior plateau of British Columbia, Canada, the Prince 
George forest district (Figure 3) is situated primarily in the Sub-Boreal Spruce 
biogeoclimatic zone (Meidinger and Pojar, 1991). White spruce (Picea glauca), 
subalpine fir (Abies lasiocarpa), and lodgepole pine (Pinus contorta) are the dominant 
forest species within this region. The Prince George forest district has experienced 
extensive timber losses due to mountain pine beetle infestation, and an increased annual 
allowable cut was prescribed as a salvage and spread mitigation strategy (British 
Columbia Ministry of Forests and Range, 2007). A 40 km by 40 km study area that was 
subject to infestation by mountain pine beetle and related management activities is the 
basis of our case study.  

<< Approximate location Figure 3 >> 
2.3 – Data 

A land cover dataset for 2000 was obtained from the Earth Observation for 
Sustainable Development of forests (EOSD) program (Wulder et al., 2003; Wulder et al., 
2008a). These data, derived from Landsat-7 ETM+ imagery with land cover products 
resampled to a spatial resolution of 25 m, represent an applicable spatial resolution for 
monitoring forest disturbance (Healey et al., 2007). The EOSD data consist of 23 detailed 
land cover classes that are developed through a logical hierarchy that enables aggregation 
into three base generalized land cover classes: forest, non-forest and other (see Wulder 
and Nelson, 2003) to support the generation of LPI. To monitor forest loss and 
fragmentation, an analogous year 2006 forest, non-forest, other classification was 
generated from Landsat imagery. The enhanced wetness difference index (EWDI) change 
detection method (Franklin et al., 2001; Franklin et al., 2002) was used to derive a binary 
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forest change map for 2006 following Han et al. (2007). The 2000 EOSD data were 
updated to 2006 conditions, converting the forest class to non-forest where forest loss 
was detected based on the EWDI method. An independent 2006 land cover classification 
was not created thereby avoiding error propagation related to the comparison of separate 
land cover classifications representing different dates (Fuller et al., 2003).  

The validity of the 2000 land cover dataset created under the EOSD program has 
been assessed in three separate studies (Remmel et al., 2005; Wulder et al., 2006; Wulder 
et al., 2007). Over all applicable EOSD classes (e.g., 23 class generalization to cover 
types) a target accuracy of over 80% was obtained using the mode class of a 3 x 3 spatial 
neighbourhood of the EOSD data (Wulder et al., 2007), which contains more detail than 
was used in this study. Accuracy was found to increase as class generalization is 
undertaken (Remmel et al., 2005). We performed an accuracy assessment on the 2006 
land cover dataset. Visual interpretation of 0.5 m digital imagery was used as validation 
data based upon an existing framework used in the EOSD program (Wulder et al., 2007). 
An overall accuracy of 91.3% was obtained, with high user (100%) and producer (87.5%) 
accuracies for the forest class. 
2.4 – Analysis 

2.4.1 – Selection of LPIs 

Six LPI (Table 1); edge density (ED), number of forest patches (NPF), area of 
largest forest patch (FMAX), mean landscape perimeter area ratio (PAR), corrected mean 
landscape perimeter area ratio (CPAR), and aggregation index for the forest class (AI), 
were selected based on principles of forest fragmentation (Haines-Young and Chopping, 
1996) and to provide examples of LPIs with varying relationships between composition 
and configuration (see Figure 2). Two analysis scales (landscapes) were chosen: 1 km (n 
= 1600) and 10 km (n = 16) non-overlapping square units. The 1 and 10 km analysis units 
represent typical scales used for examining landscape trends at the regional level (Wulder 
et al., 2008b).  

<< Approximate location Table 1 >> 
2.4.2 – Standardization of LPI Values 

 When comparing multiple LPIs it is advantageous to standardize (normalize) 
values due to differences in measuring units and scale. LPI values were standardized to 
zero mean and unit variance using [4], outlined in Kaufman and Rousseeuw (1990). 

i
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s
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z

−
=                  [4] 

Here, zki is the standardized LPI value for observation k of LPI i, xki is the original LPI 
value for observation k of LPI i, mi is the mean of LPI i, and si is a measure of dispersion 
for LPI i. We use the mean absolute deviation as the measure of dispersion as it is more 
robust than the typically used standard deviation (Kaufman and Rousseeuw, 1990). 
2.4.3 – Identifying High and Low Py Values 

 In order to identify high Py values, which indicate the dominance of 
configurational change, and low Py values, which indicate the dominance of forest loss, 
thresholds for defining high and low Py must be determined. Neutral (random) landscape 
simulations provide a logical starting point for generating distributions of Py to assist in 
delineating high and low Py values. Alternatively, distributions for Py could be generated 
using a large database of real landscapes that have undergone change. Landscape 
simulation has previously been used with LPIs to examine topics such as the relationship 
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between landscape composition and configuration (Gustafson and Parker, 1992), 
statistically compare LPI values (Remmel and Csillag, 2003),  and to develop spatially 
local measures (Boots, 2006).  

We simulated 9999 random binary landscapes (coded 1, 0) to represent 
forest/non-forest conditions. The T1 composition of each simulated landscape was drawn 
from a frequency distribution of landscape composition levels observed in our study area 
(where landscape composition was conditioned to be >5 % forest). The amount of loss 
was simulated by randomly drawing from the frequency distribution of observed forest 
loss in our study area (forest loss was conditioned to be >0 %). The drawn amount of loss 
was then randomly removed from each simulated landscape to generate 9999 T2 
landscapes of forest change. This simulation procedure is analogous to the change-
detection method used for creating the real T1 and T2 forest/non-forest data. This 
procedure was repeated for both 1 km (40 x 40 pixel) and 10 km (400 x 400 pixel) 
analysis units.  

Simulated T1 and T2 landscapes were used to generate distributions of Py for each 
configuration LPI. The randomly generated distribution of Py values can be used to 
identify statistically unexpected high or low Py values.  Based on percentiles from 
random distributions of Py, thresholds to define unexpectedly high or low Py are defined 
using a two-tailed test and α = 0.10. 
 

3 – Results 

3.1 –Distributions of Py and selection of threshold values 

 Distributions for Py from random simulated landscapes were used to derive 
threshold values for denoting significant Py results. Distributions for the 9999 random 
landscapes for the 1 km analysis unit are presented (Figure 4), along with the 
distributions of Py for the real landscapes at the 1 km scale (insets, Figure 4). The 
distributions for Py for the 10 km analysis unit are not given, but are comparable to those 
for the 1 km case. The distributions of Py show obvious peaks at Py = 0, except with the 
metric AI. Py = 0 represents landscapes where forest loss has occurred but no 
configurational change has been measured. Landscapes where Py = 0 are frequently 
associated with small levels of change. As we are using Py in an exploratory role, we 
separated Py = 0 into a unique class and derive thresholds for significant high and low Py 
from the distribution with these cases removed. Thus, four classes are reported: Py = 0, 
significant low Py, significant high Py, and not significant.  

<< Approximate location Figure 4 >> 
 A liberal α value (α = 0.10) was chosen for illustrative purposes. Values in the 
upper 5% of the distribution are denoted as significant high Py and those in the lower 5% 
of the distribution are denoted as significant low Py. The threshold values for α = 0.10 
along with threshold values for α = 0.05 and α = 0.20 are given, to show the impact of 
this parameter (Table 2) for both the 1 km and 10 km analysis scales. Across scales of 
analysis, significant thresholds for Py do not differ greatly. 

<< Approximate location Table 2 >> 
3.2 Py results 

 Results for Py are reported for each of the six selected LPI at the 1 km (Figure 5) 
and 10 km (Figure 6) analysis scales.  At the 1 km scale it is interesting to compare the 
number of significant results for different LPI. 1231 out of 1600 1 km analysis units 
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experienced change. AI had the largest number of significant results, and FMAX the 
lowest (Table 3).  

<< Approximate location Figure 5 >> 
<< Approximate location Figure 6 >> 
<< Approximate location Table 3 >> 

Areas where Py is significantly high in all or most of the selected metrics are 
associated with configurational change (Figure 7). Areas where Py = 0 or Py is 
significantly low in all or most of the selected metrics indicate areas simply experiencing 
forest loss (Figure 7). Areas where Py is predominantly not significant are interpreted to 
be undergoing a combination of forest loss and configurational change. 

<< Approximate location Figure 7 >> 
 

4 – Discussion 

Empirical studies have demonstrated explicit links between wildlife occurrence 
and forest fragmentation (e.g., habitat uptake by American marten, Hargis et al., 1999). 
Increasingly, conservation research relies on implicitly defined relationships between 
wildlife processes and fragmentation (e.g., whether an organism is positively or 
negatively impacted by fragmentation). Current international forest management policy 
now requires reporting on forest fragmentation, as it is considered an indicator of 
biological diversity (Montreal Process Liaison Office, 2000). The desire to use forest 
cover and pattern information as a quantitative indicator of forest biodiversity originates 
from a lack of consensus on ideal indicator species and the cost effectiveness of remote 
sensing methods (Noss, 1999). Single time LPI measurements have been used for initial 
reporting (Riitters et al., 2004; Wulder et al., 2008b), but effective methods for 
monitoring the temporal changes in forest loss and fragmentation, such as Py, are required 
to evaluate forest management practices and change.   

Research has shown that the environmental response to habitat loss and 
fragmentation are different (Fahrig, 1997). Forest loss can lead to reduced species 
diversity  (Hill and Curran, 2001), while configurational changes have been linked to 
increased wildlife-vehicle collisions (Gonser et al., 2009). Separating the components of 
loss and configurational change is difficult given that, in general, configurational change 
is driven by some form of habitat (e.g., forest) loss. This has led researchers to explore 
the use of density (composition) based indicators for monitoring forest fragmentation 
(e.g., Wickham et al., 2008). However, these indicators are insensitive to properties 
related to configurational change (e.g., increased edge and number of patches, decreasing 
patch areas and connectivity). Distinct configurational changes resulting from 
deforestation imply different landscape altering processes, not detectable by simply 
monitoring forest loss (Mertens and Lambin, 1997). Using the mountain pine beetle case 
study, we demonstrate the ability of the metric Py to differentiate between landscapes 
primarily experiencing forest loss (Py = 0 and significantly low Py), concurrent forest loss 
and configurational change (Py not significant), and those primarily experiencing 
configurational change (significantly high Py).  

Landscape simulation was used to generate distributions for Py for six LPI at two 
analysis scales. For five of the six LPI the distribution from 9999 simulated landscapes 
was comparable to the observed distribution (see Figure 4). For the AI metric however, 
the simulated distribution of Py was noticeably different from the observed distribution. It 
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is likely that the randomization approach used for selecting thresholds is inappropriate for 
use with AI as the distribution in the real case was markedly different from the simulated 
landscapes.  

Using a large database of changed landscapes at multiple scales, or simulating 
spatial aggregation in the randomization procedure (see Remmel and Csillag, 2003), 
could improve significance threshold selection. For example, use of the AI metric here 
was limited due to the extreme differences in the distribution of Py in the real and random 
scenarios. If the selection of significant Py was based on a more realistic distribution for 
the metric AI, significant results would be less frequent and have more relevance. 

This research implemented two analysis scales (1 km and 10 km) suitable for 
regional monitoring of forest loss and fragmentation. Using the selected data grain (25 
m), analysis units smaller then 1 km tend towards forest patch or no patch, while those 
larger then 10 km offer reduced interpretability due to various landscape altering 
processes occurring simultaneously within the analysis unit (e.g., road creation and forest 
harvest). The size of the analysis unit impacts resulting values and interpretation of Py. 
The discrepancy in results shown originates from a common problem in spatial analysis 
methods known as the modifiable areal unit problem (MAUP) (Jelinski and Wu, 1996; 
Openshaw, 1984). LPIs are well known to be impacted by the MAUP through choices of 
data grain and analysis unit (Lausch and Herzog, 2002; Wu, 2004) and as it is derived 
from LPIs, Py is too impacted by the MAUP. Their currently exists no solution to the 
MAUP, however a multi-scale approach is warranted when implementing Py to improve 
interpretation of results and limit scale related bias. 
 

5 – Conclusions 
Testing for significance with Py is appropriate using neutral landscapes when the 

relationship between configuration and composition (e.g., Figure 2) of real landscapes is 
similar to simulated landscapes. When this is not the case, such as with the AI metric, Py 
results are less useful. Our example focused on six LPIs, and we tried to select those with 
unique distributional properties (see Figure 2). Future work should explore Py with other 
LPIs to further examine its usefulness. In the interim, Py can still be a useful measure of 
change enabling hypothesis testing against an expectation of random change. 

As land cover datasets increase in availability, methods that extract relevant 
information from categorical data are required. LPIs are useful in characterizing land 
cover patterns, and methods that improve temporal comparisons of LPIs are necessary. Py 
is successful at distinguishing landscapes impacted by forest loss and/or configurational 
change. Density based indicators of forest fragmentation may be appropriate in 
landscapes where Py is small; however, are limited in capturing important configurational 
changes. In a mountain pine beetle case study we demonstrate the ability of Py to identify 
landscapes suffering primarily from forest loss and those experiencing more complex 
configurational change. Raw LPI values are difficult to interpret when substantial forest 
loss has occurred (e.g., with salvage harvesting). The Py approach is able to identify those 
regions that have undergone significant forest loss which will have different ecological 
consequences from those undergoing significant configurational change.  
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Table 1: Six selected LPIs and their formulation. LPIs were calculated using APACK 
version 2.23 (see Mladenoff and DeZonia, 2004). 

LPI Formulation Notes 

Edge density  

(ED) A

P
ED =  

Number of forest patches 

(NPF) fnNPF =  

Area of largest forest 
patch (FMAX) 

][max faFMAX =  

Mean landscape perimeter 
area ratio (PAR) 

n

a

p

PAR

n

j j

j















=

∑
=1

 

Corrected mean landscape 
perimeter area ratio 
(CPAR) 

n

a

p

CPAR

n

j j

j















=

∑
=1 4π

 

Aggregation index forest 
class (AI) 

][max ff

ff

e

e
AI =  

P = total perimeter 

A = landscape area 

n = number of patches 

f = forest patch 

a = area of patch 

p = perimeter of patch 

eff = adjacent edges of class f and itself 
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Table 2: Comparison of threshold values for denoting significant Py using α = 0.05, 0.10, 
and 0.20, for 1 km (top) and 10 km (bottom) analysis units. Note: α = 0.10 was used in 
this study. 

α = 0.05 α = 0.10 α = 0.20 
1 km 

low high low high low high 

ED 0.0064 0.9254 0.0218 0.9165 0.0811 0.8997 

NPF 0.0012 0.9629 0.0026 0.9386 0.0076 0.9044 

FMAX 0.0016 0.8815 0.0094 0.8104 0.0854 0.7059 

PAR 0.0073 0.9790 0.0290 0.9550 0.1103 0.9118 

CPAR 0.0145 0.9752 0.0498 0.9521 0.1692 0.9063 

AI 0.2915 0.7248 0.3747 0.6390 0.4322 0.5685 

α = 0.05 α = 0.10 α = 0.20 
10 km 

low high low high low high 

ED 0.0019 0.8678 0.0090 0.8612 0.0331 0.8447 

NPF 0.0003 0.9713 0.0005 0.9499 0.0010 0.9276 

FMAX 0.0111 0.8985 0.0397 0.8919 0.1265 0.8817 

PAR 0.0048 0.9268 0.0188 0.9145 0.0690 0.8872 

CPAR 0.1344 0.9401 0.3206 0.9287 0.3210 0.8953 

AI 0.4918 0.5084 0.4936 0.5065 0.4951 0.5048 
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Table 3: Number of results where Py = 0, Py significantly low, and Py significantly high 
for each selected LPI using a 1 km analysis unit. 

Metric Py = 0 Sig. Low Sig. High 

ED 17 215 59 

NPF 333 0 33 

FMAX 75 11 15 

PAR 0 211 95 

CPAR 6 296 110 

AI 39 645 262 
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Figure 1: Hypothetical trajectory of a landscape experiencing different amounts of forest 
loss but with identical changes in LPI value. For interpretation consider black – forest, 
and white – non-forest. 
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Figure 2: Relationship between landscape composition and configuration LPI for six 
selected metrics. Main distributions were derived from 1000 simulated binary random 
landscapes. Inset distributions were derived from real landscapes in our study area. 
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Figure 3: Study area (40 km by 40 km) located within the Prince George forest district, 
British Columbia, Canada. 
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Figure 4: Distribution of Py for each of the six selected LPIs using 9999 simulated binary 
random landscapes undergoing random change. Inset distributions are from 1231 real 
landscapes in our study area that have undergone change. A) edge density – ED, B) 
number of forest patches – NPF, C) area of largest forest patch – FMAX, D) mean 
landscape perimeter area ratio – PAR, E) corrected mean landscape perimeter area ratio, 
and F) aggregation index forest class – AI. 
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Figure 5: Maps of significant Py values with 1 km analysis unit. Significant values were 
identified using simulated distribution for Py and α = 0.10. A) edge density – ED, B) 
number of forest patches – NPF, C) area of largest forest patch – FMAX, D) mean 
landscape perimeter area ratio – PAR, E) corrected mean landscape perimeter area ratio, 
and F) aggregation index forest class – AI. 
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Figure 6: Maps of significant Py values with 10 km analysis unit. Significant values were 
identified using a simulated distribution for Py and α = 0.10. A) edge density – ED, B) 
number of forest patches – NPF, C) area of largest forest patch – FMAX, D) mean 
landscape perimeter area ratio – PAR, E) corrected mean landscape perimeter area ratio, 
and F) aggregation index forest class – AI. 
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Figure 7: Counts of Py = 0, significantly low Py, and significantly high Py, for the 1 km 
(top) and 10 km (bottom) analysis units. A value of 0 indicates that Py was not significant 
in any of the selected LPIs, a value of 5 indicates that Py was significant in five of the 
selected LPI. There were no instances of Py significant for all six selected LPI.  
 


