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Aboveground large tree mass estimation in
a coastal forest in British Columbia using

plot-level metrics and individual tree detection
from lidar

Colin J. Ferster, Nicholas C. Coops, and J.A. (Tony) Trofymow

Abstract. Plot-level large tree and snag aboveground mass (TSAM) in a second-growth coastal Douglas-fir forest stand in
British Columbia was estimated using light detection and ranging (lidar) combining metrics from individually identified
trees and snags and plot-level lidar canopy return density. Individual trees were identified using the tree variable window
(TreeVaW) algorithm, which identifies tree crowns using a circular moving filter and the relationship between tree height
and crown diameter. A multiple linear regression model was then developed to predict plot-level TSAM as determined from
ground plots. The predicted heights of individually identified trees were very accurate (r2 = 0.92, SEE = 0.69 m). Plot
TSAM was predicted with an r2 = 0.75 and SEE = 29.68 Mg/ha using lidar density and height metrics alone, and a slightly
lower r2 = 0.71 and SEE = 31.95 Mg/ha using lidar density metrics with individually identified tree heights. Using individual
tree metrics did not improve plot-level TSAM estimation, since a large component of TSAM is contained in complex
canopy levels where individual trees are difficult to identify.

Résumé. On a estimé la biomasse aérienne des gros arbres et des chicots (« large tree and snag aboveground mass »
(TSAM)) au niveau de la parcelle dans une forêt côtière de pins Douglas de seconde venue en Colombie-Britannique à
l’aide de données lidar (détection et télémétrie par ondes lumineuses) en combinaison avec des mesures d’arbres et de
chicots identifiés individuellement et de mesures de densité de retours lidar du couvert au niveau de la parcelle. Les arbres
individuels ont été identifiés à l’aide de l’algorithme TreeVaW (« tree variable window ») qui permet d’identifier les
couronnes d’arbres en utilisant un filtre circulaire mobile et de la relation entre la hauteur des arbres et le diamètre de la
couronne. Un modèle de régression linéaire multiple a ensuite été développé pour prédire la valeur de TSAM au niveau de
la parcelle telle que déterminée à partir des parcelles échantillons au sol. Les hauteurs estimées des arbres identifiés
individuellement étaient très précises (r2 = 0,92, SEE = 0,69 m). Les valeurs de TSAM au niveau de la parcelle ont été
estimées avec une valeur de r2 = 0,75, SEE = 29,68 Mg/ha en utilisant les mesures de densité et de hauteur lidar seules, et
une valeur légèrement plus faible de r2 = 0,71, SEE = 31,95 Mg/ha en utilisant les mesures de densité lidar avec les hauteurs
d’arbres identifiés individuellement. L’utilisation des mesures d’arbres individuels n’a pas amélioré l’estimation de TSAM
au niveau de la parcelle étant donné qu’une partie importante de TSAM est contenue dans les niveaux complexes du couvert
où les arbres individuels sont difficiles à identifier.
[Traduit par la Rédaction]
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Aboveground forest carbon (C) stocks are closely linked to
canopy height and stem size. Carbon composes approximately
half of the dry mass of the live vegetation in forests (biomass),
including trees (trunks, branches, foliage, and roots), shrubs,
herbs, mosses, and decaying forest detritus (snags (i.e.,

standing dead trees), woody debris, forest floor litter, and
humus) (Chapin et al., 2006; Landsberg and Waring, 1997).
National reporting requirements for the United Nations
Framework Convention on Climate (UNFCC), as well as
national- and regional-level policy decisions (Gillis et al.,
2005), make the timely, accurate, and cost-effective
measurement of forest biomass a common goal. Light detection
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and ranging (lidar) is a relatively new remote sensing
technology that is well suited to describing the vertical
structure of forest canopies (Coops et al., 2007; Wulder et al.,
2008) and has significant potential to measure aboveground
forest biomass.

Lidar data are commonly acquired from an airborne platform
equipped with a lidar instrument that emits pulses of infrared
light in a scanning pattern, measuring the time for an emitted
pulse to reflect from ground surfaces and return to the sensor.
Using accurate positional information obtained from a global
positioning system (GPS) and detailed data on aircraft
orientation from an inertial measurement unit (IMU), the height
and position of features on the ground can be determined very
accurately. Small-footprint lidar devices often use beam
footprints approximately 20 cm in diameter with very close
spacing (�1.5 m between returns). Discrete-return lidar devices
may record up to five returns from an emitted pulse, with first
returns typically incident from branches, foliage, and stems at
the top of the canopy, subsequent returns originating from
objects within the canopy, and the final return originating from
the underlying terrain (Wulder et al., 2008). As part of national
operational forest inventories, lidar data have been applied to
measure plot-level, aboveground mass of trees including
trunks, branches, and foliage of living and dead standing trees
(Næsset, 2004). To predict plot-level aboveground biomass,
inferential relationships are often applied using descriptive
statistics from the point cloud of returns as predictor variables,
including percentiles of return heights, and density of returns at
height intervals within the canopy (Næsset, 2004; Lefsky et al.,
1999; Næsset and Gobakken, 2008).

In contrast to approaches that use lidar return height and
density metrics to estimate plot-level biomass, high-density
small-footprint lidar data have also been used to identify
individual tree crowns, measure individual tree height, and
subsequently estimate individual tree biomass (Hyyppa et al.,
2001; Popescu and Wynne, 2004; Popescu, 2007; Persson et al.,
2002). For trees that are individually identified, height
measurements from lidar data have accuracy approaching that
of ground-based measurements commonly made using vertex
hypsometers, but covering much broader spatial extents
(Andersen et al., 2006; Persson et al., 2002). As a result,
biomass and volume have been accurately estimated using
allometric relationships using height and crown size derived
from lidar data (Hyyppa et al., 2001; Persson et al., 2002;
Popescu, 2007).

Thus, lidar data have successfully been used to measure
forest biomass using two broad methods: (i) the estimation of
plot-level biomass using return heights and densities
summarized within a forest stand or plot, and (ii) the estimation
of individual tree biomass by identifying individual trees and
using lidar height and crown dimensions. Despite these
successes, however, few studies have combined these
approaches by first identifying individual trees and then
combining these tree-level lidar results with plot-level lidar
metrics of height and density to calculate plot-level
aboveground biomass. In this short communication, we develop

and apply this approach to estimate large tree and snag
aboveground mass (total live and dead standing) (TSAM) in a
forest in coastal British Columbia and compare the predictions
with measurements derived from Canadian National Forest
Inventory (NFI) style ground plots (NFI, 2004).

Methodology
Study site and ground plots

The study site is located in the Oyster River watershed on the
east coast of Vancouver Island, near Campbell River, British
Columbia, Canada, within the Coastal Western Hemlock very
dry maritime biogeoclimatic subzone (CWHxm) (Pojar et al.,
1991). The site is one of three flux tower sites in coastal British
Columbia being studied as part of the Canadian Carbon Program
(CCP) Fluxnet Canada Research Network (FCRN) (available
from www.fluxnet-canada.ca/home.php?page=home&setLang=
en). This second-growth stand was established by planting in
1949 following clearcut harvesting and broadcast burning of
the original old-growth stand. The overstory is dominated by
Douglas-fir (Pseudotsuga menziessi var. menziessi) with
smaller amounts of western hemlock (Tsuga heterophylla),
western red cedar (Thuja plicata), and red alder (Alnus rubra).
Though the site is mapped as a single forest cover type and site
index by forest companies operating in the area, the sloping
topography (260–470 m elevation) and disturbance history
have resulted in finer scale variation in forest cover across the
33 ha study site.

In the autumn of 2002, field measurements were made at 12
ground plots following NFI guidelines (NFI, 2004) to
determine the range of stand characteristics at the study site.
Plots were clustered in groups of three, systematically located
at representative sites according to the range of mapped forest
cover and ecosite series within the forest area estimated in 2002
to be contributing to flux tower measurements (Humphreys et
al., 2006). Live and dead trees (snags) greater than 9.0 cm
diameter at breast height (DBH, measured 130 cm above
ground) were measured for species, height, diameter, height to
live crown, canopy class (dominant, codominant, intermediate,
and suppressed), and stem location in 11.28 m radius circular
large tree plots (0.04 ha). Tree height measurements were made
using a vertex hypsometer, and stem mapping was completed
using a compass and vertex hypsometer. In some cases, in
dense homogeneous parts of the stand, half plots (0.02 ha) were
measured when representative of stand conditions. All
measured trees within the full extent of each plot were used for
assessment of TreeVaW measurements of stem location and
height. For consistency in this study, all full plots were then
divided into half plots, and only half of the plot, selected at
random, was used to estimate plot-level tree and snag mass.
The same plot boundaries that were used for calculation of
plot-level tree and snag mass from biometric data were also
used for calculation of plot-level TreeVaW metrics and lidar
return metrics. Small trees (0.5–9.0 cm DBH) were measured
on the large plot or in a nested 3.99 m radius small tree plot but
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were not used in this analysis, which focused on large trees
only. Field data were submitted to the NFI database
compilation program for calculation of large tree and snag
aboveground mass (stem, bark, branches, and foliage of live
trees; stem, bark, and branches of standing dead trees) using
published national species-specific allometric equations (NFI,
2004). Estimates for each tree were then summed within each
plot to determine plot-level large tree and snag aboveground
mass (TSAM).

Individual tree detection from lidar data

Lidar data were collected on 8 June 2004 with a beam
footprint of 0.19 m and ground point sampling density vendor
reported scene-wide average of 0.7 returns/m2 (Coops et al.,
2007). Within the sample plots, actual return density ranged
between 1.8 and 7.3 returns/m2 (mean = 5.3 returns/m2,
standard deviation = 1.9 returns/m2). A 50 cm digital elevation
model (DEM) and a canopy height model (CHM) were built
using Fusion v2.6 software (Remote Sensing Applications
Centre, USDA Forest Service, Salt Lake City, Utah). Individual
trees were detected from the canopy height model using
TreeVaW v1.2 software (Popescu et al., 2003), which identifies
high points in the CHM that are likely to be tree tops using local
maximum filtering, with a circular window sized
proportionally with the relationship between tree height and
crown diameter (Popescu and Wynne, 2004; Popescu et al.,
2002). To parameterize TreeVaW for Douglas-fir, a regression
model was developed from live tree height and crown diameter
data available in Coops et al. (2007).

Lidar aboveground mass estimation

Two sets of predictor variables were used to estimate TSAM:
(i) metrics calculated from lidar returns within each plot,
including height of percentiles of nonground returns (10th,
20th, 30th, 40th, 50th, 60th, 70th, 80th, 90th, and 95th
percentiles, or P10–P95, respectively), and metrics from
measurements of individually identified trees; and (ii) the
canopy return density over a range of relative heights, i.e.,
proportion of laser returns in 10 even height intervals (D0, D1,
D2, D3, D4, D5, D6, D7, D8, D9) between 0.5 m (D0) and the
95th (D9) percentile of maximum height (Næsset, 2004;
Næsset and Gobakken, 2008). Summary descriptive statistics
for the TreeVaW-identified trees (TVT) included maximum
height (MaxHt), minimum height (MinHt), and variance in
heights (HtCV) and stem density (Den) for trees ≥ 28 m height
in each ground plot (the mean height of trees with codominant

canopy status). All predictor and target variables were
transformed using the natural logarithm to improve linearity. A
linear multiple regression model was developed based on
maximum coefficient of determination r2 selection. Variables
were not transformed any further (e.g., principal component
analysis), making explanation of lidar measurements in terms
of stand structure more straightforward. A correlation matrix
was used to test for models with combinations of variables with
high collinearity. To reduce the bias often present in
logarithm-transformed allometric equations, a correction factor
was applied to all variables when back-transforming to original
units (following Sprugel, 1983). All statistical analysis was
performed using the Statistical Analysis System (SAS) version
9 (SAS Institute Inc., Richmond, Va.).

Results
The relationship between stem locations identified by

TreeVaW and live stem locations measured in the field is shown
in Table 1. Initially, a comparison of all trees, regardless of
height, was undertaken. Second, a minimum height cutoff of
28 m was applied to both TreeVaW-identified trees and live
inventory measured trees, and the relationship was reassessed.
As expected, the results indicate that many of the smaller trees
lower in the canopy were not consistently detected using
TreeVaW because of the dense overstory canopy structure.
Also, TreeVaW parameterization uses only live trees, and only
three of 117 dead standing trees were correctly identified.
Restricting our analysis to live dominant and codominant trees
(>28 m) resulted in a greater proportion of correctly identified
trees.

A strong linear relationship (r2 = 0.92, and standard error of
the estimate SEE = 0.69 m) was observed for correctly
identified trees greater than 28 m in height between tree height
identified by TreeVaW and height measured in ground plots
(Figure 1), though the TreeVaW-predicted heights deviated
from a 1:1 line with a constant bias such that TVT heights were
about 1 m less than ground plot measured tree heights.

Correlations between TSAM and predictor variables from
lidar (Figure 2a) and TreeVaW (Figure 2b) showed that the
lidar return density at 60% maximum height (D6) had the
highest correlation with TSAM and that correlations with all
TreeVaW variables were low.

The two most applicable multiple linear regression models
(highest r2 and lowest SEE) used either the best plot-level lidar
variables alone (model 1) or the best TreeVaW plot summary
individual tree variables in combination with plot-level lidar
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GP (no. of stems)
One GP : one TVT
(% of GP stems)

Many GP : one TVT
(% of GP stems)

Unmatched GP
(% of GP stems)

Zero GP : one TVT
(no. of unmatched
TVT stems)

All trees 302 12 38 50 17
Trees ≥ 28 m 105 41 27 32 7

Note: Matches occur when the crown radius of a tree located by TreeVaW encompasses a stem mapped tree in a ground plot.

Table 1. Matches between TreeVaW-identified trees (TVT) and ground plot measured trees (GP).



variables (model 2) (Table 2). For both models, a variable
representing lidar canopy return density at 60% maximum plot
height (D6) was chosen. For the lidar plot-level model, a
variable representing crown height was also chosen (P80, the
80th percentile of the height of nonground returns). The
Pearson’s correlation coefficient between the two variables in
the model was 0.49, indicating that collinearity was not a
problem for this model. A plot of the model 1 TSAM estimates
demonstrated it deviated from the 1:1 line with variable bias
such that it overestimated TSAM at low levels (Figure 3a). For
model 2, in addition to D6, the second variable selected was
maximum height of TreeVaW-identified trees in each ground
plot (TVTMaxHt). The Pearson’s correlation coefficient between
the two variables in the model was 0.51, indicating that
collinearity was not a problem for this model. A plot of the
model 2 predicted TSAM demonstrated it deviated from the 1:1
line with variable bias such that it overestimated TSAM at low
levels (Figure 3a). The variable bias in both models is likely
the result of the use of logarithm-transformed data for the
regression.

Discussion
TreeVaW software was used to identify the locations and

heights of live trees from lidar data collected over a Douglas-fir
dominated stand on eastern Vancouver Island, British
Columbia, Canada. The detection algorithm was initially
developed for tree identification in plantation-like stands of
loblolly pine (Pinus taeda) in the southeastern United States,
often using high return density lidar data. In these complex,
multilayered stands of the Pacific Northwest, multiple trees
often compose canopy units that are challenging to separate,
resulting in multiple stems falling within a single

lidar-delimited crown. As well, in this stand, standing dead
trees contribute more than 10% of the overall large tree mass;
however, TreeVaW is not parameterized to measure these, and
few were accurately detected. When our analysis was restricted
to taller live trees in the canopy, the TreeVaW algorithm was
much more successful in identifying individual trees, and
height was determined with considerable accuracy.

Measures of canopy return density were more successful
than measures of height for predicting TSAM. On its own, the
proportion of lidar returns at 60% of maximum tree height and
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Figure 2. (a) Pearson’s correlation coefficients between TSAM and
lidar plot metrics (height percentiles P10–P95 as black line with
solid circles; height densities D0–D9 as black line with solid
squares), and height percentiles (P0–P10) and D6 (the most highly
correlated plot-level metric; grey line with diamonds). (b) Pearson’s
correlation coefficient between TSAM and TreeVaW metrics (grey
bars) and between TreeVaW metrics and D6 (most highly correlated
plot-level metric; grey lines).

Figure 1. For trees greater than 28 m in height, tree heights measured
using TreeVaW matched tree heights measured in ground plots, with r2 =
0.92 and SEE = 0.69 m. The 95% confidence interval of the prediction is
given by the light grey lines, and the 1:1 line by the grey dots.



higher (D6) explained 65% of the variation in TSAM. Height
percentile measures were less successful individually, with
lower percentiles explaining more of the variation in TSAM,
and were highly correlated with measures of canopy density.
As a result, multiple linear regression models with two

variables were examined in an attempt to explain more of the
variation in TSAM.

Two multiple linear regression models were developed for
plot-level TSAM. The first model selected predictor variables
for lidar return height (P80) and return density (D6). The second
model selected predictor variables for TreeVaW maximum
height (TVTMaxHt) and lidar return density (D6) and explained
72% of the variance. The 80th percentile return height
performed slightly better than TVTMaxHt, explaining 75% of the
variance. For both models, canopy return density was the most
significant variable for determining TSAM, with a less
significant relationship between TVTMaxHt in the plot and
TSAM. For this study, individual tree measurements did not
improve TSAM estimates. This is most likely due to a number
of the TSAM components not being well captured using
individual tree based approaches. A study by Falkowski et al.
(2008) shows that in conifer forests with high canopy cover,
individual tree detection algorithms commonly make errors of
omission, such as missing subdominant stems or clumping
multiple stems together into single canopy objects. As a result
of these trees not being measured properly, the accuracy of
TSAM estimations in conifer forest with high canopy cover
may be limited. For example, in this study, TSAM is distributed
throughout the canopy in dead standing trees (not measured by
TreeVaW), closely spaced shoulder-height trees (as indicated
by the success of the P80 lidar metric), and very tall live
standing dominant and codominant trees. Individual tree based
approaches may be more successful for plot-level estimates of
TSAM in stands where canopy units are more distinct, such as
in conifer forests with less dense canopy cover. Given our
successes in estimating TSAM despite difficulties detecting
individual suppressed or dead standing trees, for other studies
seeking to estimate TSAM in stands with complex canopies, it
may be more economical to collect lower density lidar data and
utilize plot-level lidar return metrics.

This study demonstrates that it is practical to apply published
techniques for individual tree detection and canopy return
density using small-footprint discrete return lidar data and use
the results to estimate large tree and snag aboveground mass.
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