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Abstract. A primary activity required to support sustainable forest management is the detection and mitigation of forest

disturbances. These disturbances can be planned, through urbanization and harvesting, or unplanned, through insect

infestations or fire. Detection and characterization of disturbance types are important, as different disturbances have

different ecological effects and may require unique managerial responses. As such, it is necessary for forest managers to

have as complete and current information as possible to support decision making. In this study, we developed a

framework to automatically detect and label disturbances derived from remotely sensed images. Disturbances were

detected through traditional image differencing of medium-resolution imagery (Landsat-7 Enhanced Thematic Mapper

Plus (ETM+), resampled to 30 m) but were refined and augmented through comparison with edge features extracted from

high spatial resolution satellite imagery (Indian Remote Sensing (IRS) satellite 1C panchromatic imagery, resampled to

5 m). By incorporating spectral information, derived composite band values (tasselled cap transformations), spatial and

contextual information, and secondary datasets, we were able to capture and label disturbance features with a high level

of overall agreement (91%). Areal features, such as harvest areas, are captured and labelled more reliably than linear

features such as roads, with 92% and 72% agreement when compared with control data, respectively. By incorporating

rule-based disturbance attribution with remote sensing change detection, we envision the update of land cover databases

with reduced human intervention, aiding more rapid data integration and opportunities for timely managerial responses.

Résumé. La détection et l’atténuation des perturbations dans une forêt constituent une étape essentielle pour assurer la

gestion durable de la forêt. Ces perturbations peuvent être planifiées, comme dans le cas de l’urbanisation et de

l’exploitation forestière ou encore, non planifiées suite à des infestations par les insectes ou des incendies. La détection et

la caractérisation des divers types de perturbations sont importantes étant donné que ces différentes perturbations

entraı̂nent des effets écologiques différents et peuvent exiger des réponses qui leur sont propres en termes de gestion.

Ainsi, il est nécessaire pour les gestionnaires de la forêt de disposer de l’information la plus complète et la plus à jour

possible pour soutenir le processus de prise de décision. Dans cette étude, on développe une méthodologie pour détecter et

étiqueter automatiquement les perturbations dérivées des images de télédétection. Les perturbations ont été détectées en

utilisant la méthode traditionnelle de différenciation d’images à moyenne résolution (images ETM+ (« Enhanced

Thematic Mapper Plus ») de Landsat-7, ré-échantillonnées à 30 m), quoique celles-ci aient été raffinées et améliorées par

le biais d’une comparaison avec les caractéristiques de contours extraites d’images satellite à haute résolution spatiale

(images panchromatiques du satellite IRS-1C (« Indian Remote Sensing satellite 1C »), ré-échantillonnées à 5 m). En

intégrant l’information spectrale, les valeurs des bandes composites dérivées (espace indiciel transformé-TCT),

l’information spatiale et contextuelle ainsi que des ensembles secondaires de données, il a été possible de capturer et

d’étiqueter les caractéristiques des perturbations avec un niveau global de concordance élevé (91 %). Les caractéristiques

spatiales, comme la surface des zones de coupe, sont capturées et étiquetées de façon plus fiable que les caractéristiques

linéaires telles que les routes, avec une concordance de 92 % et de 72 % respectivement comparativement aux données de

contrôle. En intégrant l’attribution des perturbations obtenue à l’aide d’un système à base de règles avec les résultats de la

détection des changements par télédétection, on envisage de réaliser la mise à jour des bases de données du couvert avec

une intervention humaine minimale facilitant ainsi l’intégration plus rapide des données tout en accroissant les capacités

de réponse des gestionnaires à court terme.

[Traduit par la Rédaction]

Introduction

As demands placed on the environment by anthropogenic

activities continue to increase, society is growing increas-

ingly aware of the impacts such activities have on the

environment (McFarlane and Boxall, 2000; Schneider et al.,

2003; Nielsen et al., 2004). To effectively manage natural

resources, land managers require timely information quan-
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tifying the location, size, and cause of environmental

disturbance related to the extraction of natural resources

(e.g., mining and forestry) and human development (Hayes

and Sader, 2001; Desclee et al., 2006). Although the

detection of disturbances is integral to proper ecosystem

management, understanding the underlying cause of the

change is often equally important because different disturb-

ance types often yield different ecologic effects (Zager et al.,

1983; Archibald et al., 1987; Mace et al., 1996).

Indeed, spatially explicit disturbance detection is of

particular importance to natural resource management.

Remotely sensed data are frequently employed to develop

spatially explicit data identifying areas experiencing envir-

onmental change (Coppin and Bauer, 1996; Coppin et al.,

2004; Radke et al., 2005). Many remote sensing based

change detection approaches are considered operational,

depending on the type of imagery used and the disturbances

being investigated (Cohen et al., 1998; Woodcock et al.,

2001). Medium spatial resolution satellite sensors (i.e., those

with pixels sided 10–100 m) capture land cover and

disturbance information at a spatial scale relevant to human

activities. Further, medium spatial resolution sensors often

have large image extents that reduce the need for multi-

image mosaicking and normalization which is particularly

useful for monitoring of environmental change across large

areas (Wulder et al., 2008). Landsat data, for example, are

commonly used to detect and monitor ecosystem change

and have proven useful for the detection of areal

disturbances (such as forest harvesting and fires) (e.g.,

Cohen et al., 2002). However, detecting changes that are

linear in nature (e.g., road construction) is often challenging

with medium spatial resolution data due to the lack of

requisite spatial precision (Klang, 1998; Zhang et al., 2002;

Linke et al., 2008).

Detecting and labelling disturbances (hereafter termed

change attribution) are also integral aspects of change

modelling. Coppin et al. (2004) describe change attribution

as a process separate from disturbance detection; the

categorization of disturbances should be considered an

independent procedure whereby an attribution framework

can function regardless of the change detection method.

Change attribution is often performed manually, ultimately

limiting the timeliness and availability of information.

Furthermore, manual processing of remotely sensed

imagery is a subjective process that can result in large

inter-interpreter differences in derived products (Hyyppa et

al., 2000; Culvenor, 2003). Change attribution via remote

sensing has focused primarily on employing information

quantifying the spectral responses related to various types of

change (Fung and LeDrew, 1988; Häme et al., 1998).

Spectral information is useful; however, remotely sensed

data contain additional information that may improve

change attribution. For example, metrics quantifying the

shape of image features (e.g., area, perimeter, elongated-

ness) have been successfully employed to improve remote

sensing based land cover classifications (Lewis et al., 1997;

Frohn, 2006). As shape is often related to disturbance type,

these metrics are expected to aid in the attribution of change

(Ludeke et al., 1990).

A change detection and attribution framework integrat-

ing spectral reflectance values, contextual information, and

shape-based attributes could aid in the quantification of

environmental change and ultimately lead to improved

management responses and change mitigation procedures.

The current study demonstrates a novel approach for the

automated detection and categorical attribution of remotely

sensed disturbance features, with a specific focus on detecting

and attributing changes in forest cover related to timber

harvesting, oil and gas exploration (i.e., well-site develop-

ment), and transportation development (i.e., road construc-

tion). This is achieved via a three-step data-processing

procedure. In the first step, forest disturbances are extracted

using standard change detection methodology applied to

medium spatial resolution imagery (Landsat). Second, higher

spatial resolution Indian Remote Sensing (IRS-1C) imagery

is used to extract edges to define and extract linear features.

Third, spatial and spectral characteristics of remotely sensed

change events are integrated with logical rules to produce

disturbance-type labels (e.g., harvest, well site, and road).

Through this three-step process, we build on existing

knowledge and demonstrate an enhancement to current

change detection methods with change feature augmentation

(possible through integration with higher spatial resolution

imagery) and attribution protocols.

Background

Extending a classification to include attributes concerning

shape adds additional information that is not readily

available from spectral reflectance data alone. Shape indices

can be grouped into single- and multiple-parameter indices.

Single-parameter indices are conceptually simpler but are

often insufficiently complex to differentiate features. Exam-

ples of single-parameter indices include area, perimeter, and

edge count. Multiple-parameter indices are more complex.

However, this complexity can lead to more involved

classification solutions (Wentz, 1997).

Quantitative measures of shape focus on eliminating

effects largely of size and orientation (Wentz, 2000;

Williams and Wentz, 2008). Wentz (2000) reviews a number

of shape indices and presents a quantitative, trivariate

definition of shape: edge roughness, perforation, and

elongation. The edge roughness metric quantifies the nature

of a feature by comparing its perimeter to its area.

Perforation investigates the area of islands in defined

shapes. Often, when investigating vector data, a feature

will appear to have a hole, or an island completely

contained within the feature. Perforation compares the area

of the hole to the total area of the feature. The third index,

elongation, describes deviation of a feature from a standard

shape. Lee and Sallee (1970) first used elongation to

describe different shapes of Sudanese villages. This method
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used four shapes, namely a circle, a rectangle, a square, and

a triangle, to estimate the shape of the villages. Wentz took

the same concept and made it more mathematically rigorous

by describing the approximation shape as a circle of area

equal to that of the geographic shape. The circle is then

placed on the geographic shape where it will have maximum

overlap, and the union of the two shapes is compared with

the area of the shape by itself; this is the elongation index.

Figure 1 presents a graphical depiction and comparison of

elongation values over different shape types.

Methods

Study area

Our study area is located in west-central Alberta, Canada,

on the eastern slopes of the Rocky Mountains near the

towns of Hinton and Edson (52u159N, 116u309W; Figure 2).

The study area covers a wide elevation range (600–3900 m),

with the natural subregion classified as upper foothills

(Achuff, 1994). Forestry activities are well established and

are the primary forest disturbance in the region, with fire

less common due to ongoing suppression activities (Rhem-

tulla et al., 2002; Tande, 1979). Resource utilization

activities, such as oil and gas extraction and mining, are

also undertaken in the region (Schneider et al., 2003).

The study area is characterized using two image data

sources, described in more detail below. A Landsat image is

used to serve as a calibration (control) disturbance dataset

and covers an area of 50 000 km2, based on the Landsat

image extent of 185 km 6 185 km. An IRS-1C image

covering 1050 km2, based on an image extent of 30 km 6
35 km, serves to provide higher spatial resolution informa-

tion in support of the procedure applied. The study area is

composed largely of closed conifer forest (52% of the

control dataset study area), characterized by lodgepole pine

(Pinus contorta) with species of spruce (Picea glauca, Picea

mariana, and Picea engelmannii). Minor areas of trembling

aspen (Populus tremuloides) or balsam poplar (Populus

balsamifera) are also scattered throughout the area.

Data

The disturbance datasets were derived from two Landsat-

7 Enhanced Thematic Mapper Plus (ETM+) images (path

44 and row 23 dated 19 October 1999 and 27 September

2000). The images were converted to at-satellite reflectance

following Chander and Markham (2003). Following nor-

malization, a tasselled cap transformation (Huang et al.,

2002; Kauth and Thomas, 1976) was performed on both

Landsat images (Han et al., 2007), with the resulting six

bands used for both disturbance detection and rule-based

attribution. Indian Remote Sensing (IRS) satellite imagery

was used for higher resolution edge detection. An ortho-

rectified 5.8 m panchromatic image was acquired on 31 May

2000. Cubic convolution resampling was applied with the

resultant spatial resolutions of 30 m for the Landsat images

and 5 m for the IRS-1C images.

Road network and digital elevation data were obtained

from GeoBase (www.geobase.ca) for the province of

Alberta (as provided by the Alberta Geomatics Section).

The road network was used to determine both the distance

between disturbance features and roads and the overlap of

disturbance features and roads (termed percent road cover).

These attributes were used in the classification model that

was applied to the raw disturbance changes.

A detailed disturbance dataset was utilized to support the

development of classification decision rules and to verify

disturbance identification and labelling outcomes. The

control disturbance dataset was developed through a

combination of remote sensing, spatial data integration,

and manual interpretation. A segmentation-based change

detection protocol was implemented to define change regions

representing cut blocks, burns, and mines based on greenness

and the spectral bands from the Landsat images. Well sites

were derived from a geographic information system (GIS)

database as point features and visually verified against the

temporally coincident imagery. Continuous road features

were manually digitized from the Landsat imagery. The

object accuracy was assessed against aerial photography.

Additional detail on this control disturbance dataset and

related methods can be found in Linke et al. (2009).

Figure 1. Example of the elongation metric as calculated on

three disturbance types.
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Change detection

Following coregistration and normalization of the multi-

temporal Landsat images, the initial step in the automatic
change detection and attribution procedure was to detect

the location of disturbances via a threshold-based change

detection technique (see workflow in Figure 3). The wetness

bands of the tasselled cap transformation were differenced,

resulting in an enhanced wetness difference index (EWDI)

(Franklin et al., 2001; Skakun et al., 2003). The resulting

EWDI was thresholded, as in Skakun et al. (2003), to

partition change areas from no-change areas. The resultant
change dataset (termed raw disturbances) was further

refined using edge detection.

Edge detection

The second step in the automated change detection and

attribution framework employs high spatial resolution

imagery and edge detection to refine changes in the raw
disturbances dataset that are linear in nature. To achieve

this, edges were extracted from panchromatic IRS-1C

imagery (5 m spatial resolution) using wombling. Wombling

is an edge-detection technique that extracts edges based on

their strength and direction (Womble, 1951; Barbujani et al.,

1989; Fortin, 1994; 1997). Once extracted, these edges were

used to classify raw disturbances as either noise or valid

linear changes. Two metrics were calculated for all wombled

edges that intersected changes detected in the EWDI. First,

the distance between the changes along each detected edge

was calculated. Second, the total area of change was

compared with the total area of the edge, whereby edges

extracted from the remotely sensed data maintained a

minimum width of one pixel. If changes were found to be

too far apart, or the area of the edge was much greater than

the area of change, changes were discarded. Otherwise,

changes were merged with the edge and were added to the

extracted areal features for attribution (see Figure 4 for an

example).

Change attribution

The classification model used to attribute the raw

disturbances incorporates shape-based attributes, contex-

tual information concerning location relative to landscape

Figure 2. Study area located in west-central Alberta, Canada, occupying Landsat path 45 and row 23. The small

black footprint indicates the area of the IRS-1C satellite image used to clean the EWDI changes.
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Figure 3. Workflow of change extraction and attribution framework. The process has three

general steps: change extraction, edge detection, and change labelling.

Figure 4. Example of application of high-resolution images to medium-resolution changes. Black indicates changes

detected in the EWDI, and gray indicates edges detected in the high-resolution imagery. Distance defines the

average distance between changes on the linear feature, and area ratio is the ratio of linear area to change area. The

left feature is classified as a real change, and the right is not.
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objects, and reflectance values from the related Landsat and

tasselled cap channels. Table 1 presents a detailed list of all

variables used in the classification. Spectral reflectance and

composite band values were obtained by overlaying

disturbance features over Landsat and composite band

raster images. Elongation, edge roughness, and perforation

were calculated for each disturbance feature and recorded

for use in later calculations. The other shape-based

attributes are single-parameter measures and were calcu-

lated using standard GIS operations.

Three classification models were generated using clas-

sification tree analysis. Models were based on the control

dataset, and cross-validation was used to evaluate accuracy.

Cross-validation was performed 100 times, with a random

75% of the disturbances used to train the model and the

remaining 25% used for validation (random sampling was

done without replacement). The first model was developed

using only the spectral reflectance attributes, and the second

model was based on shape-based attributes only. The third

classification model was developed from both spectral and

shape-based attributes. All classification models were

developed via classification and regression tree analysis

using the rpart package (Therneau et al., 2008) of the R

2.7.2 software package (www.r-project.org). The splitting

algorithm is based on Breiman et al. (1984); default splitting

values were used (related to node size, minimum bucket size,

and complexity parameter), and no pruning was performed.

The three models were compared to determine if shape-

based attributes proved useful in the classification of

remotely sensed disturbance features. The model containing

both shape and reflectance metrics was then used to

attribute the raw change dataset extracted from the EWDI.

The attributed raw disturbances were compared to the

definitions from the control disturbance dataset to compute

accuracies and compare areas of correctly labelled distur-

bances. Both percent accuracy and Cohen’s kappa were

calculated to assess model accuracy (Cohen, 1960). The

classification tree model is developed using support

information from the entire Landsat image area. The

application is made on the overlapping area between the

IRS and Landsat imagery, 1050 km2, as noted previously.

Results

Three classification models were created based on the

control disturbance dataset. One model was based on all

attributes, one only on shape attributes, and one only on

reflectance attributes. Table 2 lists the disturbance counts,

Table 1. Attributes used in classification of disturbance features.

Attribute Type Description Reference

T1 band means Spectral reflectance The average reflectance value for each band in the Landsat

images was calculated for each disturbance feature

Weismiller et al., 1977;

Jensen, 1986; Gong et al.,

1992Landsat band

differences

Spectral reflectance Difference between the T0 and T1 band values as calculated

for each disturbance

TCT values for T1 Composite values Tasselled cap transformation (TCT) values calculated for all

disturbance features, for each TCT value (brightness,

greenness, wetness)

TCT differences Composite Values Difference between the TCT values for the two Landsat images

Shape area Shape-based Area of the disturbance feature Williams, 2007; Xia, 1996

Shape perimeter Shape-based Perimeter of the disturbance feature Xia, 1996

Shape elongation Shape-based EI 5 (area of intersection)/(area of union), where EI is the

maximum overlap of the intersection and union of the

disturbance feature with a circle of equal area

Wentz, 2000; Zhao and

Stough, 2005

Edge roughness Shape-based Ed 5 [2 + log(perimeter)]/log(area) (this is ignored for shapes

with an area of 1, but that did not occur in this dataset)

Wentz, 2000

Edge count Shape-based Number of edges of the disturbance Hese and Schmullius, 2006

Distance to road Shape-based Linear distance to nearest road Hese and Schmullius, 2006

Percent road cover Shape-based Percentage of the length of a feature that covers a part of the

road network

Note: T0 refers to the Landsat image obtained prior to the change detection, and T1 to the image after the disturbances.

Table 2. Accuracy of model classification on control dataset using cross-validation.

Kappa

Accuracy (%)

All features (N 5 1274) Harvest areas (N 5 561) Roads (N 5 267) Well sites (N 5 446)

All attributes 0.818 88.43 91.37 73.61 93.81

Shapes 0.788 86.48 88.30 70.14 94.17

Reflectance 0.643 77.21 88.20 56.46 76.03

Note: Cohen’s kappa was calculated on the classification of all features. N, number of features.
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accuracy, and kappa values of each model, averaged over

the 100 iterations supporting the validation. The model with

all attributes performed best in all categories, with an
overall accuracy of 88% and a kappa value of 0.82. The

shape-based model outperformed the reflectance-based

model, with an accuracy and kappa value of 86% and

0.79, respectively, compared with 77% and 0.64 for the

reflectance model. Road disturbances had the lowest

predictive success, with the all-attributes model accurately

attributing 73%, whereas the reflectance model only

attributed 56% correctly.
An example of the classification model generated through

our tree splitting algorithm is shown in Figure 5 and

represents the most accurate model, based on all attributes.

The model shows a combination of shape- and reflectance-

based attributes. The primary split is based on shape area,

with large shapes (left side) separated by the fourth band of

the tasselled cap transformation and small shapes separated

based on percent road cover. Further classification is

performed on large shapes, based on elongation, and again

on the fourth tasselled cap channel.

Raw disturbances were extracted from the EWDI
following the development of our classification model.

The disturbances were refined using edge features extracted

from the IRS-1C image; see Table 3 for a breakdown of the

differences between the control and raw disturbances. Of the

75 disturbance features in the control dataset that are found

in the IRS-1C study area, 57 were detected. Of the 61 raw

disturbance features detected through our automatic

framework, 60 correspond to disturbances in the control
dataset. Overall, 77% of the disturbances in the control

dataset were found using automatic change detection.

However, 91% of the area of change in the control dataset

is found through the automatic framework (92% of the

harvest areas, 90% of the road features, and 100% of the

well sites).

Figure 6 provides examples of disturbance mismatches in

the 5 m panchromatic IRS image. The black polygon on the

Figure 5. Classification model based on all attributes. At each decision, if the feature satisfies the threshold, it is

sent to the left.

Table 3. Accuracy of disturbance detection through automatic detection approach (limited to common area between

the Landsat and IRS-1C images, as shown in Figure 2).

Control Agreement to mapped Omission Commission

N Area (m2) N Area (m2) N Area (m2) N Area (m2)

Harvest area 51 8 869 499 45 8 126 099 6 743 400 0 —

Road 22 5 647 473 13 5 078 272 8 569 201 1 101 296

Well site 2 23 400 2 23 400 0 — 0 —

Note: N, number of change features.
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E 2009 Government of Canada 529



left side in Figure 6 is a disturbance that was detected via the

EWDI change detection and correctly identified as a well

site via the attribution framework. The polygon on the right

side in Figure 6 represents a short road that was not

identified via the EWDI change detection due to its

proximity to two other bright disturbances and its size

and shape (i.e., short and narrow).

Raw changes were attributed with disturbance type based

on the classification model developed from the control

dataset and compared to the disturbance label from the

control dataset. The overall accuracy was 91% when

classifying raw disturbance features, with a kappa value of

0.87 (see Table 4). All three disturbance types showed high

classification accuracy, with harvest areas showing an

accuracy of 91% and roads and well sites showing accuracies

of 72% and 100%, respectively.

Discussion

The creation of an automated change detection and

attribution framework is intended to reduce subjectivity and

improve timeliness of change detection and attribution.

Since most change detection relies on remotely sensed data,

the incorporation of GIS-based shape and contextual

attributes has added an additional dimension to our

classification. Evidence for the importance of these metrics

is seen in the comparison of the three classification models

(shape-based, reflectance-based, and all attributes). The

reflectance-only model correctly attributed only 77% of the

disturbance features and 56% of the road features. The

model containing all attributes accurately labelled 88% of all

features and 72% of the road features. The model with all

attributes contains both shape and reflectance attributes,

highlighting the importance of both types of metrics in

differentiating disturbances.

The second aspect of this classification, namely the

extraction and attribution of disturbance features, yields

equally encouraging results. The incorporation of high

spatial resolution imagery to traditional EWDI change

detection allows us much greater confidence in the accuracy

of our change detection, specifically for linear features.

Previous studies have shown that extraction of road features

from Landsat-based imagery is problematic (Klang, 1998;

Zhang et al., 2002), especially when considering narrow or

short roads, such as those associated with logging and

resource extraction. Although our change detection meth-

ods identified 45 of 51 harvest areas and all of the well sites,

just over half (13 of 22) of the road features were identified.

When considering the area of the detected changes, it is

evident that although half of the individual road features are

missed, 90% of the area of road features is captured using

our approach. This indicates that small, short roads are

missed, similar to that indicated in Figure 6. Although these

disturbances can play an important role in ecological

modelling, many of these roads connect harvest areas and

are often included in the harvest areas captured. Errors of

omission (found in control, absent in raw changes) were

present in our study; however, errors of commission (raw

changes not found in control) were minor. This is expected,

as the change detection used for the control dataset and the

automatic framework both incorporate change in Landsat-

derived tasselled cap transformations. The errors of

omission stem from manually digitized features in the

control dataset not appearing in Landsat imagery, typically

small, short roads near other disturbance features. The lack

of commission error indicates the stability of tasselled cap

difference derived change detection approaches. The

demonstrated ability of the approach to find the changes

of interest in reference to the control dataset allows us to

focus on the attribution of change type. The transparent

and rigorously developed labelling of the change features in

the control change layer is of importance to this study, as

Figure 6. Example of detected and not detected changes. The black outline indicates a well

site that was successfully detected and labelled through our automatic framework. The gray

road was present in the control dataset but was missed in the automatic framework.

Table 4. Accuracy of classification of and labelling of disturbances

using all-attributes model (includes only those features identified in

the automatic change detection).

Accuracy (%)

Kappa

All features

(N 5 61)

Harvest areas

(N 5 45)

Roads

(N 5 14)

Well sites

(N 5 2)

0.868 91.11 92.35 72.03 100.00
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this provides us with the capacity to both train a classifier

and ascertain the quality of our results (with an independent

subset). Overall, a 91% agreement between the control

dataset and the change attribution approach was found,

although linear features were less accurately captured and

attributed on a class-specific basis (72% agreement). This

indicates we have developed an approach that can be

implemented to detect and then attribute a range of

disturbance features, thereby reducing reliance on human

intervention, especially for area-based change features such

as forest harvesting. We anticipate that there will be an

ongoing need to improve our detection and attribution

methods for linear features or other features that are

subpixel in extent or width. Further, we acknowledge the

difficulties in integrating the multiscale image datasets.

Alberta is an ideal test bed for methods such as this due to

the periodic collection there of province-wide IRS image

coverage. Even with the wide-area coverage, the vintage of

the imagery must also be considered. We feel that a strength

of the approach presented is that we do not expect all the

sub-Landsat pixel features to be mapped perfectly and in

entirety. We consider the information from the IRS imagery

to provide additional information to support the mapping

undertaken with the Landsat imagery. In so doing, we are

able to adjust the rules applied when integrating the IRS

edge features with the Landsat change features. In moving

towards an operational implementation of an approach

such as this, we are encouraged by the growing number of

high spatial resolution satellite systems and the inclusion of

higher spatial resolution panchromatic channels on multi-

spectral optical satellites. With the open access to the

Landsat archive (Woodcock et al., 2008), opportunities for

use of archived higher spatial resolution images also exist,

although the opening of the Landsat archive and an interest

in integrating differing data types may also serve to

highlight that most other satellites do not have systematic

collection or archiving procedures to support the desired

analysis. Commercial satellite operators and vendors, such as

DigitalGlobe, are increasingly collecting data to enable wide-

area coverage and population of a searchable archive (with

partner Google). Although the approximate 10 km 6 10 km

footprint of these very high spatial resolution sensors will be

of limited utility for application of the approach presented

here, it is the increasing interest in collecting data system-

atically and archiving that is the promising development.

Conclusion

We have developed an approach for effectively extracting

disturbances using medium spatial resolution imagery in

concert with edges extracted from high spatial resolution

imagery. A classification model was developed from a

disturbance dataset that had been manually cleaned and

digitized with carefully labelled point and line features. This

model was used to classify disturbance features that were

attributed with disturbance type based on their shape and

reflectance attributes. An overall accuracy of 91% was achieved

in automatically detecting and attributing disturbance features.

By automatically detecting and then attributing changes,

operational procedures for monitoring can be developed to
facilitate large area classification efforts. With the recent

release of the Landsat archive for free public consumption

(Woodcock et al., 2008), there is a wealth of historical

imagery that may be utilized. Although we acknowledge

that IRS-1C data may not always be available for the

desired locations or time periods, these types of high spatial

resolution data are becoming increasingly available.

Approaches such as that demonstrated here provide
additional options for operationally observing land use

and land cover change with remotely sensed data.
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