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Abstract 

Accurate estimates of vegetation structure are important for a large number of 

applications including ecological modeling and carbon budgets. Light detection and 

ranging (LiDAR) measures the three dimensional structure of vegetation using laser 

beams. Most LiDAR applications today rely on airborne platforms for data acquisitions, 

which typically record between 1 and 5 “discrete” returns for each outgoing laser pulse. 

While airborne LiDAR allows sampling of canopy characteristics at stand and landscape 

level scales, this method is largely insensitive to below canopy biomass such as 

understorey and trunk volumes as these elements are often occluded by the upper parts 

of the crown, especially in denser canopies. As a supplement to airborne laser scanning 

(ALS), a number of recent studies used terrestrial laser scanning (TLS) for the biomass 

estimation in spatially confined areas. One such instrument is the Echidna® Validation 

Instrument (EVI), which is configured to fully digitize the returned energy of an emitted 

laser pulse to establish a complete profile of the observed vegetation elements.  

In this study we assess and compare a number of canopy metrics derived from airborne 

and terrestrial laser scanning. Three different experiments were conducted using 

discrete return ALS data and discrete and full waveform observations derived from the 

EVI. While considerable differences were found in the return distribution of both 

systems, ALS and TLS were both able to accurately determine canopy height (Δ Height 

< 2.5 m) and the vertical distribution of foliage and leaf area (0.86>r2> 0.90, p<0.01). 

When using more spatially explicit approaches for modeling the biomass and volume 

throughout the stands, the differences between ALS and TLS observations were more 
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distinct; however, predictable patterns exist based upon sensor position and 

configuration.  

 

Keywords:  LiDAR, terrestrial LiDAR, canopy architecture, leaf area, canopy volume, 

Echidna, EVI, Fluxnet, full waveform LiDAR 
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1. Introduction 

To support a large number of modeling applications, accurate estimates of vegetation 

structure are required including global scale assessments of vegetation growth (Cote et 

al., 2009; Peddle et al., 1999; Schaaf et al., 1994). While optical remote sensing 

techniques can provide phenological vegetation characteristics over large areas, the 

capacity of 2-dimensional measurements to determine canopy structure is limited. 

LiDAR measures the three-dimensional distribution of vegetation elements in the 

canopy directly and, as a result, is particularly well suited for describing structural 

vegetation properties including tree heights, biomass, and canopy volume (Lefsky et al., 

2005a; Lefsky et al., 2002a; Lim et al., 2003; Næsset 1997; Parker et al., 2004b).  

Most vegetation related LiDAR applications rely on airborne platforms for data 

acquisition, with measurements acquired at altitudes between 500 and 3000 m. The 

Geoscience Laser Altimeter System (GLAS) aboard the Ice, Cloud, and land Elevation 

(ICESat) satellite has been providing space-borne data since January 2003. The GLAS 

instrument was developed primarily to meet ice mapping objectives, with a vegetation 

mapping capacity as secondary to overall mission objectives (Zwally et al 2002). While 

not configured for vegetation characterization, the GLAS instrument has been used to 

characterize forest structure (Boudreau et al., 2008; Lefsky et al., 2005b; Pang et al., 

2008). Lessons learned from the vegetation focused applications of GLAS data are 

informing the development of vegetation focused spaceborne sensor as part of NASA‟s 

DESDynI mission (Dubayah et al., 2008). Duncanson et al (2008) have explored the 

relationship between GLAS returns and higher density airborne measures found within 

the nominally 70 m GLAS footprint. 
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The limitations typically encountered regarding the capacity of airborne LiDAR to detect 

individual canopy elements are related to the spatial density of the laser returns, size of 

the LiDAR footprint, scan angle and instrument power (Lovell et al., 2003). As a result, 

airborne instruments often fail to observe significant aspects of the lower canopy and 

stem structure when these elements are obscured by the upper canopy. Additionally, 

the data collected from airborne LiDAR is less suited for characterizing the woody 

component of vegetation because the vertical projection of the stems contains only little 

information about their shape and volume (Lovell et al., 2003). These woody 

components, however, may contain a significant proportion of a stand‟s biomass.  

As a complement to airborne measurements, a number of recent studies have used 

ground-based or terrestrial LiDAR systems (TLS), which describe canopy structure in a 

bottom-up rather than a top-down approach (Parker et al., 2004a; Strahler et al., 2008; 

Van der Zande et al., 2006; Welles and Cohen 1996). There are some fundamental 

differences in the way ALS and TLS can measure the distribution of foliage elements 

within a canopy. Firstly, according to the random media model (Poisson distribution) 

objects closer to the instrument are more likely to produce a measureable return. 

Consequently, ALS is likely to collect more detailed information about the upper canopy, 

while TLS is likely to provide a more detailed assessment of the lower canopy. 

Secondly, ALS sample almost exclusively at near nadir view angles thereby yielding a 

relatively homogeneous distribution of measurements per unit area. A ground-based 

system in contrast, features a radial perspective of observations with most laser returns 

originating from near the location of the instrument. As a result, under the assumption of 

zero interceptions, the shot density is inversely proportional to the square of the 
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distance from the instrument. As opposed to ALS, some terrestrial laser systems can 

describe vegetation structure at a number of different view angles (Cote et al., 2009; 

Jupp et al., 2008; Strahler et al., 2008), which is required to allow the analysis of canopy 

clumping effects and leaf angle distribution (Chen 1996; Chen and Cihlar 1995; 

Whitehead et al., 1990) and their impact on canopy metrics. Overall, the spatial 

resolution of TLS is generally much higher than that of ALS, especially in the vicinity of 

the plot center; the spatial range, however, is often limited to only a few hundred 

meters.  

Most commercially available laser scanners operate as so called discrete return 

scanners (Wulder et al., 2008b). These systems typically record between 1 and 5 

returns per outbound laser pulse. Each return represents a discrete object in the path of 

the beam (for instance a part of a forest canopy, understorey, and the ground), whose 

distance is represented by the time elapsed between emittance and return of the pulse. 

Typically, these discrete return systems feature a footprint size of 0.1 m to 2 m (Lim et 

al., 2003; Wulder et al., 2008b), and can achieve sub-meter accuracy of terrain surface 

heights (Blair et al., 1994; Lefsky et al., 2002b).  Full waveform laser systems have 

been specifically designed for measuring vegetation (Jupp et al., 2005) and produce a 

fully digitized vertical profile of the returned energy of a given emitted laser pulse. The 

range resolution of a full waveform scanner is determined by time interval with which the 

sensor is able to record energy levels of an incoming waveform. The beam divergence 

varies with the instrument, but is generally larger than that of discrete waveform 

scanners.  
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A detailed understanding of the differences between airborne and ground-based, 

discrete return and full waveform LiDAR and the implications of these differences on the 

parameterization of canopy structure, will improve our understanding of the use of 

LiDAR as a tool for quantifying vegetation characteristics. For instance, a comparison of 

canopy parameters derived from ALS and TLS can inform on the robustness of 

individual modeling techniques with respect to the nature of its input observations. In 

this study, we compare and discuss the differences in a number of stand structural 

parameters measured by terrestrial and airborne LiDAR systems at a Douglas-fir 

(Pseudotsuga menziesii var menziesii (Mirb.) Franco) dominated research site in British 

Columbia, Canada. Ground-based LiDAR observations were acquired using the 

Echidna® validation instrument (EVI), a full waveform TLS, developed and built by the 

Commonwealth Scientific and Research Organization of Australia (CSIRO) (Jupp et al., 

2008; Lovell et al., 2003; Strahler et al., 2008). The full waveform acquisitions were 

used to simulate discrete return TLS data by digitizing the ranges of the maxima of the 

returned waveforms. Full waveform and discrete terrestrial acquisitions were then 

compared to airborne LiDAR data acquired at the site.  

 

2. Methods 

2.1 Study area 

The focus of this study is a 60 year-old coniferous forest on Vancouver Island, British 

Columbia, Canada, located at about 300 m above sea level (49°52‟7.8” N, 125°20‟6.3” 

W). The vegetation is second-growth, consisting of 80% Douglas-fir, 17% western red 

cedar (Thuja plicata Donn ex D. Don) and 3% western hemlock (Tsuga heterophylla 
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(Raf.) Sarg.) (Morgenstern et al., 2004). The understorey consists mainly of salal 

(Gaultheria shallon Pursh.), Oregon grape (Berberis nervosa Pursh.), vanilla-leaf deer 

foot (Achlys triphylla (Smith) DC), various ferns and mosses. The site is positioned at a 

northeast facing slope; the stand density is 1100 stems ha-1 with tree heights ranging 

between 30 and 35 m. Four 30 x 30m plots, all Douglas-fir dominated yet capturing a 

range of forest structural conditions, were measured within a radius of 5 km. The center 

position of each plot was approximated using a post-processed differentially corrected 

GPS with sub-meter accuracy; the plot corners were established using a measuring 

tape (distance) and a construction level (bearing). 

 

2.2 Airborne LiDAR data acquisition 

Discrete return airborne LiDAR data were acquired on August 14th 2008, using a Leica 

ALS50-II at a mean flying altitude of 2343 m. The sensor has a 150 kHZ pulse rate, 

recording up to 4 returns per outbound laser pulse. The estimated GPS accuracy of the 

sensor was 0.02, 0.03 and 0.05 m in East, North and height directions, respectively. 

When both ground and non-ground returns were considered, the dataset had an 

average density of 3.74 pts m-2. The sensor‟s field of view was restricted to ± 15° off 

nadir and data were flown with average of 20% overlap between the flight lines. Flight 

and sensor parameters were optimized to achieve a ground return density of 0.5 m 

(after removal of canopy returns). Ground and non-ground returns were separated using 

a series of algorithms appropriate for the ground topography (Terrascan v 0.6, 

Terrasolid, Helsinki, Finland)  (Kraus and Pfeifer 1999) and a DEM was generated from 
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the ground returns at a spatial resolution of 0.5 m (Fusion v 2.65, USDA, Forest 

Service). 

 

2.3 Terrestrial LiDAR acquisition  

While most currently available terrestrial laser scanners operate as discrete point 

systems, the EVI is configured to fully digitize the waveform of a scattered LiDAR pulse 

thereby allowing separation of scattering by trunks and other larger vegetation elements 

from scattering by leaves (Jupp and Lovell 2007). The EVI features a horizontally 

positioned laser that emits pulses at a wavelength of 1064 nm at a rate of 2 kHz. Pulses 

are directed toward a rotating mirror which is inclined at a 45° angle to the beam (Figure 

1). The rotating mirror directs the beam in a vertical circle, which, coupled with a 

horizontal rotation of the tripod mounted instrument platform, results in a scanning 

motion that covers the upper and a significant part of the lower hemisphere of the 

scanner (Jupp et al., 2008; Strahler et al., 2008). The EVI beam is a fixed solid angle 

with a “top hat” energy profile which allows the energy density to be uniform over the 

(spreading) beam. The sampling was chosen so that at the horizontal scan there are no 

gaps between the volumes sounded by these beams. For higher zeniths the beams 

overlap and the data are not independent. This dependence can be taken out by 

processing and re-projection. Whilst the energy density reduces inversely to the second 

power of range, there are no gaps in the data.  
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Figure 1: Schematic drawing of the Echidna® validation instrument (EVI, Figure adapted from Strahler et al., 
2008)  

 

EVI data were collected at the center and the four corners of each 30 x 30 m plot 

location using an angular sampling interval of 4 mrad and a beam divergence of 5 mrad 

to ensure some sidelap between individual acquisitions. The recordable range of the 

instrument is adjustable and was set to 120 m; the height of the instrument varied 

between 1.7 m and 1.9 m above ground, depending on the individual setup at each plot. 

Additional steps for EVI data processing have been described in detail elsewhere (Jupp 

et al., 2008; Jupp and Lovell, 2007; Strahler et al., 2008). Briefly, the recorded pulse 

energy of a reflected beam depends on the shape and orientation of the target, its 

distance to the instrument (range) and the basic reflectance at the wavelength of the 

laser (Strahler et al., 2008). As a result, the apparent reflectance (that is, the reflectance 

that a large, flat, lambertian and opaque target normal to the laser beam would have, to 

return the observed power at the specific range) of a targeted surface is given by (Jupp 

et al., 2008) 
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    (1) 

where  is the mean phase function for the varying facets of a target,  is the 

angle relative to the facet normal, g is the distribution function for the facet directions, 

is the normal reflectance of a facet and  is the probability of a gap between the 

instrument and the target (Jupp et al., 2008). The hit probability at a given range 

( ), the normal reflectance of the objects at this range and their scattering phase 

function depend on the orientation and specularity of the targeted object (Jupp et al., 

2008). 

Discrete point observations may be simulated from full waveform acquisitions by using 

filtering and first and second derivatives to locate the peaks in EVI shots as a point 

cloud (Jupp and Lovell 2007). Discrete point data were digitized for all observations 

made at a zenith angle <130˚. The noise threshold was set to 0.1 % reflectance. 

 

2.4 Combination of multiple scanning locations 

Due to the radial perspective of the TLS results less laser energy is available to 

illuminate objects at greater ranges from the instrument. In addition, occlusion of far 

objects by those closer to the instrument further decreases the likelihood of returns with 

increasing distance (Hilker et al., 2009).   One possible means to minimize these effects 

is to combine TLS data from multiple locations within a plot area to observe vegetation 

from different view angles, minimize shading effects and provide a more homogenous 

distribution of observation points within a plot. For instance, Hilker et al., (2009) 

combined discrete return data collected at the center and the 4 corner locations of each 
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of the described 30 x 30 m plots (Figure 2) using artificial, highly reflective reference 

targets (Polystyrene balls, Ø 20 cm) as tie-points  to establish a relative orientation 

between the individual data acquisitions. The Polystyrene balls were placed within each 

plot prior to data collection so that they were visible from all five scanning locations 

(Figure 2). A simple thresholding technique of the reflected laser energy was then used 

to automatically identify these tie-points within each TLS dataset. The LiDAR hits which 

were recorded in local coordinates at each scanning location were then converted into a 

common reference system by means of a Helmert transformation. This approach 

effectively minimized occlusion within the 30 x 30m plot areas, thereby yielding point 

densities of > 300 hits/m2 for >90% of the area under investigation (Hilker et al., 2009). 

The technique also allowed the generation of accurate digital elevation models (DEM) 

for each plot from discrete EVI data by extracting the minimum elevations from the 

merged TLS point cloud using a spatially moving boxcar filter of 0.5 m dimensions (see 

Hilker et al., 2009 for details).  
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Figure 2: Plot setup at the Douglas-fir dominated study site. A total of four 30 x 30 m plots were established 
with EVI scans located at the four corners and the center of each plot. Highly reflective Polystyrene balls 
which were placed on metal stakes were used to establish a relative orientation between the individual scan 
locations (Hilker et al., 2009) 

 

While this method can easily be applied to discrete return observations, it is less 

applicable to full waveform data. First, individual canopy elements may be 

misrepresented when simply adding or averaging observed apparent reflectance 

measurements from multiple scanning locations, as the facet of an observed target 

depends on the position of the observer. Second, full waveform observations are often 

stored in data cubes, which made the combination of multiple datasets difficult.  
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2.5 Approach 

We compared the canopy metrics derived from three different types of LiDAR 

observations: First, structural stand characteristics were derived from discrete ALS 

observations. Second, discrete return TLS data were simulated from full waveform EVI 

observations by locating the energy maxima. The point data from the center and the 

four corner locations of each plot were then combined to allow a better representation of 

the investigated plots. Finally, canopy characteristics were also derived from individual, 

full waveform acquisitions and then converted to plot level data by averaging the metrics 

derived at each of the five scanning locations per plot.   

 

2.6  Canopy heights  

The average canopy height for the top 40, 30, 20 and 10% of all LiDAR returns was 

determined for each plot from discrete airborne and terrestrial LiDAR data, respectively. 

The dominant stand height was also calculated using a spatial stratification approach 

that divides each plot into four smaller grid cells for which the highest return was 

extracted and averaged with the highest return of the other grid cells (Næsset 1997). 

Finally, the maximum canopy height, defined as the highest LiDAR return per plot, was 

determined from airborne and terrestrial laser data.  

 

2.7 Canopy profiles and leaf area 

One of the most commonly applied measures of canopy architecture is the leaf area 

index (L), defined as half the total foliage area per unit ground surface area (Chen and 
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Black 1992). L can be indirectly determined from LiDAR by estimating the probability of 

gap in the canopy ( ) (Jonckheere et al., 2004; Jupp et al., 2008), defined as (Chen 

1996) 

    (2) 

where  is the view zenith angle and G( ) is the Ross-G function describing the mean 

area projection of plant elements in the direction . Often, a random orientation of 

foliage is assumed for needle leaf forests, and, as a result, G( ) may be approximated 

using a constant of 0.5 (Chen et al., 1997; Chen 1996). L(z) is the cumulative leaf area 

from the ground to a given height z. For a terrestrial LiDAR system which scans the 

hemisphere above the instrument at multiple angles, the total (effective) leaf area L is 

the integral of measurements taken at all  (Miller et al., 1964, 1967, Jupp et al., 2008) 

   (3) 

The foliage profile Fp(z), defined as the vertical distribution of phytoelement density 

above the ground (Ross 1981; Warren Wilson 1965), is the 1st derivative of L(z) (Lovell 

et al., 2003). Due to the inability of airborne LiDAR systems to observe the canopy 

under multiple view angles, airborne LiDAR is incapable of resolving foliage angle 

distribution and canopy clumping and as a result, the profiles derived from airborne 

LiDAR are often referred to as “apparent” foliage profiles Fp(z)‟ (Lovell et al., 2003). The 

differences between actual and apparent foliage profile are discussed in detail in (Ni-

Meister et al., 2001).  
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The determination of  from full waveform EVI data has been discussed in detail by 

Jupp et al. (2008). For a given range and zenith,  is given as: 

   (4) 

where is the apparent reflectance measured at a time t, T‟ is ct/2 and r is the range to 

which the gap probability is taken.  

When using discrete return LiDAR, the probability of canopy gap can be estimated as 

the sum of the total number of hits down to a height z, relative to the total number of 

independent LiDAR shots (N) (Coops et al., 2007; Lovell et al., 2003; Riano et al., 

2003): 

N

z

zP

zz

jz

j

gap

max

#1

)'(
                                       (5) 

where #z is the number of hits down to a height z above the ground (or the range to 

which the gap probability is taken). The dash indicates the apparent nature of Pgap. 

Assuming =0 , L(z)‟ then becomes (Lovell et al., 2003), 

   (6) 

and FP (z)‟ is the first derivative of L(z)‟.  

 

In this study, foliage profiles and leaf area were determined in three different ways from 

LiDAR. First, FP(z)‟ and L(z)„ were calculated from airborne using the discrete point 

clouds. Second, FP(z)‟ and L(z)„ were also calculated from terrestrial LiDAR using the 
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simulated discrete point data. Third, FP(z) and L(z) were calculated from the full 

waveform EVI observations.  

The total leaf area per plot was also determined from hemispherical photography using 

a fisheye-lens. The camera was located on a tripod at the center and the four corner 

locations of each plot (coincident to the EVI measurements) and data were analyzed 

using the Gap Light Analyzer software (Frazer et al., 2001).  

 

2.8 Canopy volumes 

Canopy volume models (CVM) (Lefsky et al., 1999) characterize the three dimensional 

structure of a forest canopy by quantifying the differences in the total volume and spatial 

organization of the tree foliage. CVMs organize the canopy space as a matrix 

composed of three dimensional grid cells or voxels. These voxels are classified as 

either "filled" or "empty" depending on the level of energy ( that was reflected from 

that space in the canopy (Lefsky et al., 1999). An “empty” voxel can be located either 

below (“closed gap”) or above the canopy (“open gap”), whereas a “filled” voxel is 

labelled either “euphotic”, if the cell is located within an uppermost percentile (65% ) of 

all filled grid cells of that column, or "oligophotic" if the voxel is located below this point 

in the profile (Coops et al., 2007; Richards 1983). This method provides a broad 

classification approach to divide the canopy into photosynthetically active and less 

active zones. The 65% threshold value was derived from a theoretical expectation about 

the fraction of energy returned from the first layer of leaves, when assuming a light 

extinction coefficient of one (Lefsky et al., 1999).  
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Originally developed for full waveform airborne LiDAR observations (Lefsky et al., 

1999), CVMs have since been adapted to be used also with discrete return data (Coops 

et al., 2007).  Lefsky et al (1999) used voxel sizes of 10 x 10 (horizontal) x 1 m (vertical) 

to account for the relatively coarse spatial resolution of the airborne LiDAR data. In this 

study, the voxel size has been adapted to accommodate the much higher point density 

of TLS data by changing the size of the superimposed grid to include approximately the 

same number of observations for airborne and terrestrial LiDAR. The voxel size chosen 

for the discrete airborne observations was 36 m3 (6 x 6 x 1 m), the resolution selected 

for discrete and full waveform terrestrial data was 1 m3 (1 x 1x 1 m).  

 

3. Results 

Figure 3A-B illustrates the differences between the point cloud generated from the 

discrete airborne LiDAR, the simulated EVI point clouds and the full waveforms 

observed from the terrestrial laser scanner. Figure 3A shows the discrete airborne data 

superimposed on the EVI generated point cloud. The upper canopy was well 

characterized by airborne LiDAR with shapes of individual tree crowns being 

represented in the dataset; only relatively few measurements, however, originated from 

lower parts in the canopy. The terrestrial observations (smaller green dots), showed a 

much higher level detail of the recorded scene, with point clusters representing 

individual stems, branches and understorey vegetation. This dataset, however, seemed 

to less well represent the topmost part of the canopy and estimates of tree heights were 

generally lower than those of the airborne LiDAR data. Figure 3B shows the full 

waveform EVI data up to the recorded range of 120 m distance (mean reflectance of an 
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individual scan shown). The distortion is due to the representation of the y dimension as 

zenith angle. As opposed to the observations shown in Figure 3A, the full waveform 

observations provided a complete three dimensional image of the observed forest 

stand.  

 

Figure 3A: Comparison between discrete return airborne and terrestrial LiDAR. The airborne dataset is 
shown as white dots, the smaller green dots represent the combined and discrete terrestrial data. The 
terrestrial observations (smaller green dots), showed a much higher level detail of the recorded scene, with 
point clusters representing individual stems, branches and understorey vegetation. Figure 3B: Full waveform 
representation of an individual EVI scan. The tree tops are distorted in this representation due to the 
projection of hemispherical observations onto a two-dimensional plane (Andrieu Transpose projection). For 
illustration purposes, the mean waveform is shown in this figure 
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The return densities per unit canopy space for airborne and terrestrial LiDAR 

observations are illustrated in Figure 4 using plot 1 as an example. Figure 4A shows the 

mean hit density of the airborne LiDAR data; the hit distribution of the combined TLS 

returns is shown in Figure 4B. The average number of LiDAR returns was 0.2 hits m-3 

for the airborne data and 25.5 hits m-3 in case of the terrestrial observations. Over 75% 

of all airborne LiDAR returns originated from the top 10 m of the tree canopy, while the 

combined TLS data showed a more homogeneous distribution of hits as 75% of the 

discrete and combined TLS returns covered about 26 m of tree canopy. Figure 4C 

shows the returned energy levels (in % reflectance per area) of the full waveform 

observations (only the center plot is shown). The x-axis represents the horizontal 

distance from the scanning instrument (up to 50 m); the y-axis shows the azimuth of the 

observation. The returned energy levels revealed a steep gradient towards the center of 

the scan as 75% of the emitted waveform energy was reflected within the first 18 m 

horizontal distance from the observing EVI.   
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Figure 4A-C: Hit density of discrete airborne (A), discrete and combined terrestrial (B) and full waveform 
terrestrial (C) data. The grey levels in Figures A and B represent the total number of returns per m

3
, where as 

the grey levels in Figure C correspond to the mean energy (in % of the outbound laser energy) reflected at 
this azimuth and range. 

 

A comparison between various canopy height estimates (four height percentiles (top 

40%, top 30%, top 20% and top 10% of all LiDAR returns), maximum and dominant 

stand height) derived from discrete airborne and ground-based LiDAR is given in Figure 

5.  While TLS and ALS data showed good agreement between dominant and maximum 

stand heights, the height percentiles measured by TLS were, on average, between 14.2 

m (in case of the top 40 % height) and 9.6 m (in case of the top 10 % height) lower than 

those of the airborne measurements.   
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Figure 5: Comparison between the top 40%, top 30%, top 20% and top 10% height percentiles and maximum 
and dominant stand height derived from discrete ALS and TLS. The diagonal line represents the 1:1 line.  

 

Figure 6 shows the apparent foliage profiles derived from discrete return ALS and TLS 

and the actual foliage profile determined using full waveform TLS data. The figure 

numbers A-D correspond to the plot numbers 1-4. The apparent foliage profiles of the 

discrete TLS data were highly correlated to those estimated from ALS (r2 = 0.86, 0.66, 

0.82, 0.90, p<0.01 for plot 1-4, respectively). Please note that the r2 values presented 

here only have a local descriptive meaning due to some expected autocorrelation in the 

dataset.  On average, best agreement between Fp‟TLS and Fp‟ALS was found in the 

upper part (z>20 m) of the canopy ( 2= 0.87, p<0.01), while Fp‟TLS and Fp‟ALS were less 

well correlated in the lower (z<20 m) canopy ( 2 = 0.48, p<0.01). FpTLS was closely 
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correlated to the apparent foliage profiles determined from ALS and TLS data. The 

coefficients of determination for the relationship between Fp‟TLS and FpTLS were r2=0.91, 

0.85, 0.66, 0.90 (p<0.01) for plot 1-4, respectively, those for the relationships between 

Fp‟ALS and FpTLS were r2=0.88, 0.66, 0.75, 0.92 (p<0.01), respectively. While FpTLS 

followed the general shape of the apparent foliage profiles closely, its appearance was 

smoother as observations were integrated over a large number of zenith angles. The 

apparent and actual foliage profiles of plot 3 (Figure 6C) differed notably from those of 

the other plots due to a larger wind throw and upcoming succession near the plot 

center.  
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Figure 6A-D. Apparent and actual foliage profiles derived from discrete return ALS and TLS full waveform 
TLS, respectively. Figure 6 A-D correspond to the plot numbers 1-4.  FP’ of the discrete TLS data were highly 
correlated to those estimated from ALS (r

2
 = 0.86 (A), 0.66 (B), 0.82(C), 0.90 (D), p<0.01), the relationships 

between  

 

Figure 7A-D shows a comparison of the LAI profiles (LE) determined from airborne and 

terrestrial LiDAR observations, the figure numbers A-D correspond to plot numbers 1-4. 

Similar to Figure 6, LE has been estimated for airborne and terrestrial discrete return 

observations and full waveform TLS data. The discrete ALS and TLS observations 

showed a good agreement of total LAI values, some differences, however, were 
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observed in the lower canopy as the LAI estimated from the TLS generated point cloud 

showed slightly larger values than those of the airborne data. The full waveform 

estimates of LE were, on average, higher than those obtained from the discrete point 

data, particularly in the lower half of the canopy.    

 

Figure 7A-D. Leaf area profiles derived from discrete return ALS and TLS full waveform TLS, respectively. 
Figure 7 A-D correspond to the plot numbers 1-4. 
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Figure 8 shows the relationship between total leaf area obtained from full waveform TLS 

data (LTLS) and leaf area observed from hemispherical photography (LHemi). To allow a 

direct comparison between EVI and photographic data, individual EVI observations 

rather than the merged, plot level TLS data were used. Figure 8A presents LAI 

estimates from LTLS and LHemi using all observations up to a zenith angle of θ ≤ 75°. 

Figure 8B shows the LAI estimates for the same plots using observations up to a zenith 

angle of θ ≤ 60°. A highly significant relationship (p<0.01) was found between LTLS and 

LHemi (Figure 8A-B), the model was, however, biased as the camera measured 

significantly lower LAI values throughout the study area. Figure 9 shows the relationship 

between LTLS and LHemi stratified by zenith angles. The location on the x-axes shows the 

center zenith angle of a stratum (5°< θ ≤ 10°, 10°< θ ≤ 15°, … , 50°< θ ≤ 55°), the y-axis 

describes the coefficient of determination for the relationship between LiDAR estimated 

and photographical LAI. The relationships between LTLS and LHemi were moderate for 

smaller zenith angles but increased for observations made lower in the canopy. The r2 

values ranged between 0.31 (15°< θ ≤ 30°) and 0.76 (50°< θ ≤ 55°) (p<0.01). 
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Figure 8. Relationship between total leaf area obtained from full waveform TLS data (LTLS) and leaf area 
observed from hemispherical photography (LHemi). Figure 8A represents LAI estimates from LTLS and LHemi 
using all observations up to a zenith angle of θ ≤ 75°. Figure 8B shows the LAI estimates using observations 
up to a zenith angle of θ ≤ 60°. 

 

 

Figure 9: Coefficient of determination (p<0.01) for the relationship between LTLS and LHemi stratified by zenith 
angles. The location on the x-axes shows the center zenith angle of a stratum (5°< θ ≤ 10°, 10°< θ ≤ 15°, … , 
50°< θ ≤ 55°), the y-axis describes the coefficient of determination for the relationship between LiDAR 
estimated and photographical LAI. 

 

Figure 10 shows the results of the canopy volume models for the discrete airborne (left 

column), the discrete TLS point clouds (central column) and the full waveform TLS 

observations (right column). The rows correspond to plot 1-4. The black color 

corresponds to the % volume of closed canopy gap per height level, dark grey 
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represents the shaded (oligophotic zone) canopy volume and the lighter grey area 

describes the more photosynthetically active part of the canopy (euphotic zone). The 

lowest amount of euphotic canopy has been estimated from the airborne data (left 

column), whereas significantly larger amounts of canopy volume where found to be 

within the topmost 60% of the TLS observations (center and right column). Additionally, 

the algorithm predicted a larger amount of below canopy gaps when using the airborne 

data rather than discrete EVI observations, particularly in the lower half (z<20 m). This 

part of the canopy is partially obscured to airborne observations by canopy elements 

from above. The top tree heights (that is, the topmost recorded canopy element) 

showed good agreement between the two discrete datasets; however, a much larger 

percentage of the total volume was, recorded by the airborne data in the upper 30 to 40 

m of the canopy. The full waveform TLS observations showed the greatest canopy 

volume in the upper portion of the canopy. Additionally, the amount of canopy gap was 

significantly larger that those estimated from the discrete return data.    
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Figure 10: Canopy volume models (CVMs) for the discrete airborne (left column), the discrete TLS point 
clouds (central column) and the full waveform TLS observations (right column). The rows correspond to plot 
numbers plot 1-4. The black color corresponds to the % volume of closed canopy gap per height level, dark 
grey represents the shaded (oligophotic zone) canopy volume and the lighter grey area describes the more 
photosynthetically active part of the canopy (euphotic zone). 
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4. Discussion  

The increased ability of the discrete and full waveform TLS observations to penetrate 

the forest canopy demonstrated the potential of TLS data for characterizing understorey 

vegetation and the below canopy architecture in the examined Douglas-fir forest (Figure 

3). In contrast, the airborne observations largely described the top canopy layer, 

whereas the elements in the lower canopy were illustrated with less detail. Similar 

results on the distribution of terrestrial and airborne LiDAR returns have previously been 

reported (Chasmer et al., 2004). The results found in figure 3 are also confirmed by the 

findings in Figure 4 illustrating the distribution of hit densities and return energies 

throughout plot 1. When comparing the vertical distribution of points, the EVI covered, 

on average, a greater detail with return densities considerably exceeding those of the 

airborne data (Figure 4B). A comparison between Figure 4B and 4C demonstrates the 

usefulness of combining discrete TLS observations from multiple scanning locations to 

obtain full coverage of the examined plots (Hilker et al., 2009). For instance, 75% of the 

returned energy of individual TLS observations (Figure 4C) originated from within the 

first 18 meters of the instrument and, as a result, objects closer to the instrument are 

better characterized than those that are located further away from it. This effect needs 

to be considered when comparing individual TLS observations to other plot level 

measurements as errors due to spatial mismatch may occur, at least when these other 

observations are spatially explicit. In contrast, the combined dataset (Figure 4B) yielded 

a much more homogeneous horizontal distribution of points throughout the plot making 

the data more comparable and representative for the entire plot. It should, however, be 

noted that converting full waveform information to discrete point clouds (which is 



31 
 

required in order to be able to combine multiple data sets) also means a loss of 

information for instance about the statistics of volumes. One of the biggest unknown 

when using a discrete point representation (which limits its accumulation into voxels) is 

whether a gap exists within a given space because of the absence of objects (such as 

branches, leaves etc.) or because the laser beam does not reach the required volume. 

Even when combining multiple TLS data sets there may still be volumes that are not 

“illuminated” by any of the scans. This limitation needs to be taken into consideration 

when evaluating canopy statistics from discrete observations.  

The effects of different point distributions on height measurements derived from LiDAR 

were demonstrated in Figure 5. TLS and ALS data showed very good agreement for 

dominant and top canopy height, thereby demonstrating that TLS observations can be 

used to accurately determine tree and stand height. The deviations found when 

comparing height percentiles of the ground based and airborne data acquisition were 

predictable as they consistently increased with the percentile used (Figure 5). The 

larger range of heights observed for the different percentiles from TLS compared to ALS 

again demonstrates the greater ability of these data to penetrate the examined canopy, 

as hits were more evenly distributed throughout the vertical canopy layers. The effect is 

expected to be less significant in more open canopies which have a higher probability of 

airborne data reaching lower elements in the canopy.  

While the distribution of canopy hits was considerably different for the examined 

datasets, good agreement was found between the estimates of foliage and leaf area 

distribution from airborne and terrestrial LiDAR (Figure 6, Figure 7). This is an important 

result as it shows the capacity of both ALS and TLS to accurately determine the 
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arrangement of foliage despite the differences in the distribution of LiDAR returns. 

Similar findings have previously been reported by Lovell et al. (2003) who found good 

agreement between ground measured and airborne foliage profiles in a number of 

different forest stands in south-eastern Australia. In case of the discrete return data, the 

canopy profile (and hence the LAI profile) is driven by the ratio of returns originating 

from the main crown layer and the total number of independent LiDAR shots (eqn. 5). 

This relation effectively normalizes the observations with respect to the hit density as a 

larger number of shots will also increase the probability of a hit at a given height level. A 

similar effect can be observed for the full waveform data where individual energy levels 

are related to the outgoing pulse energy (eqn. 4). While the probability densities in the 

upper canopy layer were very similar for discrete return ALS and TLS data, certain 

differences were found in the lower part of the canopy. For instance, the probability 

densities of airborne LiDAR within the lower 20 m of the canopy were, on average, 

smaller than those of the ground based measurements and, as a result, the area 

underneath those graphs (which corresponds to the LAI) was slightly higher in the lower 

canopy (Figure 7). The full waveform integrated canopy profiles appeared, on average, 

smoother than those obtained from discrete return data. This is likely due to the 

integration of profiles over a large number of zenith angles. Overall, a highly significant 

relationship was found between the canopy profiles obtained from individual full 

waveform measurements and those observed using the combined point clouds. The 

plot level results shown in Figure 6 and 7 are not spatially explicit and it can be 

concluded that the canopy distribution was well represented by the individual sweeps 

observed by the EVI.  



33 
 

The significant correlation found between the hemispherical photographs and the TLS 

observations demonstrated the value of the TLS observations to measure leaf area, 

however, only moderate correlations were found between the observations made at 

specific zenith angles. Slightly higher correlations have previously been reported by 

Lovell et al (2003) for the Australian forest site. As in the case of Lovell et al., (2003), 

the hemispherical canopy photographs in this study had to be collected over multiple 

days (for practical reasons) and, as a result, the sun position varied throughout the 

observation period, as did cloudiness the site. Consequently, the conditions for 

collecting the photographical observations in this study were not optimal, which may 

explain some of the variation observed in Figure 8 and 9. The apparent lack of gaps for 

high zeniths in hemispherical photographs is probably more realistic than true gaps to a 

fixed range detected by EVI, realistic estimates of LAI from either dataset should not 

use data of more than about 70 degrees zenith (Lovell et al., 2003). As a result of the 

three dimensional nature of the EVI data, TLS based LiDAR is able to yield information 

beyond that which can be obtained from hemispherical photographs (Jupp et al., 2008). 

Consistent with findings by other authors (Hopkinson and Chasmer 2009), the cover 

observed by hemispherical photographs in this study was lower than that estimated 

from LiDAR.   

The most notable differences were observed between the canopy volume estimates 

derived from ALS and discrete and full waveform TLS. When comparing airborne and 

terrestrial discrete return observation, a larger amount of below canopy gap was found 

for the ALS data. This finding is consistent with Lovell et al., (2003) and demonstrates 

the difficulties of obtaining accurate below canopy biomass estimates from airborne 
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laser scanning. Specifically, the step gradient in return densities towards the lower 

portion of the canopy is likely to result in a underestimation of understorey vegetation as 

the sparse distribution of ALS returns is less suited to characterize the volume of stems 

biomass and smaller trees (Jupp et al., 2008; Lovell et al., 2003; Strahler et al., 2008). 

The differences observed in the euphotic and oligophotic canopy volume of the left and 

the central column in Figure 10 again reflects in the fundamental differences in the 

vertical distribution of LiDAR returns demonstrated in Figure 4. Importantly, as opposed 

to the foliage profiles and LAI estimates shown in Figure 6 and 7, the CVM technique 

(Coops et al., 2007; Lefsky et al., 1999) is spatially explicit as it divides the canopy 

space into voxels and then compares the classification result of each voxel with those of 

the voxels above. This also explains why the results shown for the full waveform TLS 

data are fundamentally different from those given for the ALS and discrete return TLS 

data. First, the reduction of radial full waveform information to point data, which are 

located at centre of a given beam, leads to an over-representation of the canopy space 

above the EVI, because this space will contain higher return densities than the identical 

volume at the same distance in any vertical direction (see also Figure 3B compared to 

Figure 4C). Second, the volume of below canopy gaps predicted by these individual 

measurements is likely to be overestimated due to the occlusion effect by other 

vegetation elements discussed above (Hilker et al., 2009). 

  

5. Conclusion 

The results of this study have shown that ground based LiDAR measurements can be a 

valuable addition or alternative to airborne LiDAR observations depending on the 
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information need being addressed. While fundamental differences exist in the way 

ground based and airborne LiDAR returns are distributed throughout the canopy, plot 

level estimates of leaf area, foliage profile and dominant and maximum canopy height 

were highly correlated to those derived from airborne measurements. The combination 

of multiple terrestrial LiDAR observations from different locations can be a useful 

technique for overcoming limitations inherent to the radial perspective of TLS and may 

result in more realistic estimates when characterizing the below canopy biomass in a 

spatially explicit mode. 
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