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A geometric optical canopy reflectance (CR) model was run in multiple-forward-mode (MFM) to estimate tree heights at
34 conifer and deciduous forest plots in the Canadian Rocky Mountains. MFM provides a pseudo-inversion modeling
capability that requires no ground data inputs and is instead based on structural look-up tables (LUTs) produced from
forward model runs. IKONOS satellite image red and NIR reflectance values were searched in the MFM-LUTs, with the
associated modeled structure used to derive forest stand height estimates. Overall MFM height accuracies were 0).9m
for pine and #1.4m for aspen against field measured heights. MFM provides a capability for height estimation from
passive optical satellite imagery over larger areas that are neither feasible nor cost-effective using current LiDAR data,
aerial photography, or field-based surveys alone. The MFM approach is suitable for independent use, or for integration
with existing forest inventories or other applications.
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1. INTRODUCTION

Spatial, spectral, and temporal resolution of remotely sensed imagery has improved significantly over the past 15 years.
Finer spatial resolution image data have led to particular improvements in environmental mapping, such as the shift from
forest stand, and plot area analysis to the identification and classification of individual trees (Nelson, et al., 2005).
Lowered costs associated with both image acquisition and processing has in turn increased the temporal resolution by
making the frequent collection of remotely sensed data more attractive for industrial, government and academic forest
managers and researchers. The quantification of forest resources, whether from an ecological or industry based
perspective have traditionally been performed through small area fieldwork and/or aerial survey, of which both have
been criticized for inaccuracies and high costs, especially when multiple observations are required (Maltamo et al., 2006)
as in growth and yield and/or change detection analysis. Tree height information over large areas is important in forest
inventories and for estimating parameters such as stem diameter, basal area, biomass, stand volume and carbon stocks
(Brown, 2002; Cihlar et al., 2002; Fournier et al., 2003; Rosenqvist et al., 2003; Hese et al., 2005; Hall et al., 2006 ).
Active sensors such as radar have been problematic for deriving tree heights (Lefsky ez al., 2002) and current LiDAR
systems, while well suited for tree and stand height measurement (St-Onge ef al., 2003; McCombs et al. 2003; Coops et
al. 2004; Hopkinson et al. 2006; Thomas et al. 2006), are nonetheless expensive and limited in spatial coverage
compared to passive optical satellite imagery (Wulder and Seemann, 2003). As a result, deriving tree height information
from passive optical spaceborne sensors is of high interest to the forest and natural resource community. Results from
conventional image analysis approaches for height estimation, however, have generally been poor (Franklin, 2001).
Errors inherent in photogrammetric height estimates, including inconsistencies among photo-interpreters, have led to
considerable variation in height-based structural parameter estimation. Yet, forest growth and yield are monitored using
species-specific allometric relationships between tree height and stem diameter measurements, as these variables can be
used to provide physical descriptions of forest structure and volume (Todd ef al., 2003). While LiDAR may act to reduce
the requirements in user photogrammetric analysis for both individual tree and canopy height by decreasing this
subjectivity (Lockhart, 2005), it is still prohibitively expensive for many small area localized assessments. Three-
dimensional canopy reflectance (CR) models provide a physical-structural basis to satellite image analysis and have
distinct advantages over conventional, empirical and vegetation index based approaches (Spanner ef al., 1991; Hall et al.,
1995, 1997; Strahler, 1997; Peddle ef al., 1999; Chen et al., 2000; Kimes et al., 2000; Asner et al., 2003). Some of these
models include vertical structural dimensions in their specification and thus represent a potentially more robust, objective
and accurate approach for estimating forest height. Fundamental constraints associated with CR model use in forward
and inverse modes, however, have prevented or limited their use for extracting height and other structural attributes
(Peddle et al., 1999). MFM solves these problems and enables height estimation without field or other inputs. The
objective of this study was to implement and evaluate MFM for forest stand height estimation in mountainous terrain,
with validation against field measurements for two common montane forest species.
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2. EXPERIMENT

The 75 km? study area was located in Kananaskis, Alberta, Canada centered at 51° 1° 13”N - 115° 4’ 20”W in a montane
ecological subregion on the eastern slopes of the Canadian Rocky Mountains (Kirby, 1973; Achuff, 1992). IKONOS 4m
multispectral satellite data were acquired August 27, 2001 with solar azimuth and zenith angles of 157.21° and 42.57°,
respectively. This study utilized the red and near-infrared IKONOS image bands, radiometrically corrected to reflectance
using pseudo-invariant field calibration targets and geometrically registered to the UTM projection using differentially
corrected GPS (DGPS) field data. A total of thirty-four 100m? field plots were located in predominant stands of
trembling aspen (Populus tremuloides) (n=20) and lodgepole pine (Pinus contorta) (n=14). Using DGPS, the location of
the four corners and center of each 10x10m plot was measured for accurate plot placement within the digital image.

The Li and Strahler (1992) Geometric Optical Mutual Shadowing (GOMS) canopy reflectance model was run
in MFM to produce reflectance values for use with the satellite imagery. The structural parameters utilized in GOMS
were horizontal crown radius (r), vertical crown radius (b), height to crown center (h), and height distribution (dh), with
stand density indicated as percent crown closure and based on a Poisson distribution. GOMS model parameters were
measured at each plot for the purpose of MFM model validation (i.e. these values were not required for MFM
processing). Tree height, and height to live crown was measured throughout each plot using a clinometer to derive values
for vertical crown radius and height to crown center. Horizontal crown radius was measured using a tape-rule and
densitometer.

Image endmember values for sunlit canopy (Pc), background (Pb) and shadow (Ps) were obtained by analysing
red and near-infrared image scatterplots with Pc derived from the area of brightest canopy response in spectral space, Pb
from pixels located in areas of open background, and Ps from the darkest image areas as a surrogate for shadow. This
approach was consistent with earlier work involving endmember determination in forest stands by Peddle and Johnson
(2000) in this study area, as well as by Hall ez al. (1995) and Peddle ez al. (1999).

A full range of structural input possibilities was considered in MFM for this study area with increment step
sizes selected based on the desired precision of the structural output and with reference to LUT size considerations. The
image and MFM analysis was conducted at the scale of forest stands, as represented by the series of plots. The nearest
neighbour satellite image pixel reflectance value corresponding to each plot DGPS location was used for MFM
matching. MFM height was derived as the sum of vertical crown radius and height to crown center (h+b) from the MFM
matches obtained. Validation of MFM height at each plot was achieved against individual tree heights measured in the
field aggregated to the plot.

3. RESULTS AND DISCUSSION

A higher level of agreement between modeled and measured height was evident for Pinus contorta than for Populus
tremuloides, with mean differences of £0.9m and +1.4m, respectively. The variability associated with these results was
consistent for both conifer and deciduous (standard deviation of 1.3m for Pinus contorta, 1.7m for Populus tremuloides).
For Pinus contorta, 6 of the 14 plots had height differences <lm, and 12 of the 14 plots had differences <2.5m. Two
plots (23, 31) had differences exceeding 4m. For Populus tremuloides, 5 of the 20 plots were within a 1m difference in
height, whereas 5 other plots had height differences that were up to Sm. This greater level of error occurred with taller
deciduous trees (above 17.5m in all cases). The results by plot indicate that MFM errors generally involved
underestimation of tree height. The greater correspondence of MFM results for Pinus contorta compared to Populus
tremuloides was likely due to the GOMS model being better suited for conifer stands in terms of crown shape,
distribution, and model function (Li and Strahler, 1992).

Table 1. MFM vs. Field Height Estimates

Absolute Difference
Min Max | Mean Min Max | Mean Min Max Mean

Pinus contorta 9.9 15.3 134 14.6 0.7 1.8
Populus tremuloides  10.5 | 188 | 151 125 | 138 | 132 00 | 54 | 27

Field Height MFM Height

Species

These results compared favorably to other studies in height estimation from passive optical (St-Onge et al.,
2008; Magnusson and Fransson, 2005; Oza et al., 1989), SAR (Rowland et al., 2008), and LiDAR (Suarez et al., 2005;
Takahashi et al., 2005; Holmgren et al., 2003; Naesset, 1997), while removing the requirement for in-depth field level
pre-assessment of forest stand characteristics. It is felt that the height estimation methods presented in this research are
suitable for general provincial and national inventory purposes in areas of difficult terrain.
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4. CONCLUSIONS

MFM CR modeling provides a pseudo-inversion modeling capability for estimating forest stand height information from
passive optical satellite imagery. This was demonstrated for Pinus contorta and Populus tremuloides stands in a
challenging, high relief mountainous environment. For larger areas and regional scales, the level of error suggested from
this study is likely reasonable to tolerate compared with current LiDAR, aerial photographic or field based surveys that
are prohibitively expensive, impractical, or both, over similar spatial extents. The advantages of MFM include: (i) an
ability to extract structural information from non-invertible CR models; (ii) no ground data are required, only ranges of
variables are needed which are simple to provide; (iii) the approach has been demonstrated in other published studies for
a variety of biophysical-structural applications, so height information can be provided in a broader context; (iv) it is
suitable for different types of imagery, models, and forest ecosystems; and, (v) it provides standard forest structural
output that is appropriate both for independent usage, as well as to augment or update existing forest inventories (or for
other forestry applications). A follow-up stage of this study is using the derived MFM height information together with
other MFM outputs for estimating parameters such as biomass and stand volume.
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