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1.  Abstract  

Detection of low level infestation in forest stands is of principle importance to 

determine effective control strategies before the attack spread to large areas. Of 

particular concern is the ongoing mountain pine beetle, Dendroctonus 

ponderosae (Hopkins) epidemic, which has caused approximately 14 million 

hectares of damage to lodgepole pine (Pinus contorta Dougl. ex. Loud var. 

latifolia Engl.) forests in western Canada. At the stand level attacked trees are 

often difficult to locate and can remain undetected until the infestation has 

become established beyond a small number of trees. As such, methods are 

required to detect and characterise low levels of attack prior to infestation 

expansion, to inform management, and to aid mitigation activities. In this paper, 

an adaptive cluster sampling approach was applied to very fine-scale (20 cm) 

digital aerial imagery to locate mountain pine beetle damaged trees at the leading 

edge of the current infestation. An adaptive cluster sampling technique was 

applied to estimate infestation levels on a 40 km2 site in western Canada with 

results indicating a mean number of 7.36 infested trees per hectare with a 

variance of 18.34. In contrast a non-adaptive approach estimated the mean 

number of infested trees in the same area to be 61.56 infested trees per hectare 

with a variance of 41.43. Using a relative efficiency estimator the adaptive cluster 

sampling approach was found to be over two times more efficient when 

compared to the non-adaptive approach.  
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2.0 Introduction 

2.1 Mountain pine beetle  

Infestation by the mountain pine beetle, Dendroctonus ponderosae (Hopkins)  is 

of particular importance in western Canada due to the widespread damage to the 

pine forests of western Canada and continues to be the leading cause of 

mortality across the region (Westfall and Ebata 2008). Infestations typically 

initiate in individual trees or small groups on the landscape that expand rapidly to 

large areas. In 1999, attack was estimated to cover an area of 164,000 hectares 

(Westfall and Ebata 2008), and by 2008 this area increased to over 14 million 

hectares (Westfall and Ebata 2009). In British Columbia, beetles have attacked 

the lodgepole pine (Pinus contorta Dougl. ex. Loud var. latifolia Engl.) forests that 

dominate much of the southern and central interior region of the Province. 

Infestation has continued to spread east into the pine forests of Alberta, some of 

which historically have been unaffected by the mountain pine beetle. In Alberta, 

the beetles have the potential to transition from lodgepole pine to jack pine (Pinus 

banksiana Lamb.) and infest the boreal forest should annual temperatures 

remain favourable for colonisation, emergence, and dispersal (Logan and Powell 

2001, 2003; Carroll et al. 2004, 2006).  

 

Expansion has occurred because previous limitations to infestation have relaxed, 

allowing large populations of mountain pine beetles to affect areas with no 

historical record of attack. Infestation has spread rapidly due to two factors, the 

first being favourable periods of weather sustained over long periods of time 
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(Safranyik 1978) and more recently, alterations in climatic thresholds (Raffa et al. 

2008) that historically caused mortality of beetles (minimum temperatures less 

than -40°C) which have enabled larvae to survive cold winters, therefore 

increasing the size of the attacking population. Secondly, the abundant pine 

forests in the interior forests of British Columbia and western Alberta provide 

large areas of highly suitable host material for attack by the beetles (Safranyik 

1978; Taylor and Carroll 2004). 

 

2.2 Forest health monitoring 

In western Canada, forest health surveys locate trees attacked by forest pests 

and monitor the spread of diseases and insect damage, and provide information 

to guide mitigation activities. Typically, control of infestations is implemented by 

detecting mountain pine beetle killed trees. Approximately 1 year after attack 

trees exhibit red foliage (known as red attack) which indicates the locations of 

infestation. Ground crews are dispatched to these locations and the infested 

trees in close proximity to the red attacks are located, felled, and burned 

(Maclauchlan and Brooks 1998). By removing infested trees the beetle 

population is decreased and future infestations will decline or remain stable 

because the number of attacking beetles available the following year is reduced. 

Given the nature of mountain pine beetle infestations to infest trees close to 

previously attacked trees it is possible that trees missed during surveys will be 

detected on the ground and the potential for future infestation expansion is 

further reduced (Carroll et al. 2006; Coggins et al. 2008). 
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Surveys record the cause of the damage, and assess the severity and extent of 

mortality within forest stands (Westfall and Ebata 2008). Mountain pine beetle 

attack information is collected using a variety of survey techniques, ranging from 

coarse (regional) to fine-scale (operational), with each used differently depending 

on the survey scale and the requirements of the end-user (Wulder et al. 2006a). 

Aerial overview surveys provide regional data and are completed by flying over 

the Province in fixed-wing aircraft to identify forest stands affected by pests and 

diseases, this regional information then guides finer-scale surveys over select 

portions of the land-base which record the damaging agent, number, and 

geographic location of infested trees.  

 

Digital remotely sensed data can also be used to identify areas of forest pest and 

disease (Ciesla 2000). Historically, Landsat imagery (30 m spatial resolution) has 

been used to identify mountain pine beetle infestations, with detection accuracies 

ranging between 70% and 85% (Franklin et al. 2003; Skakun et al. 2003; Wulder 

et al. 2006b). Franklin et al. (2003) identified infestations within a 2 ha area on a 

single image acquired from the TM sensor at an overall red attack detection 

accuracy of 73.3% ± 6%, p = 0.05 (Franklin et al. 2003). Skakun et al. (2003) 

processed a time series of Landsat TM data to identify and confirm red attack 

damage in forest stands. This approach produced an accuracy of 76% (± 12%, p 

< 0.05) for groups of 10 to 29 infested trees, and 81% (± 11% for groups of 20 to 

50 infested trees). Multi-date Landsat scenes were also utilised by Wulder et al. 
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(2006c) to monitor forest change due to mountain pine beetle infestation and 

reports an 86% accuracy (± 7%). High spatial resolution imagery has also shown 

ability to detect infestations. White et al. (2005) utilised IKONOS imagery (4 m 

multispectral spatial resolution) with an unsupervised clustering approach to 

identify infestations near Prince George, British Columbia. Light infestations (1% 

to 5% of the trees infested within a forest stand) were detected with an accuracy 

of 71% and moderate infestations (>5% to <20% of a forest stand) with 92.5%. 

Coops et al. (2006) used imagery from the QuickBird satellite (2.44 m 

multispectral spatial resolution) to detect red attack damage. The imagery was 

classified into attacked trees and healthy trees and the number of red pixels 

counted. the relationship between the number of red attack pixels and red attack 

crowns observed in forest health surveys was found to be significant (r2=0.48, 

p<0.001, standard error=2.8 crowns). Very high spatial resolution digital aerial 

imagery (as fine as 5 cm) also has the potential to identify mountain pine beetle 

attack. Imagery is usually acquired in the visible portion of the electromagnetic 

spectrum (e.g. blue, green, red, approximately 0.4 - 0.7 μm) and has similar 

characteristics to aerial photographs. Coggins et al. (2008) utilised 10 cm spatial 

resolution digital aerial imagery to extract information including mountain pine 

beetle red attack, which was defined with an accuracy of 80.2% when compared 

to field plots.  

 

2.4 Role for sampling  
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A limitation of high spatial resolution satellite and digital aerial imagery is the 

small image extent, causing large area acquisition to be costly and resulting in 

the need for much image processing prior to analysis. The limited extent of very 

high spatial resolution airborne imagery is however, well suited to a sampling 

approach where imagery can be acquired over several smaller areas and 

integrated into a sampling scheme, from which forest health variables can then 

be defined. This technique offers a lower-cost solution to obtain accurate data 

over large areas in a statistically sound manner. Sampling for infestation in its 

simplest form can consist of conducting a simple random sample on a remotely 

sensed image with observations recorded in sample plots selected at random 

locations over the entire area of the image. Estimates of the mean, variance, and 

confidence limits for the number of red attacked trees are determined using 

simple random sample estimates and then scaled up by strata. This method 

however, can provide high variability and a wide confidence range. Adaptive 

cluster sampling has been demonstrated to determine rare and elusive 

populations that are spatially clustered (Thompson 1990) and can provide 

estimates of population densities over large areas. Previous studies have utilised 

adaptive cluster sampling for a variety of applications including for example, 

providing estimates of low density mussel populations (Smith et al. 2003), 

estimating the density of wintering waterfowl (Smith et al. 1995), and estimating 

stock size of fish in estuarine rivers (Conners and Schwager 2002). In a forestry 

context this adaptive cluster sampling approach has also been utilised to assess 

the presence of rare tree species in Nepal (Acharaya et al. 2000), in combination 
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with probability proportional to size sampling to predict forest inventory variables 

in the United States (Roesch 1993), and to inventory sparse forest populations in 

Finland (Talvitie et al. 2006). 

 

2.5 Objectives  

The goal of this paper is to demonstrate an approach for using samples of 

airborne imagery to produce robust estimates of population wide estimates of low 

level mountain pine beetle attack. To meet this goal, the primary objective is to 

determine the location and number of individual red attack trees within large 

areas by utilising an adaptive cluster sampling in a line transect design. To define 

areas of infestation an automated object-based classification system (Bunting 

and Lucas 2006) was employed, and sites located along the transect lines. The 

mean number of infested trees and the variance was then calculated and 

compared to estimates of statistics derived from a conventional non-adaptive 

approach. A relative efficiency estimator was used to demonstrate the utility of 

the adaptive cluster approach to determine the number of mountain pine beetle 

killed trees over the landscape.  
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3. Materials and Methods 

3.1 Site description  

This research was conducted in forests situated on the western slopes of the 

Canadian Rocky Mountains near the town of Tumbler Ridge, British Columbia, 

Canada (54°38’ N, 120°41’ W) (Fig. 1). This location is representative of 

economically valuable forest stands on the border between British Columbia and 

Alberta. The topography around the study area consists of high-elevation (1800 

m) mountainous regions, mid-elevation forests (1200 m), and some low-elevation 

prairie land (900 m). The forests are dominated by mature lodgepole pine 

occasionally mixed with black spruce (Picea mariana (Mill.) BSP) which grow on 

valley sides. Sub-alpine fir (Abies lasiocarpa (Hook.) Nutt), western larch (Larix 

occidentalis Nutt.), and black spruce grow in flat areas, around swamps and on 

river banks. 
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Figure 1. The study area, situated near the town of Tumbler Ridge. The 20 cm spatial resolution 
digital aerial image is provided also to give context to the size of the sample area. 

Typically in this area, lodgepole pine naturally regenerates after fire which has 

resulted in even-aged, pine dominated, stands that grow to uniform dimensions 

(Moir 1965). The lodgepole pine present in the area are considered to be 

susceptible to mountain pine beetles due its proximity to the infestation spreading 

north and east across British Columbia and due to trees being larger than 12.5 

cm. When combined with elevation and stand age these conditions are 

favourable to continue spread of the infestation (Shore and Safranyik 1992; 

Shore et al. 2000). 
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3.2 Data  

3.2.1 High-spatial resolution digital aerial imagery  

High-spatial resolution digital aerial images were acquired with a Canon EOS-

1Ds Mark II camera, with a f1.8 Canon lens fitted with a Bayer pattern filter, 

mounted on a fixed wing aircraft. The camera uses a complementary metal–

oxide–semiconductor (CMOS) sensor which provides an effective resolution of 

16.7 megapixels. Imagery was acquired during August 2007 from an altitude of 

2200 m with a focal length of 85 mm to produce a spatial resolution of 20 cm. 

Illumination variation was reduced over each scene by acquiring imagery as 

close to solar noon as possible. Imagery was georectified to a QuickBird 

multispectral (2.44 m spatial resolution) image projected to UTM North American 

Datum 83. Image coordinates were supplied by an onboard GPS coupled with an 

inertial navigation system to assist accurate georectification. Imagery was 

acquired over an area of 40 km2 (10 km x 4 km or 50,000 x 20,000 pixels) and 

mosaicked together to form a continuous image. Imagery was recorded in 3 

channels representing the spectral ranges which approximate to: 0.4 – 0.5 μm 

(blue), 0.5 – 0.6 μm (green), and 0.6 – 0.7 μm (red).  

 

3.3 Phase 1: Individual tree crown delineation on 10 cm  

Individual tree crowns can be delineated on high-spatial resolution imagery using 

object-based classification techniques and can be further classified according to 

species or health status. Bunting and Lucas (2006) successfully utilised Compact 
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Airborne Spectrographic Imager remotely sensed data to define individual tree 

crowns in Australian forests with accuracies of approximately 70% (range 48% - 

88%) for clusters and individual trees. Tree crowns were also successfully 

delineated on 10 cm spatial resolution digital aerial imagery in forests in western 

Canada with accuracies between 50% and 100% (mean 80.2%) when trees 

delineated on the imagery were correctly identified and compared with field 

measured trees (Coggins et al. 2008). Following crown delineation, stem 

diameter and stocking density were estimated from the image derived crowns 

and also compared to field measurements using t-tests (stocking density: r2 = 

0.91, se = 506.65, p <0.001; stem diameter: r2 = 0.51, standard error (se) = 2.63, 

p <0.001). 

 

Both these studies provide significant confidence in the approach and 

demonstrate that object-based classification has the ability to accurately define 

individual trees on remotely sensed data. With the methodology previously 

demonstrated we applied the same technique to delineate individual red attack 

tree crowns on the 20 cm spatial resolution imagery using Definiens Developer 

version 7 (Definiens AG 2007). The object-based classification algorithm (Fig. 2) 

first identified individual trees within the image; secondly, determined the number 

of red attack trees; and finally, generated estimates of the total number of all 

trees and calculate crown areas. A mask was first created to differentiate 

between forest and non-tree vegetation such as bare ground and roads. The role 

of the mask was critical as it defined the outer boundaries of tree crowns and 
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aimed to remove shadowing and ground vegetation from the segmentation 

procedure (Gougeon and Leckie 1999; Pouliot et al. 2002; Bunting and Lucas 

2006). Secondly, all non-forested areas in the image were classified by 

identifying features with bright pixels, e.g. roads, recent clearcuts, and oil and gas 

landings. Thirdly, all remaining objects were classified as forest and a delineation 

algorithm was created to define individual tree crowns. To begin the delineation 

process the brightest objects in the forest class were used to identify as individual 

tree crowns (Bunting and Lucas 2006). Following identification, bordering objects 

with similar features were defined and the algorithm was programmed to merge 

and reclassify these objects into individual tree crowns. Following delineation, 

tree crowns were classified using four shape criteria, area, roundness, elliptical 

fit, and the ratio of object length to width, each of which has been proven to be 

useful when used to classify tree crowns (Bunting and Lucas 2006). Red attack 

trees were distinguished from healthy trees by applying thresholds to the mean of 

the red band, the mean of the green band, and red ratio criteria. Every red tree 

was identified and was used to provide an estimate of the population of mountain 

pine beetle attacked trees over the area in the image. 
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Figure 2. Flow chart of the crown delineation and individual tree object-based classification 
algorithm. 

 

3.4 Phase 2: Adaptive cluster sampling    

Of the possible sampling options (e.g. simple random, systematic, stratified), 

adaptive cluster sampling with a line transect approach was utilised in this study. 

The adaptive cluster sampling is initiated by placing a sample grid over the area 
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of interest (Fig. 3a) from a random starting point. With adaptive cluster sampling 

the area sampled is increased, from the initial sample unit containing one or more 

objects of interest (yi) by adding additional units at the cardinal directions around 

the initial sample unit (Fig. 3b). The object of interest in this study is the number 

of red attack trees present in each of the networks. Sample units continue to be 

added according to a predetermined condition of interest C, if for example C > 1 

then all units adjacent to the initial unit in the cardinal directions are added to 

sample and the number of units increases in a similar fashion until C is no longer 

satisfied, the final collection of sample units is known as the sample network (Fig. 

3c). The units at the periphery of the sample network which do not satisfy C are 

also included and are colloquially referred to as edge units (Fig. 3d; Thompson 

1990) so the sample has a number of units at the centre that contain the object of 

interest and are surrounded by a number of blank units. 
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Figure 3. An example of an initial sample unit located within a grid square in an adaptive cluster 
sampling design (a). Additional sample units positioned at the cardinal directions of the initial 
sample unit (b). The final sample network (c) and the edge units which contain no instances of the 
object of interest (d). The presence of red attack in cells is indicated by RA. 

 

With adaptive cluster sampling the initial sample size is determined using a 

simple random sample estimator (Thompson 1990), and units are placed at 

random on a square grid throughout an image. The line transects were chosen at 

random and placed within the grid using a simple random sample estimator: 
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Where t is the t-value for a 98% confidence level, E is the acceptable error, in this 

case 5%, M is the number of grid squares in each transect line (secondary units), 

and the variance (var) was taken from a study performed within the area (Wulder 

et al. 2009). Variance is calculated using the equation: 
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Where RAmax is the highest number of red attack trees that exist within the 

study area, and RAmin the lowest number of red attack trees. 

 

To initiate the adaptive cluster sampling approach a square grid comprising of 

grid squares 60 m x 60 m was overlaid on the digital aerial image (Fig. 4a). The 

grid squares correspond to the size of field plots used during a reconnaissance of 

the study area in 2008. Furthermore, mountain pine beetles are known to 

disperse within a 30 m radius from previously attacked trees (Safranyik et al. 

1992). Therefore, this plot size was thought to be suitable to locate mountain pine 

beetle infestation over the landscape.  

 

Transect lines (primary units) were positioned at random intervals on the sample 

grid after which mountain pine beetle damage was located within each line (Fig. 
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4a). Initial sample units were located at each point where mountain pine beetle 

attack occurred, following which sample networks were built around each sample 

unit (Fig. 4b). The number of red attack trees in each sample network was 

obtained using an object based classification technique to first delineate all tree 

crowns within the sample network and then was trained to focus on the red attack 

trees only. Estimates of the mean, variance, and confidence limits were 

calculated using the number of red attacked trees in each network. To estimate 

the mean and the variance a Horvitz-Thompson estimator (Horvitz and 

Thompson 1952) is used, which provides an unbiased estimate by dividing each 

y-value by the probability that unit is included in the sample (Thompson 1991a). 

For the line transect method this probability is estimated by determining which 

primary units are likely to intersect network k in the initial sample. This probability 

is given by: 

 

n

N

n

xN k

k /1         (3) 

 

Where N is the number of primary units available within the sample grid, n is the 

number of sample transects used for the study and xk is the width of the network 

at the point where the initial sample unit is located within the line transect sample.  

 

This probability is calculated for each network over the sample area, following 

which the probability that on or more of the primary units that intersect network k 

and j is included in the initial sample (Thompson 1991a): 



 20 

 

n

N

n

xxxN

n

xN

n

xN kjjkjk

kj /1     (4) 

 

Where xk and xj refer to the width of each network in a pair, and xkj refers to the 

number of primary units that intersect both networks k and j (Thompson 1991a).  

 

The probabilities calculated by the equations are used to provide unbiased 

estimates of the mean and variance: 

 
K

k k

k

acs

y

MN 1

1
         (5) 

 
 

K

k

K

j jk

kj

kj

jk

acs

yy

NM
Var

1 1
22

1
1

     (6) 

 

Where all variables remain the same as previously described, k is any given  

network within the population and K is the total number of networks. 

 

The variance estimator can be used to provide estimates of the standard 

deviation by calculating the square root of the variance estimator. The standard 

deviation can be used to calculate a range for a confidence interval around the 

mean. These equations are the basis which provides estimates of the number of 

red attack trees within a landscape using an adaptive cluster sampling approach.  
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Figure 3. An example of an initial sample unit located within a grid square in an adaptive cluster 
sampling design (a). Additional sample units positioned at the cardinal directions of the initial 
sample unit (b). The final sample network (c) and the edge units which contain no instances of the 
object of interest (d). The presence of red attack in cells is indicated by RA. 
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3.5 Phase 3: Non-adaptive approach  

 

In order to assess the efficiency of the adaptive cluster sampling a non-

adaptive approach was also utilised, whereby the sample size corresponded to 

the number of sample units used for the adaptive cluster sampling approach. The 

sample units were also 60 m x 60 m in size which were randomly placed 

throughout the sample grid and all these units were run through an object-based 

classification algorithm to extract the number of red attack trees. To calculate the 

number of red attacked trees within the landscape using a non-adaptive sampling 

technique an unbiased estimator of the mean was used:  

 

n

i

iY
Mn 1

1
          (7) 

 

Where Yi is the number of red attack trees in the sampling unit and all other 

variables are described previously. An unbiased estimator of the variance is: 
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As for the adaptive sampling technique, the mean, variance, standard deviation 

and a confidence range were calculated for the non-adaptive approach. 

3.6 Phase 4: Relative efficiency 

Lastly, the relative efficiency of adaptive cluster sampling compared with a non-

adaptive approach was calculated. The relative efficiency is calculated by 

comparing the variance estimates of one sampling technique to the other (Kohl et 

al. 2006). In this study, the variance of the adaptive cluster sampling approach 

(varACS) was compared to the variance of the non-adaptive approach (varSRS): 

 

SRS

ACSRE
var

var
         (9) 

 

High values indicate the numerator is more efficient than the sampling 

technique used for the denominator. Comparatively, a value close or equal to 1 

suggests there is little difference between one sampling method over the other 

(Kohl et al. 2006).
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4. Results  

The adaptive cluster sampling approach was conducted on a 20 cm digital 

aerial image mosaic covering an area of 40 km2. With a 60 m x 60 m sample plot 

size the total number of primary units (N) available was 162, with 69 secondary 

units (M) contained within each transect line (Table 1). The total number of 

sample units possible for the area is N * M = 11,178 sample units. To obtain a 

sample size using equation 1, the maximum number of red attack trees was 155 

and the minimum was assumed to be 0, which estimated the variance (from 

equation 2) to be 1501.56. The number of transect lines (primary units) estimated 

to provide accurate results was 5 (n). The number of sample units used for the 

non-adaptive approach was 192, the same number of units utilised in all 

networks in the adaptive approach. 

 

The object-based classification algorithm indicated red attack tree locations on 

each transect line. Initial sample units were positioned over each occurrence of 

mountain pine beetle damage, in total 37 initial sample units were positioned 

within the transect lines. Sample networks were then built around the initial 

sample units and the red attack trees were identified within each network by the 

object-based classification algorithm (Fig. 4c). The total number of red attack 

trees defined in the networks was 29,635. 

 

The mean number of red attacked trees per hectare located using adaptive 

cluster sampling was 7.36 trees. The variance was 18.34, and a standard 



 25 

deviation of 4.28 trees per hectare. The confidence limit at the 95% level ranged 

from -12.45 to 27.18 (the confidence range was 39.63) with t 0.05/2, 5-1 = 2.776. 

The non-adaptive approach had a mean of 61.56 red attack trees per hectare, 

with a variance of 41.43, and a standard deviation of 6.44 red attack trees. The 

confidence interval ranged from 40.53 to 82.59 (the confidence range was 42.06) 

using a t-value of 1.96 (t 0.05/2 192-1). Only 164 red attack trees were delineated in 

the sample units for the non-adaptive approach. The relative efficiency of the 

non-adaptive approach compared with the adaptive cluster sampling approach 

demonstrates the latter gives (varSRS / varACS = 2.26) more than twice the 

efficiency when estimating the number of red attack trees on the landscape. 
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Table 1. A summary of input variables and estimates provided by adaptive cluster sampling and the 
non-adaptive approach. 

Variables 
Adaptive cluster 

sampling 

Non-adaptive 

approach 

N 162 192 

M 69 N/A 

n 5 N/A 

Number of red attack trees 

located 
29,635 164 

Networks 34 N/A 

Mean 7.36 61.56 

Variance 18.34 41.43 

Standard deviation 4.28 6.44 

Confidence limit -12.45, 27.18 40.53, 82.59 
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5. Discussion 

Adaptive cluster sampling is well suited to locate low level infestations and 

estimate the number of mountain pine beetle attacked trees over large areas. 

Results indicate the mean and variance for the adaptive technique (7.36 mean 

and 18.34 variance) are considerably smaller than those estimated by the non-

adaptive technique (61.56 mean and 41.43 variance). Similar results were found 

by Thompson (1991a) who used adaptive cluster sampling with line transects. 

The high relative efficiency value is caused by the low number of red attack trees 

determined within the sample units in the non-adaptive technique. Out of 192 

sample units only 27 contained red attack trees, the random placement of sample 

units resulted in areas that were sampled without red attack damage, or were 

very close to red attack trees but did not encapsulate them. Comparatively to 

non-adaptive approach, once initial sample units were determined for the 

adaptive approach, sampling was concentrated over areas containing mountain 

pine beetle attack. Therefore, many red attack trees were defined and estimates 

from these sample networks are less variable than from the non-adaptive 

approach. 

 

Despite the apparent advantages of cluster sampling to provide estimates of low-

level mountain pine beetle attacks there a number of caveats. First, the final 

sample size cannot be fully determined prior to sampling because networks are 

grown during the sampling process. Second, due to the nature of the calculations 

it is difficult to perform adaptive cluster sampling over very large areas if small 
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area sample units are required. Therefore, the sample unit size must be chosen 

carefully before sampling is initiated. If however, sample unit sizes are too large, 

an object of interest will always be contained with the unit, consequently very 

large areas are sampled and there would be little benefit from conducting 

adaptive cluster sampling. 

 

Adaptive cluster sampling can be easily applied in combination with most 

conventional sampling designs, for example this paper used adaptive cluster 

sampling in conjunction with line transect sampling, where the initial sample 

points (primary units) are lines. Each line is equally divided into square 

secondary units and sampling starts with all squares that contain the object of 

interest (Thompson 1991a). Other examples of variations on adaptive cluster 

sampling have included; systematic adaptive sampling where the primary sample 

plots are placed throughout an image or area at a fixed distance apart 

(Thompson 1991a); double sampling with adaptive cluster sampling where 

samples are selected in two phases, first an inexpensive first phase sample is 

selected using adaptive cluster sampling design, then the networks are used to 

select an ordinary one- or two-phase subsample of units (Felix-Medina and 

Thompson 2004); stratified adaptive cluster sampling has been used whereby the 

population is stratified and then networks containing a object of interest are built 

in each strata following sample plot placement (Thompson 1991b). 
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The ease by which adaptive techniques are used in conjunction with other 

sampling designs suggests it would be relatively simple to scale the number of 

red attack trees from very high spatial resolution imagery to larger areas, using a 

2-phase stratified sampling design. This approach could be employed to predict 

the number of red attack trees over very large areas. Very fine scale (i.e., < 20 

cm spatial resolution) imagery could be used as sample plots within strata in a 

much larger area and adaptive cluster sampling performed in these images and 

then extrapolated up to the strata level and finally to the landscape level. 

Thereby, accurate estimates of the number of infested trees could be provided 

over very large areas. At the landscape level, inferences could be made 

regarding the location of red attacked trees and the severity of the attack over the 

landscape. 

 

The information provided by adaptive cluster sampling can be utilised to provide 

additional data for mitigation crews, the results from this approach has the 

potential to provide an approximate number of infested trees per hectare that can 

be expected. For the purpose of this discussion, detection of infested trees by 

surveys or through sampling methods implies these trees will be removed during 

ground surveys. The mean number of infested trees per hectare provides an 

estimate of the severity and extent of the infestation, the variance around the 

mean however, provides an indication of the number of trees per hectare that are 

potentially infested. In this study, the adaptive cluster sampling approach 

generated a variance of 19 trees per hectare, which indicates that a further 11 
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infested trees per hectare could exist. If results from adaptive cluster sampling 

were utilised, mitigation could be completed on 8 infested trees per hectare if 

strictly following the mean. The trees left undetected and unmitigated will provide 

a source of beetles to attack and continue infestation the following year. Ground 

surveys will lessen the potential for infestation to continue, however forests 

should be monitored in subsequent years to ensure infestations are detected and 

controlled to keep populations stable or in decline. 

 

Adaptive cluster sampling has the potential to be beneficial when estimating 

small clusters of mountain pine beetle damage at the leading edge of the 

infestation. In areas such as western Alberta where the beetle occurs in small 

clusters adaptive cluster sampling could be used to identify areas of special 

concern where attack is starting to expand and return statistically sound 

estimates of the levels of attack and their locations. The spatial locations of 

attack are especially important as mitigation crews can be guided by this 

information to help slow the eastward spread of attack through mitigation. Other 

advantages to consider when using remotely sensed data in conjunction with this 

sampling technique include, digital processing of remotely data to enhance and 

locate all red attack trees, and the ability to extract other data, such as the 

volume of timber attacked. In areas other than the leading edge, the aerial 

overview surveys currently utilised are sufficient to gather data on the progress of 

the infestation. Besides which, these areas generally contain high levels of 
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infestation which would preclude the use of adaptive cluster sampling and also 

do not require fine-scale estimates of forest health data. 

 

Lastly, adaptive cluster has the potential to determine other rare and clustered 

events. This approach has been used to idenitify rare tree species (Acharaya et 

al. 2000), and sparse forest populations (Talvitie et al. 2006) and to predict forest 

inventory variables (Roesch 1993). The methodology used in this study is 

applicable to forests globally, to detect rare and clustered populations on the 

landscape that may be easily identified on remotely sensed imagery. The object 

of interest could be defined as windblow, root disease, old growth forest, or insect 

infestations. All of which can be defined on remotely sensed imagery and 

statistics generated from adaptive cluster sampling to define their populations. 

Adaptive cluster sampling also has the potential to be combined with 

comventional sampling schemes, such as stratified sampling. The United States 

and Canada have large areas of forest cover which are generally homogeneous. 

However, forests in Europe are distinctly more fragmented and therefore, the 

landscape could be stratified into land use classes and adaptive cluster sampling 

used on forested areas to generate information. 
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6. Conclusion  

Adaptive cluster sampling has the potential to be a useful tool to estimate the 

number of red attack trees over large areas, or particular focus regions, on the 

landscape. This technique is especially useful at the leading edge of the 

infestation to identify clusters of low-level mountain pine beetle damage. When 

compared to a conventional non-adaptive approach, adaptive cluster sampling is 

demonstrated to be more efficient to assess the number and location of red 

attack trees on the landscape. Estimates provided by adaptive cluster sampling 

will provide accurate data to help inform forest managers when making decisions 

for pest and disease management purposes. This data could guide mitigation to 

help control infestations, the sample networks provide the location of mountain 

pine beetle attacked trees and the indicate the level of attack severity allowing 

forest managers to prioritize resources to control outbreaks in highly sensitive or 

valuable forest stands. 
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