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10In this technical note we present a new technique using mixed linear models for

characterizing a mountain pine beetle (Dendroctonus ponderosae Hopkins) infesta-

tion from multiyear satellite imagery. The main benefit of our approach is an

ability to determine the statistical significance of each annual spectral change.

Knowledge of the annual spectral change characteristics can then be used to

15statistically determine if a disturbance event has occurred, the timing of a given

disturbance event, as well as to provide information for clustering fitted multi-

temporal reflectance curves (i.e. spectral trajectories) with a common shape. The

spatial clustering of spectral trajectories provides insights upon the temporal

process towards understanding the nature of the disturbance and recovery evident

20as imposed by infestation by mountain pine beetle over a 14-year period.

1. Introduction

Time-series analysis of satellite imagery has been demonstrated as a tool to characterise

disturbance events in forested areas (Coppin et al. 2004, Kennedy et al. 2007, Roder

et al. 2008). However, a number of challenges remain when trajectory-based methods

25are used to cluster fitted multitemporal reflectance curves, particularly for disturbance

events where the forest canopy has not been entirely removed (e.g. mountain pine

beetle, Dendroctonus ponderosae Hopkins) and the magnitude of spectral change is
low. The major difficulty relates to the discrimination of real disturbance events from

noise. Given that changes in reflectance have been found to occur both within and

30between image dates for reasons other than a forest disturbance event. For example,

seasonality, silvicultural practices, understorey vegetation, geometric registration,

radiometric normalization, atmospheric conditions and correction, and sensor calibra-

tion issues were indicated to influence reflectance values (Radeloff et al. 1999, Franklin

et al. 2005, Schroeder et al. 2006). In addition, gaps in the data record may occur from

35excessive cloud cover (Ju and Roy 2008) limiting the ability to detect physiological or
forest disturbance events (Wilson and Sader 2002, Jin and Sader 2005).

In this technical note we demonstrate an approach for the estimation, classification

and statistical inference of spectral trajectories. We demonstrate the approach for the
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purpose of extracting the area and timing of disturbance events of infestation over a

4014-year period in the central interior of British Columbia, Canada.

2. Methods

2.1 Data characteristics

Seven Landsat-5 Thematic Mapper (TM) and one Landsat-7 Enhanced Thematic

Mapper (ETMþ) scenes were acquired between 26 June 1992 and 3 October 2006 over
45the Morice Timber Supply Area (TSA), British Columbia (Path/Row: 51/22; figure 1).

This site was chosen due to the availability of aerial survey data which documented

the presence and timing of infestation across the study area, with the current infesta-

tion first reported in the mid-1990s. For a more detailed study area description, refer

to Nelson et al. (2006) and Goodwin et al. (2008).

50Data pre-processing involved two critical steps. First, image-to-image geometric

registration was undertaken using a nearest-neighbour 2nd order polynomial trans-

formation. The 2001 ortho-rectified image was used as the base image due to a lack of
cloud cover. All other images were rectified with a root mean square error , 0.5 pixels

(, 15 m). Areas of cloud and cloud shadow were removed via manual interpretation.

55Second, radiometric normalization of images was undertaken to ensure that changes

in spectral reflectance between years correspond to meaningful physiological events

(Chen et al. 2005); whereby we atmospherically corrected the 2001 base image to

derive surface reflectance using the COST model (corrects for cosine of the solar

zenith angle) (Chavez 1996) then utilized the Multivariate Alteration Detection

60(MAD) algorithm (Canty et al. 2004, Schroeder et al. 2006) which utilizes canonical
correlation analysis to locate invariant pixels for use in matching the remaining

Figure 1. Study site in Morice Timber
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Supply Area.

2 N. R. Goodwin et al.



images to the atmospherically corrected base image. Our implementation of the MAD

algorithm, followed that of Schroeder et al. (2006), differing only through our use of

four 1000 � 1000 pixel image subsets (instead of one) to locate invariant pixels.

65Following data pre-processing, TM band 4 (near-infrared, NIR) and TM band 5

(mid-infrared, MIR) were used to calculate the Normalized Difference Moisture
Index (NDMI) for each image and converted to integer format (multiplied by 10

000) using Eq (1). This metric was chosen due to its proven sensitivity to quantify

forest disturbance events (Wilson and Sader 2002, Jin and Sader 2005).

NDMI ¼ NIR�MIR

NIRþMIR
: (1)

702.2 Background to mixed linear modelling

The documented change in a pixel’s value over time may be considered as a sample

derived from a continuous trajectory or spectral curve. Assuming enough samples are

taken to adequately represent the trajectory, functions may then be used to capture

and describe underlying trends in pixel trajectories. In a functional approach to

75classification and clustering, all trajectories must be fitted to the same function

(McLachlan 1991). For a polynomial fit this means that the degree must be high

enough to accommodate all curve shapes in the data. However, overfitting (i.e. too

many model parameters) will lead to adverse effects on results and is a problem that
needs to be addressed. A common approach to address overfitting is to add a model

80term that penalises curvature (Ramsay and Silverman 1997, Heckman and Ramsay

2000). When data consist of repeat observations on individual units (pixels) and the

function of choice is a polynomial in time, a mixed linear model approach can

accommodate the penalty term by casting units as random effects that interacts

with time (McCulloch and Searle 2001, Ruppert et al. 2003). We adopt this mixed

85linear modelling approach for capturing time trends in NDMI.

2.3 Mixed linear modelling

A set of 199 beetle attack locations surveyed between 1996 and 2004 were first

extracted to examine spectral trajectories of beetle attack. At each site, NDMI values

were obtained for n ¼ 9 pixels arranged in a 3 � 3 window and m ¼ 8 years.

90After a location specific scaling of NDMI to the unit interval [0,1] and a correspond-

ing scaling of time (year) we found that a fourth degree ordinary least-squares poly-

nomial fitted to the 9 (pixels) � 8 (years) observations captured the overall temporal

trends in the data quite well (relative errors on a mean of nine pixels , 5%) (figure 2).
As may be expected, there are examples of apparent overfitting where changes in

95NDMI – not considered as beetle attack (i.e. noise) – were being represented by the

model. To incorporate the 3� 3 window structure of the data and to combat overfitting

we considered linear polynomial models with a quintic, quartic, and cubic truncated

power basis along with random pixel and pixel � time interactions (Ruppert et al.

2003). Based on Akaike’s Information Criterion (AIC) adapted to model comparison

100for 3� 3 window data (Vaida and Blanchard 2005, Gurka 2006) we found that a cubic

truncated power basis to be adequate. Q2Specifically, for a single location the model
trajectory is:

Curve fitting of time-series Landsat imagery 3



NDMIij ¼ b0 þ b1tj þ b2t2
j þ b3t3

j þ ai þ
X8

k¼1

tj � Kkð Þ
� �3

þ þ eij ; (2)

where NDMIij is the scaled NDMI of pixel i (i¼ 1,. . ., n¼ 9) at (scaled) time tj (j¼ 1,. .
., m ¼ 8), b0, . . ., b3 are fixed effects regression coefficients, ai is a random pixel effect,

105aik is a random pixel � time interaction (slope) term, Kk is a time (knot) placed at

midpoints between observation years and half a year before the first observation i.e.

Kk ¼ 0:5ðtk�1 þ tkÞ; (3)

where k ¼ 2,. . ., 8 and K1 ¼ t1 � 1
30

, (t – K)þ is the positive part of (t – K), and eij is a

random zero mean error term with (assumed) constant variance. Estimates of fixed

bð Þ effects were obtained via restricted maximum likelihood methods while random
110effects were best linear unbiased predictions (Ruppert et al. 2003). The location

Figure 2. Examples of observed pixel-level temporal trends in NDMI (thin coloured lines) and

Q5

average pixel penalized least-squares third degree polynomial (PLS3, thick black line). The
average of NDMI at years of observation is indicated by red dots. A fourth degree polynomial
fitted by ordinary least-squares (thick red dashed line) illustrates both overfitting (top) and a
nearly perfect match (bottom, hidden behind PLS3).
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specific estimates of the coefficients b0, . . ., b3 define the average time-trajectory of

NDMI. The estimate of the variance covariance matrix of b̂0; :::; b̂3 is obtained as

outlined in Pinheiro and Bates (2000). Q1Application of the delta-technique (Kendall

and Stuart 1969) provides the following estimate of the variance of the penalized cubic

115polynomial for NDMI at time t 2 0; 1½ �:

var NDMIt

� �
¼ 1

n� 4

X3

i¼0

X3

j¼0

ŝ bij

� �
titj þ ŝ2

a

n
þ
ŝ2
ak

n

X
k

t� Kkð Þ2�3
þ þ ŝ2

e

nm
; (4)

where ŝ bij

� �
is the estimated covariance between regression parameters bi and

bj i; j ¼ 0; 1; 2; 3, ŝ2
a is the estimate of the among-pixel variance, ŝ2

ak
is pixel � time

interaction variance, and ŝ2
e is the estimate of the variance of the residual errors in

equation (2).

120Estimates of the annual change in the NDMI value of a location specific average

pixel are obtained as simple differences NDMItþ�t �NDMIt, where �t is the time

interval in units of t corresponding to a calendar year. The variance of this difference

was estimated as:

var NDMItþ�t �NDMIt

� �
¼ 1

n� 4

X3

i¼0

X3

j¼0

ŝ bij

� �
tþ 0:5� tð Þi t� 0:5� tð Þj

þ 1

n

X

k

X

K

ŝak
ŝak0 tþ 0:5 � t� kkð Þ3þ t� 0:5 � t� kk0ð Þ3þþ

2ŝ2
e

nm
;

(5)

where it is assumed that the estimate of change and its variance are centred in the

125interval for which the change occurred. We can use also use equation (5) to gauge the

significance of an annual change.

3. Results

The estimate one year change for the years of observation is indicated by circles and

an approximate 95% confidence interval has been added (dotted line) (figure 3). A

130nominal (pointwise) 95% confidence band entirely above or below the zero-line

Figure 3. Illustration of an annual change

Q5

trajectory with an approximated 95% confidence
band.
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suggests a statistically significant change in NDMI at the 5% level. Our example in

figure 2 indicates a significant NDMI decline in 2004. Of relevance to mountain pine

beetle management, knowledge of the year of attack data is instrumental for salvage

harvesting, timber supply forecasting, and fire suppression activities.

135The three regression coefficients (b̂0; :::; b̂3) in equation (2) provide the basis for a

functional discrimination of the NDMI trajectories to unique change-class types
(table 1) or a clustering of similar trajectory shapes (Tarpey 2007, Wang et al.

2007). We demonstrate the latter by a clustering of coefficient triplets that minimises

the within cluster dissimilarity and maximises the inter-cluster dissimilarity (Everitt

140et al. 2001). The dissimilarity measure we used was the Mahalanobis distance between

the coefficients from two locations (McLachlan 1991), which takes into consideration

both the variance and covariance of the coefficients. The clustering algorithm was a

modified k-means procedure with the number of groups determined by optimizing a

Silhouette test statistic (Kaufman and Rousseeuw 1990).
145Within the Morice set of trajectories, three clusters of size 92, 59 and 49 were

identified. The mean and median trajectory of each cluster is shown in figure 4; the

close match between the mean and median trajectory confirms a regular distribution

of trajectories within each cluster. Large declines in NDMI are likely to indicate a

forest that is experiencing beetle attack. Possible scenarios for the three trajectory

150types are that areas experienced: (1) low levels of beetle attack as shown by the limited

change in NDMI over the years of observation, (2) two distinct disturbance events

Table 1. Cluster averages and standard error of the mean (SE) of the estimates of the
three regression coefficients in the penalized least-squares model in equation (2).

Cluster 1 Cluster 2 Cluster 3

Mean SE Mean SE Mean SE

b1 0.64 0.20 0.68 0.23 0.96 0.26
b2 1.97 0.44 1.77 0.52 2.34 0.55
b3 1.81 0.29 1.55 0.36 1.90 0.35

Figure 4. Mean (full line) and median (dashed lines) trajectories

Q5

in three clusters identified by
a modified k-means procedure with the number of groups determined by optimizing a
Silhouette test statistic (Kaufman and Rousseeuw 1990).
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with NDMI decline occurring between 1992 and 1996, and between 2003 and 2006,

and (3) a single disturbance between 2003 and 2006. Q4These interpretations are con-

sistent with earlier assessments at Morice which indicated the onset of a beetle attack

155in the mid-1990’s that continued with an increased intensity after 1999 (Nelson et al.

Figure 5. Multiyear observations of mountain pine beetle attack between

Q5

1993 and 2006 in the
Morice Timber Supply Area. The RGB band combination used was Landsat TM bands 5, 4,
and 3 with a 2 SD stretch. Dark green areas represent healthy forest, reddish areas MPB, and
harvested areas light green or magenta.

COLOUR
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2006). This trend of progressive beetle attack is illustrated in figure 5 with expanding

orange to brown areas associated with beetle attack, particularly in the years 2004 and

2006.

4. Discussion and conclusions

160When applying the approach, two key issues present themselves: (1) the spatial scale

of disturbance, and (2) temporal resolution of available data. In this study, a , 1 ha

window (3 � 3 pixels with a resolution of 28.5 m) was used as registration errors

greater than one pixel may exist within the data set, as discussed by (Kennedy et al.

2007); therefore, we acknowledge that strong signals suggesting defoliation or some

165other disturbance from a minority of pixels in a ,1 ha window size can be suppressed.

Missing observation years will also negatively impact change detection and trajectory
analysis (James and Sugar 2003, Franklin et al. 2005, Fisher et al. 2006). A de facto

interpolation of missing observations can seriously distort a trajectory causing a

signal to be missed or mis-represented. Additionally, using a multiyear set of images

170acquired from the same month (‘anniversary dates’) is likely to improve the accuracy

of results by limiting spectral variation due to seasonality effects.

The mixed linear modelling approach appears suitable for extracting information

on disturbance events from Landsat-based multitemporal spectral trajectories. The

proposed spatial and temporal decomposition of the observed variance expands our
175inference options. More simple approaches often ignore the dependence structure in

the data with a risk of biased inference (Pinheiro and Bates 2000).
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