
 1

Segment-constrained regression tree estimation of forest stand height 
from very high spatial resolution panchromatic imagery over a boreal 
environment 
 

Brice Mora, Michael A. Wulder*, and Joanne C. White 

 
Affiliation: 
 
Canadian Forest Service, Pacific Forestry Centre, Natural Resources Canada, Victoria, 
BC, V8V 1M5, Canada 
 
 
*Corresponding author:  
Michael A. Wulder 
Email: mike.wulder@nrcan.gc.ca; Phone: 250-363-6090; Fax: 250-363-0775 
 
 
 

 
 
 
Keywords: forest stand height, forest inventory, remote sensing, QuickBird, 
panchromatic, object-based, boreal, monitoring  

 

Pre-print of published version. 
 
Reference: 
Mora, B., M.A. Wulder, and J.C. White (2010). Segment-constrained regression 
tree estimation of forest stand height from very high spatial resolution 
panchromatic imagery over a boreal environment. Remote Sensing of 
Environment. Vol. 114, pp. 2474–2484. 
 
DOI.  
http://dx.doi.org/10.1016/j.rse.2010.05.022 
 
Disclaimer:  

The PDF document is a copy of the final version of this manuscript that was 
subsequently accepted by the journal for publication. The paper has been through 
peer review, but it has not been subject to any additional copy-editing or journal 
specific formatting (so will look different from the final version of record, which 
may be accessed following the DOI above depending on your access situation).  



 2

Abstract 
Mean stand height is an important parameter for forest volume and biomass estimation in 
support of monitoring and management activities. Information on mean stand height is 
typically obtained through the manual interpretation of aerial photography, often 
supplemented by the collection of field calibration data. In remote areas where forest 
management practices may not be spatially exhaustive or where it is difficult to acquire 
aerial photography, alternate approaches for estimating stand height are required. One 
approach is to use very high spatial resolution (VHSR) satellite imagery (pixels sided less 
than 1 m) as a surrogate for air photos. In this research we demonstrate an approach for 
modelling mean stand height at four sites in the Yukon Territory, Canada, from 
QuickBird panchromatic imagery. An object-based approach was used to generate 
homogenous segments from the imagery (analogous to manually delineated forest stands) 
and an algorithm was used to automatically delineate individual tree crowns within the 
segments. A regression tree was used to predict mean stand height from stand-level 
metrics generated from the image grey-levels and within-stand objects relating individual 
tree crown characteristics. Heights were manually interpreted from the QuickBird 
imagery and divided into separate sets of calibration and validation data. The effects of 
calibration data set size and the input metrics used on the regression tree results were also 
assessed. The approach resulted in a model with a significant R2 of 0.53 and an RMSE of 
2.84 m. In addition, 84.6% of the stand height estimates were within the acceptable error 
for photo interpreted heights, as specified by the forest inventory standards of British 
Columbia. Furthermore, residual errors from the model were smallest for the stands that 
had larger mean heights (i.e., >20m), which aids in reducing error in subsequent 
estimates of biomass or volume (since stands with larger trees contribute more to overall 
estimates of volume or biomass). Estimated and manually interpreted heights were 
reclassified into 5-metre height classes (a schema frequently used for forest analysis and 
modelling applications) and compared; classes corresponded in 54% of stands assessed, 
and all stands had an estimated height class that was within ± 1 class of their actual class. 
This study demonstrates the capacity of VHSR panchromatic imagery (in this case 
QuickBird) for generating useful estimates of mean stand heights in unmonitored, 
remote, or inaccessible forest areas.  

Introduction 
Tree height is a fundamental attribute for describing forest stands, as well as a critical 
parameter for indicating site quality (Véga and St-Onge, 2009; Wulder et al., 2009) and 
for estimating stand-level volume and biomass (Boudewyn et al., 2007; Falkowski et al., 
2009). Forest inventory stand heights are typically interpreted from aerial photography 
(Avery and Burkhart, 2002: Hall, 2003), supplemented with field calibration data. 
Although the accuracy requirements for stand height estimates vary from one inventory 
to another, allowable error rates typically range between 10 and 15% (Rhody, 1965; 
Kayitakire et al., 2006). The accurate estimation of stand height from air photos is 
difficult in areas of dense forest where the ground is not visible (St. Onge et al., 2008). 
Alternative approaches for estimating stand height may be required in remote areas where 
forest management practices are not spatially exhaustive or where it is logistically 
difficult or not common practice to acquire aerial photography. 
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Canada’s forests comprise 10% of global forest cover and occupy approximately 
40% of Canada’s landmass (Wulder et al., 2008a). Canada implements a multiphase, 
plot-based National Forest Inventory (NFI) for assessment and monitoring of forests. 
Approximately 1% of Canada’s landmass is sampled in the NFI’s first phase using a 
systematic network of 19,000 photo plots located on a 20 by 20 km sampling intensity 
grid, with each plot being 2 by 2 km in size. Within the photo plot, photo interpreters 
manually delineate forest stand boundaries from 1:20,000 scale aerial photography and 
then, using a combination of manual air photo interpretation and allometric models, 
determine a suite of required forest inventory attributes. In the second phase of the NFI, 
ground plots are established in a 10% random sample of photo plot locations (for a 
minimum of 50 ground plots per ecozone) (Gillis, 2001).  

Several different remotely sensed data sources have been explored for forest 
height estimation. For example, C-band data from the Shuttle Radar Topography Mission 
(SRTM) and ancillary data have been used to estimate stand height in uniform stands of 
red and Austrian pine (Brown et al., 2010). However, radar data have limited capacity to 
facilitate stand delineation and estimation of other forest inventory attributes of interest 
(Kenyi et al., 2009), restricting the data’s utility in a forest inventory context. 
Furthermore, tree density, tree structure, and ground slope can influence forest parameter 
estimation from radar data (Garesteir et al., 2009). The estimation of stand height with 
airborne lidar data has been the subject of extensive research (Lim et al., 2003) and lidar 
is now used in some operational forestry contexts. To date, the only spaceborne lidar 
system is the Geoscience Laser Altimeter System (GLAS). Some studies have 
investigated the use of GLAS for estimating canopy height, with varying levels of 
success (Lefsky et al., 2007; Duncanson et al., 2010). While airborne lidar data may 
represent the state-of-the-art for estimation of forest stand height (e.g., Naesset, 1997; 
Naesset and Økland, 2002), lidar can be an expensive monitoring option for extensive 
forest areas unless a sampling approach is adopted (Wulder and Seemann, 2003). 
Furthermore, airborne lidar faces certain acquisition constraints (Wulder et al., 2008), and 
lidar estimates of stand height may be impacted by complex terrain, steep slopes, and 
high canopy cover (Gatziolis et al., 2010). Andersen et al. (2006) also comment and 
remind that ground based measures have error typically with a range of 1 to 10 %, 
illuminating the difficulty in obtaining definitive accuracy for lidar – or  in our case other 
measures – of  tree height.  

In Canada’s northern region, financial and logistical constraints often preclude the 
acquisition of aerial photography. In response to these information gap, the NFI has used 
a Landsat-based land cover product, Earth Observation for Sustainable Development of 
Forests or EOSD (Wulder et al., 2008a), to provide a limited number of the required 
forest inventory attributes in areas where aerial photography has not been acquired (i.e., 
cover type, density, volume, and biomass) (Gillis et al., 2005). In addition, a framework 
has been developed that employs Very High Spatial Resolution (VHSR; < 1 m) remotely 
sensed imagery to support Canada’s NFI programme, particularly in the north. It is 
envisioned that the use of VHSR will help to fill the data gap in the north, while at the 
same time, improving the consistency of attribute estimation between northern and 
southern photo plots. VHSR optical images provide spatial and spectral information that 
is similar to aerial photography and may be used for manual or semi-automated 
interpretation of forest inventory attributes (Wulder et al., 2008b). VHSR images are 
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being acquired by an increasing number of commercial sensors and have a high 
geometric fidelity. As identified in Falkowski et al. (2009), “incorporating VHSR satellite 
imagery into existing large-area, sample-based forest inventory frameworks may provide 
a means to increase overall inventory efficiency and precision.” 
Background 
Several studies have demonstrated data and methods that have potential utility for 
estimating stand height using VHSR imagery. Hirata (2008) estimated stand density and 
stand volume in Japanese cedar (Cryptomeria japonica) and Japanese cypress 
(Chamaecyparis obtusa) stands using segmented QuickBird panchromatic imagery. 
Crown areas were calculated from the QuickBird imagery and these crown areas were 
used in an allometric relationship to estimate diameter-at-breast height (DBH). These 
DBH estimates were used in conjunction with height-diameter curves (determined by site 
quality) to estimate individual tree heights. From this information, volumes were 
calculated and compared to field-based estimates. Although the relationship between the 
derived and field-measured DBH values is reported (R=0.78, p<0.001), the reliability of 
the height estimates (e.g., RMSE) were not reported in this study.  
 Texture measures generated from 1-m IKONOS image grey levels were used to 
estimate stand top heights in even-aged Norway spruce (Picea abies (L.) Karst.) stands 
(Kayitakire et al., 2006). The authors found a strong relationship between estimated 
heights and field-measured heights (R2=0.76; RMSE = 2.060; p<0.001). In a similar 
study, Chubey et al. (2006) used regression trees and a suite of 87 segment-level metrics 
from IKONOS-2 multispectral imagery to estimate stand height (among other variables) 
into one of four broad height classes. The accuracy of the height estimation, assessed 
using independent validation data, was found to be 49%.  
Objectives 
As indicated by these aforementioned studies, VHSR imagery can be used as a data 
source for forest inventory and assessment. The overall goal of this communication is to 
present a method for the automated estimation of stand height from VHSR QuickBird 
panchromatic imagery. It is envisioned that such a process would enable the consistent 
estimation of an important forest inventory attribute that is a critical input for a number of 
other modeled inventory attributes, such as volume and biomass. As such, the methods 
presented are intended to augment Canada’s NFI VHSR framework (Falkowski et al., 
2009). Using a regression tree approach, stand heights were estimated over four sample 
locations in the Yukon Territory, Canada. The accuracy of the estimated heights was 
assessed by a comparison to heights that were manually interpreted from the QuickBird 
imagery. The effects of varying calibration data set sizes and input parameters were also 
assessed. Although the process described is in support of Canada’s NFI VHSR 
framework, the challenges identified are informative for stand-based forest inventories in 
general.   

Methods 
Study area 
Four study sites located in the southern Yukon Territory were selected for possibility of 
access and related availability of QuickBird imagery (Figure 1). The size of the study 
sites ranged from 625 to 2400 ha (Table 1). All of the study sites were located in the 
Boreal Cordillera Ecozone (Ecological Stratification Working Group, 1995), which is 
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characterized by a climate ranging from cold and sub-humid to semi-arid. Mean annual 
temperatures range between 1°C to 5.5°C and mean annual precipitation ranges from less 
than 300 mm in valleys shadowed by coastal mountain ranges, to more than 1500 mm at 
higher elevations. The topography of the Boreal Cordillera Ecozone includes mountains 
and extensive plateaus, separated by wide valleys and lowlands. Glaciation, erosion, 
solifluction, and eolian and volcanic ash deposition have altered the original topography. 
Glacial drift, colluvium, and outcrops are the most common surface materials. Permafrost 
is widespread in the more northern areas of the ecozone. Depending on local conditions, 
tree species include white spruce (Picea glauca), black spruce (Picea mariana), alpine fir 
(Abies lasiocarpa), lodgepole pine (Pinus contorta), trembling aspen (Populus 
tremuloides), balsam poplar (Populus balsamifera), and white birch (Betula papyrifera). 
Forest disturbances in the Yukon Territory are primarily the result of wildfire, insects, 
and, to a lesser extent, forest harvesting.  

<< Figure 1 about here >> 
<< Table 1 about here >> 

 
Data  

QuickBird imagery 
An 8 km by 8 km panchromatic (0.45–0.90 μm) QuickBird-2 image with a 0.61 m spatial 
resolution was acquired for each study site (see acquisition parameters listed in Table 1). 
As a result of the QuickBird sensor's variable cross-track and in-track viewing capability, 
the sensor has a temporal resolution that will vary according to the latitude of the end-
user's area of interest and their tolerance for an off-nadir viewing angle. For instance, at 
50° N latitude a revisit of 4 days (with up to 25° off-nadir) to 7 days (with up to 15° off-
nadir), may be expected (DigitalGlobe, 2005). VHSR imagery such as QuickBird enables 
the detection of individual tree characteristics, which in turn can provide improved 
estimates of many forest inventory attributes (Wulder, 1998). Use of this data is not 
without challenges, owing to a lack of established methods for processing (Falkowski et 
al., 2009) and the complex interactions between sun-sensor-surface geometry and forest 
structural characteristics, particularly at more northerly latitudes (Wulder et al., 2008c). 
Image pre-processing 
The QuickBird images were delivered as 11-bit data, but were converted to 16-bit 
unsigned, resulting in a theoretical range of grey level values from 0 to 65536. The 
images were converted to top-of-atmosphere radiance as per Krause (2003) and were then 
orthorectified using a 15 m panchromatic Landsat-7 ETM+ orthoimage (Wulder et al., 
2002a). All four sites were either on flat or gentle slopes (i.e. less than 5 %). The average 
RMSE for the orthorectification process was 5 m. 
Image segmentation 
Segmentation was used to delineate units with homogeneous forest conditions, analogous 
to forest stands delineated by manual interpretation (Wulder et al., 2008b). To avoid 
over-segmentation as a result of the high spatial resolution of the QuickBird image 
(Wang et al., 2004), the segmentation process was applied to a median filtered version of 
the original orthorectified QuickBird panchromatic band. The median filter applied to the 
images had a window size that was either 7-by-7 or 15-by-15 pixels. A median filter was 
chosen as it will likely produce more homogeneous image segments and may reduce the 
amount of convolution in the final segmented stand boundaries (Falkowski, 2009). The 
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segmentation was performed using Definiens Cognition Network Technology® (Baatz 
and Schäpe, 2000; Definiens Imaging, 2004). Through experimentation and development 
of an NFI protocol for segmentation (Henley et al., 2009; Falkowski et al., 2009), a set of 
initial segmentation parameters were determined: scale = 1200, color = 0.3, and 
compactness = 0.9 (Henley et al. 2009). The size of the filter window and the parameters 
were adjusted as required for each image in order to account for differences in land cover 
composition, as well as differences in vegetation structure and distribution. The final 
segments were reviewed manually to ensure quality (Wulder et al., 2008b). 
Manual image interpretation 
Photo interpreters certified by the British Columbia provincial government (Ministry of 
Forests and Range, 2009) manually interpreted and attributed (from the QuickBird 
image) each of the forested segments according to National Forest Inventory Photo Plot 
standards (Natural Resources Canada, 2004). Key attributes that were interpreted include 
species composition, age, crown closure, and height (Gillis et al., 2005). The manually 
interpreted heights were used for subsequent model calibration and validation.  
Image classification 
A land cover classification using four broad cover classes (forest, herb, exposed land, and 
water) was performed to determine the main land cover component within each segment, 
with the objective of excluding any non-forest segments from further analysis. The 
supervised fuzzy classifier in Definiens Cognition Network Technology® software was 
used to assign the cover type. This step was accomplished by manually establishing 
image grey level thresholds for each cover class. A subsequent iteration of the classifier 
was used to assign the forested class to either a coniferous or broadleaf subclass. Class 
definitions are those specified for the National Forest Inventory and Earth Observation 
for Sustainable Development (EOSD) of Forests (Wulder and Nelson, 2003). 
Tree crown delineation 
The spatial resolution of panchromatic QuickBird imagery (pixels sided 0.61 m) has been 
demonstrated to produce reliable tree crown delineation (Gougeon et al., 2003; Ozdemir, 
2008), thereby enabling the inclusion of crown-based metrics into our model. The 
Individual Tree Crown (ITC) algorithm by Gougeon (1995) was chosen to delineate tree 
crowns within each of the forested segments and is available as an extension of the image 
processing software PCI Geomatica. The ITC algorithm has been proven effective over a 
range of image types and forest conditions (Gougeon et al., 2003; Leckie et al., 2003; 
Gougeon and Leckie, 2006). The ITC method requires an upper and lower grey level 
value threshold in order to determine whether a pixel represents a portion of a tree crown 
or represents the surrounding shadow or understorey. As recommended in Gougeon 
(2005), we applied a 3-by-3-pixel averaging filter to the panchromatic image prior to 
using the ITC algorithm. 
Calculation of stand-level metrics 
Stand-level measures of a panchromatic image’s grey levels are known to be conditioned 
by canopy structural attributes such as crown closure, tree height, and stand type (Parker 
et al., 1995; Asner et al., 2003). Furthermore, local topography and image acquisition 
parameters also influence image grey levels (Itten et al., 1992; Leckie et al., 1992; 
Wulder et al., 2008c). In this study, stand-level summary measures of image grey levels 
were used as inputs for regression trees in the estimation of stand height. The following 
statistics were calculated for the image grey levels in each forested segment: majority, 
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minority, median, mean, standard deviation, range, and the number of unique values of 
all pixels in the segment (variety). Segment grey-level values were also examined to 
remove any outliers from subsequent analysis (i.e., segments containing grey-level values 
that were 3 or more standard deviations from the segment mean grey-level).  

From the crowns delineated with ITC, segment-level estimates of crown closure, 
mean crown size, and the 25th, 50th, and 75th percentiles of crown size distribution were 
generated. Forested segments with a crown closure less than 10% were considered non-
forest (Wulder and Nelson, 2003; Boudewyn et al., 2007) and were excluded from further 
analysis. 
Regression tree development 
A regression tree approach was selected for this analysis because it is non-parametric, it 
can accommodate both discrete (i.e., stand type) and continuous variables, and it can 
account for non-linear relationships between model inputs and output targets. Moreover 
regression trees tend to be robust to errors in both the independent and dependent 
variables (Breiman et al., 1998). Regression trees function by recursively partitioning a 
dataset into increasingly homogenous subsets. Regression trees were implemented using 
the R software (R Development Core Team, 2005) and the package tree (Ripley, 2009). 

Model calibration 
Each of the stand segments used as inputs to the regression tree were characterized by the 
thirteen aforementioned stand-level statistics. The data set, consisting of 189 forested 
segments, was randomly split into separate calibration (70% of segments) and validation 
(30% of segments) sets. In order to ensure a non-biased evaluation of the results, we used 
a Multi Response Permutation Procedure (Mielke and Berry, 2001) to evaluate the degree 
to which the calibration and validation data were representative of the entire data set. 
This non-parametric method tests the hypothesis of no difference between two or more 
data sets for a range of parameters (i.e., the stand-level metrics used as inputs to the 
regression tree).  

Selection of input metrics 
Since some of the stand-level metrics involve significant computational overhead to 
produce (i.e., crown-based metrics), a Hill-Smith test (Hill and Smith, 1976) was applied 
to the entire data set to identify those input metrics with the strongest positive or negative 
correlations to the manually interpreted stand heights. The objective of this test was to 
identify an optimal set of inputs to the regression tree, thereby reducing the number of 
input metrics required and resulting in a more efficient protocol for modeling stand 
height from the QuickBird-based metrics. The Hill-Smith test is multivariate and 
measures correlations between both categorical (e.g., stand type) and numerical variables 
(e.g., mean crown size). The regression trees were run twice: once using all of the input 
metrics, and once using only the optimal inputs. The resulting height estimates were 
assessed using the same set of validation data, and then compared.  

Regression tree parameters 
For each regression tree, a K-fold cross-validation (K = 10) was processed, followed by a 
tree pruning stage applied according to best practices regarding tree size (McLachlan et 
al., 2004). We averaged the estimated mean stand heights from each iteration to produce 
the final mean stand height values.  
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Optimizing the size of the calibration data set 
Manual interpretation of imagery for forest inventory is time consuming, costly, and 
inconsistent for some attributes (Wayman et al., 2001; McRoberts et al., 2002). 
Consequently, as part of this study, we wanted to assess the impact of reducing the 
number of manually interpreted stands required for calibration of the regression tree 
model. We measured the impact of the calibration sample size on stand height estimation 
accuracy by varying the size of the calibration dataset, which ranged from 10% to 100% 
of the forested segments, in 10% increments. For each iteration, the segments used for 
calibration were selected at random and the regression tree was applied; this process was 
repeated 100 times for each calibration sample size.   

Model validation 
Manually interpreted heights were used for validation. The coefficient of determination 
(R2), p-value, and root mean square error (RMSE) were calculated to characterize the 
quality of the model and the results. Similarly, scatterplots of modeled versus manually 
interpreted heights, and scatterplots of residuals were generated and examined. A Welch 
test (Welch, 1947) was used to compare the photo interpreted and the modeled stand 
heights (for all calibration data set sizes). This statistical test was selected because the 
distributions for mean stand heights were normal and variances for photo interpreted and 
modeled heights were significantly different. 

Many applications that use stand height to model other attributes (e.g., timber 
supply and carbon budget modelling) will group this metric into 5 m height classes prior 
to analysis (Trofymow et al., 2008, Wulder et al., 2009). Therefore to further assess the 
reliability of our height estimates for this purpose, we categorized our mean stand heights 
for the validation sample into the NFI 5-metre height classes (using the results from the 
regression tree model generated from the 30% sample of calibration data). We similarly 
categorized the manually interpreted heights into the same classification hierarchy and 
compared these to our estimated height classes. 

Results and Discussion 
Image segmentation and classification 
The segmentation parameters we used resulted in segments that complied with the NFI’s 
requirement for a minimum polygon size of 2 ha for forested polygons (Natural 
Resources Canada, 2004) (Figure 2, a). A total of 426 segments were generated, of which 
68% were forested with a mean segment size of 4.9 ha (Table 2). Approximately 76% of 
the forested segments were coniferous and 24% were broadleaf. Overall, the coniferous 
segments had a larger mean segment size at 5.14 ha, compared to 4.18 ha for the 
broadleaf segments. 

<<Table 2 about here>> 
<< Figure 2 about here >> 

Manual image interpretation and tree crown delineation 
All of the forested segments at all four sites (N = 291) were manually interpreted 
according to NFI standards (Natural Resources Canada, 2004). Individual tree crowns in 
the forested segments, as delineated by the ITC program, had a mean size of 8.2 m2 

(Table 3, Figure 2,b). Given that the proportion of stands dominated by coniferous 
species (77%) is greater than the proportion of stands dominated by broadleaf species 
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(23%), the mean crown size for coniferous dominated stands is closer to the mean crown 
size for the full data set. The distributions of crown sizes for both broadleaf and 
coniferous stands were normal (Jarque-Bera test, with p-values of 0.36 and 0.17 for 
broadleaf and coniferous respectively), and a Fisher test indicated that the crown size 
variances for each stand type were not equal (p-value = 1.15.e-10). Consequently, we 
conducted a Welch test to compare the mean crown size for each stand type, and found 
that there was a significant difference (p-value = 2.71.e-7) between the mean crown size 
in broadleaf and coniferous stands.  

<<Table 3 about here>> 
There is a known relationship between crown diameter and tree height (Peper et 

al., 2001; Avsar, 2004; Morsdorf et al., 2004), and between crown diameter and tree bole 
diameter (diameter at breast height (DBH)) (Zhang, 1997; Bechtold 2004, Hemery et al. 
2005). Hirata (2008) used an understanding of these relationships to estimate both DBH 
and height from individual tree crowns delineated from QuickBird panchromatic 
imagery. Likewise, by including tree crown parameters as inputs to our regression tree, 
we sought to similarly exploit these known relationships. 
Calculation of stand-level metrics 
Stand-level metrics were calculated  and used to screen for outliers. Table 4 summarizes 
the metric statistics over the entire set of delineated stands. Of the 291 forested segments 
identified, 37 segments were excluded from further analysis because they contained grey 
level outliers (i.e., grey levels that were 3 or more standard deviations from the segment 
mean grey level). As with any regression-based approach, the detection and removal of 
outliers is an important prerequisite for establishing a robust model. An additional 65 
segments with less than 10% crown closure were also excluded from further analysis as 
these segments would be considered non-forest according to NFI specifications (Natural 
Resources Canada, 2004). In total, 189 forested stands remained for subsequent analysis 
and height estimation. The segmentation process produced forested stands with crown 
closure values that had a relatively limited range (i.e., between 40 and 55%), mirroring 
the photo interpreted crown closure conditions present over the study area.  

<<Table 4 about here>> 
Regression tree estimation of stand height 

Model calibration 
The 189 forested segments were partitioned into separate calibration (N = 132) and 
validation (N =57) data sets and the MRPP test indicated a chance-corrected within-group 
agreement of -1.8*10-3 and a p-value of 0.65, demonstrating that there were no significant 
differences between the calibration and validation data sets (considering all of the stand-
level metrics).  

Selection of input metrics 
The results of the Hill-Smith test indicated that the 25th, 50th, and 75th percentiles of the 
segment-level crown size distribution, as well as the mean segment crown size, were the 
variables with the strongest correlation to the manually interpreted mean stand heights. 
Figure 3 illustrates the correlations between variables in the space created by the two first 
principal components (72% of the variance is explained in this space).  

<< Figure 3 about here >> 
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Two different scenarios were explored for the automated estimation of stand height with 
the regression tree. The first scenario used all thirteen stand-level metrics as inputs, while 
the second scenario used only those four inputs that were most strongly correlated with 
the manually interpreted stand heights. The independent set of validation data was used to 
assess the performance of the regression tree models. The RMSE and R2 values (with the 
associated p-value) for both scenarios are summarized in Table 5. Higher R2 values and 
lower RMSE values were obtained with the full set of input parameters, regardless of the 
size of the calibration data set. This result suggests that although the identified optimal 
subset of input metrics may be more strongly correlated with the manually interpreted 
stand heights, this subset is insufficient for generating robust estimates of stand height.  

<< Table 5 about here >> 
The main stand-level metrics used in the regression tree, by frequency of 

occurrence and in decreasing order were: majority, standard deviation, minority, range, 
and mean grey level, as well as mean crown size. These results confirm the need to use 
both segment-based grey-level metrics as well as crown-based information to accurately 
model mean stand height. Multiple selection of a given metric in the same tree occurred 
in 15% of cases, with all trees having between two and four metrics, regardless of the 
regression tree structure. Similar to the range of photo interpreted crown closure values, 
the segmentation process produced forest stands that had a limited range of crown closure 
values (i.e., between 40 and 55%); as a result, there was little correlation between crown 
closure and interpreted stand height (Figure 3). Crown closure was not selected in any of 
the regression tree models. 

Stand type (coniferous versus broadleaf) was only selected in 0.5% of regression 
trees, indicating that stand type does not play a significant role in tree height estimation. 
We performed a Student’s t-test on the mean residual distributions from both stand types 
for the 30% calibration sample size (all 13 input metrics) to further explore the effect of 
stand type on the estimation of mean stand height. The t-test was chosen as residual 
distributions were found to be normal (χ2 of 0.1 and 0.3) according to the Jarque-Bera test 
(Jarque and Bera, 1987) and as variances were found to be equal (p-value of 0.70 for the 
Fisher test). No significant difference between residuals was found (p-value of 0.15). 
This result confirms that in this environment, the stand type had no significant impact on 
tree height estimation. As a result, we would not recommend that the calibration data be 
stratified by stand type, but rather that the calibration data is selected to represent the 
distribution of mean stand heights in the study area.  

Optimizing the size of the calibration data set 
At the outset of our study, we had set aside 132 stands for model calibration. We then 
assessed the impact that the size of the calibration data set had on the estimates of mean 
stand height that were generated from the regression tree. Initially, we used 10% of the 
calibration data to train the model, increasing the sample size in 10% increments. Note 
that the small size of the 10% sample resulted in the systematic generation of single 
nodes in the regression tree and as a result, the R2 value could not be calculated as the 
standard deviation of the estimated height distribution was null. The model R2 values 
decreased as the size of the calibration data set increased (Table 5). In the case where all 
metrics were used as input, regression trees using 20, 30, or 40% of the calibration data 
were significant (p < 0.01); using only the optimal metrics as input, all of the regression 
models were significant (p < 0.01) (Table 5). Height estimates generated from the 30% 
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sample of calibration data (all input metrics) had an R2 of 0.5 and an RMSE of 2.71 m, 
compared to an R2 of 0.26 and an RMSE of 3.10 m that resulted from using 100% of the 
calibration data. It is generally understood that the accuracy of decision tree models tends 
to increase with increasing calibration sample size until a certain threshold is reached, at 
which point accuracy will begin to decrease; however, this threshold is ambiguous and 
dependent on the particular application and the source data used (Pal and Mather, 2003). 
The RMSEs of our models do not follow such a clear trend; however, since the approach 
we present for estimating mean stand height from VHSR requires some minimal amount 
of calibration data, there is a trade-off to be made between the amount of calibration data 
acquired through manual interpretation and the robustness of the model estimates. 
Furthermore, it is important to note that the manually interpreted heights that were used 
as calibration data are not without error. Error rates for the manual interpretation of forest 
inventory stand heights are typically reported to be between 10 and 15% (e.g., Rhody, 
1965; Kayitakire et al. 2006). Such errors in the calibration data will have an impact on 
model estimates. 

Model validation 
The comparison of the photo interpreted and the estimated heights with the Welch test 
indicated that the manually interpreted and modeled height distributions were not 
significantly different (p > 0.05) (Table 6). Figure 4 illustrates the manually interpreted 
mean stand heights versus the estimated heights for the 30% calibration sample size case. 
Figures 5 and 6 are plots of the manually interpreted heights against the absolute 
residuals and residual values for the regression tree generated from the 30% calibration 
sample size, respectively. The lowest residuals were for stands with mean heights ranging 
from 20 to 23 m (Figure 5). As indicated in Figure 5 and 6, the residuals were not 
randomly distributed: the regression tree overestimated height for stands with a manually 
interpreted small mean stand height and underestimated height for stands with a manually 
interpreted large mean stand height. Although the largest residuals were associated with 
the smaller trees, this error would have less impact on the calculation of volume and 
biomass, since the larger trees contribute more to these estimates (Wulder et al. 2002b).  

<< Table 6 about here >> 
<< Figure 4 about here >> 
<< Figure 5 about here >> 
<< Figure 6 about here >> 

A comparison of the height classes between the estimated and manually 
interpreted data indicated that height class assignments agreed for 54% of the segments 
used for validation. Furthermore, all of the misclassifications were within ± one adjacent 
height class. This result compares to the 49% accuracy of Chubey et al. (2006), in which 
broad height classes were used to compare manually interpreted heights to height 
estimates generated from segmented IKONOS imagery, supporting this previous work 
and buttressing our current findings.  

Although the NFI does not have a specific quality control standard for the photo 
interpretation of height, many provincial forest management agencies in Canada do have 
such standards. For example, in British Columbia, photo interpreted leading species 
height must be within ± 3 metres or 15% (whichever is greater) of the actual height value 
(Ministry of Forests and Range, 2009); 84.6% of our mean stand height estimates were 
within this level of acceptable error. In the Yukon Territory, where our study sites were 
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located, quality control standards for photo interpretation of height specify that estimates 
for leading species height must be within ± 1 m of actual height (Department of Energy, 
Mines, and Resources, 2006). However, it is not common practice to assess the 
agreement of forest inventory attribution to the standards (Thompson et al. 2007), with 
the nature of the agreement complicated by differences in ground measurement 
techniques and scale to what can be discerned from above in the imagery. Standards are 
used to guide the quality and rigour of the interpretation process and do not necessarily 
indicate the accuracy of the resultant map products. Variation in sun-surface-sensor 
geometry may also limit the agreement between manually interpreted and modeled mean 
stand heights. To enable a reasonable opportunity for capture of imagery, we have 
specified an off-nadir view angle of 0-15 degrees for product purchase (and a consistent 
range of image conditions). The true nadir revisit cycle of high spatial resolution sensors 
varies (see Wulder et al., 2008c; Falkowski et al. 2009), with too limited a product 
specification, combined with cloud cover, limiting acquisition opportunities and creating 
operational risk. The design of our regression trees assumes that stand height has the 
greatest influence on image grey levels; such an assumption may underestimate the 
influence of different image acquisition parameters (Table 1) on the variability of image 
grey levels (Wulder et al., 2008c) and on the subsequent delineation of individual tree 
crowns. Furthermore, the manually interpreted heights used for calibration and validation 
of the model are themselves not without bias (Eid et al., 2005). While the use of in situ 
measurements would certainly strengthen the methodology we have presented, a model 
that is reliant on ground measurements would not be practical given Canada’s vast 
northern forest area. 

Conclusion  
In this study, we modeled mean stand height using metrics generated from panchromatic 
QuickBird images as inputs to a regression tree. We compared these estimates to mean 
stand heights that were manually interpreted from the same QuickBird image. The study 
showed that low RMSEs can be obtained with smaller amounts of calibration data. This 
suggests that there may be efficiencies that are possible in the implementation of such an 
approach to augment existing NFI protocols. The results of this study also demonstrated 
that both stand-level metrics and information on tree crown sizes are necessary to obtain 
robust estimates of mean stand height. Furthermore, crown closure was not found to be 
informative to the regression tree models and stand type (e.g., coniferous, broadleaf) had 
no influence on the performance of the regression models. Statistically, the best model 
had an R2 of 0.53 and an RMSE of 2.84 m, and 84.6% of our mean stand height estimates 
were within the level of acceptable error specified in the British Columbia forest 
inventory standards. Estimated and manually interpreted heights were reclassified into 5 
m height classes and compared; classes corresponded for 54% of stands assessed, and all 
stands had an estimated height class within ± 1 class of their actual class. This study 
demonstrates the potential of VHSR panchromatic imagery for acquiring estimates of 
mean stand heights in remote or inaccessible forest areas. Given the difficulty in using 
optical remotely sensed data to relate a vertically distributed attribute – stand height – the 
results are positive and encouraging. Future work may focus first on using ground-based 
data for the calibration and validation of the method, and secondly on integrating 
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additional data sources and/or metrics into the regression tree models to further improve 
the estimation of mean stand height. 
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Table 1. QuickBird image acquisition parameters. 
 

Plot center 
UTM Zone 9N 

 
Size 
(ha) 

Easting 
(m) 

Northing 
(m) 

Acquisition 
date 

So
la

r 
az

im
ut

h 
(d

eg
re

es
) 

S
ol

ar
 e

le
va

ti
on

 
(d

eg
re

es
) 

S
at

el
li

te
 a

zi
m

u
th

 
(d

eg
re

es
) 

S
at

el
lit

e 
el

ev
at

io
n

 
(d

eg
re

es
) 

O
ff

-n
ad

ir
 v

ie
w

 
an

gl
e 

(d
eg

re
es

) 

In
-t

ra
ck

 v
ie

w
 

an
gl

e 
(d

eg
re

es
) 

C
ro

ss
-t

ra
ck

 v
ie

w
 

an
gl

e 
(d

eg
re

es
) 

Site 1 625 45116 7133046 2007-08-28 176.6 35.7 197.3 77.3 11.6 -11.7 -0.2 
Site 2 2400 118968 7030079 2007-08-18 174.5 39.9 175.8 84.1 5.3 -5.0 1.8 
Site 3 625 130603 6866945 2006-06-12 171.8 51.4 57.2 78.5 10.9 8.1 7.3 
Site 4 1375 508030 6661737 2007-06-08 172.9 52.8 173.1 88.3 1.3 -1.3 0.4 

 

Table 2. Number and size of image segments, by site. 
 

 
Total 

number 
of 

segments 

Total 
number 

of 
forested 

segments 

Mean 
forested 
segment 
size (ha) 

Total 
number of 
coniferous 

segments 

Mean 
coniferous 

segment 
size (ha) 

Total 
number of 
broadleaf 
segments 

Mean 
broadleaf 

segment 
size (ha) 

Site 1  87  58 6.06 27  8.33 31 4.25  

Site 2  149  104 6.32 92  5.99 12 6.38  

Site 3  72  39 3.02 34  3.06 5 3.69  

Site 4  118  90 4.28 60  4.52 30 3.74  

Total  426 291 4.90 220  5.14 71 4.18  

 
Table 3. Crown sizes, by stand type. 
 
 Mean (m2) Standard deviation (m2) 

All forested segments 8.2 1.3 

Coniferous segments 7.8 1.0 

Broadleaf segments 9.2 1.6 
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Table 4. Mean and standard deviation of image grey level values and tree crowns for segment-level 
metrics used as inputs to the regression tree.  
 

 
QuickBird grey-level 

values 

Metric Mean 
Standard 
Deviation 

stand type (coniferous or broadleaf) - - 

minority 152 148 

majority 210 56 

median 239 36 

mean 245 34 

standard deviation 69 16 

range 480 116 

variety 433 93 

 
Individual ITC-defined 

tree crowns 

crown closure (%) 46.0 6.6 

mean crown size (m2) 8.2 1.3 

25th percentile of crown size distribution (m2) 3.7 0.5 

50th percentile of crown size distribution (m2) 6.2 0.9 

75th percentile of crown size distribution (m2) 10.5 1.7 

 
Table 5. RMSE and R2 for regression trees that included all of the metrics, or only an optimal set of 
metrics (for varying sizes of calibration data). 
 
 

  Calibration sample size (%) 

  10 20 30 40 50 60 70 80 90 100 

R2 NA 0.53** 0.50** 0.49** 0.49* 0.46 0.44* 0.44 0.45 0.26 All 
metrics RMSE NA 2.84 2.71 2.68 2.62 2.65 2.66 2.63 2.59 3.10 

            

R2 NA 0.41** 0.38** 0.34** 0.31** 0.30** 0.29** 0.30** 0.31** 0.24** Optimal 
metrics 
only RMSE NA 2.92 2.96 2.94 2.92 2.91 2.95 2.93 2.90 3.13 

* p < 0.05; ** p < 0.01 
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Table 6. Welch test p-values indicating no significant difference between the manually interpreted 
and modeled mean stand heights for varying sizes of calibration data (α = 0.05).  
 

 Calibration sample size (%) 

 
10 20 30 40 50 60 70 80 90 100 

All metrics NA 0.75 0.86 0.79 0.69 0.83 0.70 0.79 0.79 0.80 

Optimal 
metrics only 

NA 0.52 0.49 0.40 0.52 0.57 0.52 0.55 0.53 0.56 

 

 

Figure 1. Study area located in the Yukon Terretory, Canada. The QuickBird image 

locations are also noted.  
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Figure 2: a) Stand delineation (white lines) with QuickBird imagery in background, b) 

Individual tree crown delineation using the ITC suite, with tree crown objects indicated in 

black. Within each inset is a focus graphic to show the QuickBird panchromatic imagery 

and resultant tree crowns.  

 

 

 

Figure 3. Correlation circle displaying the results of the Hill-Smith test applied to all the 

stand-level metrics (Table 2) versus the manually interpreted heights. 
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Figure 4. Plot of the manually interpreted heights versus estimated heights for the 30% 

calibration sample size. 

 

 

 

Figure 5. Plot of the absolute residual values versus the photo interpreted heights for the 

calibration sample size. 
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Figure 6. Plot of the residuals versus the photo interpreted heights for the 30% calibration 
sample size. 
 


