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Abstract. Utilizing the spatial information inherent in panchromatic very high spatial resolution (VHSR) imagery, we

explored the use of tree crown metrics for identifying leading species over four study sites in the Yukon Territory, Canada.

Image segmentation was used to delineate homogeneous forest stands, followed by a tree crown delineation algorithm that

identified individual tree crowns within each stand. Leading species in the study area included white spruce, black spruce,

lodgepole pine, and trembling aspen. Nonparametric multivariate statistical tests indicated that some tree crown metrics

generalized at the stand level have significant utility for discriminating leading species. Based on this result, a classification

tree was generated using the crown metrics and independent calibration and validation datasets. The classification tree

accurately identified leading species in 72.5% of the stands used for validation (n 5 212), with the accuracy for individual

species ranging from 43.9% to 100.0%. Most errors resulted from confusion between white spruce and the three other, less

common, leading species. This study demonstrates the capacity of the spatial information content of panchromatic VHSR

imagery to generate a series of crown metrics for discriminating among four common tree species of the Yukon Territory, a

location with spatially and temporally limited forest monitoring practices.

Résumé. Au moyen d’images satellitaires à très haute résolution spatiale, nous avons étudié le potentiel d’une série de

statistiques calculées à partir de couronnes d’arbres pour identifier l’espèce majoritaire de peuplements forestiers. Les

quatre sites d’étude étaient répartis dans le centre et le sud du Territoire du Yukon (Canada). Une segmentation des images

a permis la délinéation homogène de peuplements forestiers et fut suivie d’une délinéation des couronnes d’arbres à

l’intérieur de chaque peuplement. Les espèces d’arbres présentes sur les sites d’étude étaient l’épinette blanche, l’épinette

noire, le pin tordu et le peuplier faux-tremble. Des tests multivariés non paramétriques ont mis en évidence la capacité de

discriminer de manière significative les espèces d’arbres à partir de certaines statistiques. Celles-ci ont été calculées à partir

des couronnes d’arbres et généralisées à l’échelle du peuplement. En s’appuyant sur ces statistiques, nous avons établi des

arbres de classification sur la base de jeux de données d’apprentissage et de validation indépendants. Les arbres de

classification ont fourni un taux de classification moyen de 72,5 % avec des taux de classification par espèce variant de

43,9 % à 100,0 %. La plupart des erreurs ont résulté de la confusion entre les peuplements à épinette blanche avec les trois

autres espèces, moins nombreuses sur les sites d’étude. Cette étude a montré la capacité d’images panchromatiques à très

haute résolution spatiale de générer une série de statistiques à l’échelle de la couronne d’arbre pour la discrimination de

quatre espèces forestières dans le territoire du Yukon; un territoire dont les ressources forestières sont historiquement et

spatialement peu exploitées.

Introduction

Knowledge of the leading species at a forest stand level is

often a required inventory attribute and is necessary for estim-

ating stand volume and biomass (Boudewyn et al., 2007; Falk-

owski et al., 2009). Leading species is commonly defined as the

species with the highest percent composition (i.e., by basal

area) in a stand. Interpretation of aerial photography is the

most common method used to identify leading species (Hall,

2003; Thompson et al., 2007). Automated and semi-automated

image classification methods such as maximum likelihood

(Rogan and Yool, 2001) and k-nearest neighbour (Franco-

Lopez et al., 2001; Finley and McRoberts, 2008) have been

applied to multispectral remotely sensed data to identify lead-

ing species. Over large forest areas, the costs of acquiring

and manually interpreting aerial photography can be prohib-

itive. Moreover, photo-interpretation can be time consuming,

labour intensive (Green, 2000), and vulnerable to inconsist-

ency (Morgan et al., 2010).

Canada implements a multiphase, plot-based National

Forest Inventory (NFI) for assessment and monitoring of

forests. Approximately 1% of Canada’s landmass is sampled

in the NFI first phase using a systematic network of over

19 000 photoplots located on a 20 km 6 20 km grid, with
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each plot being 2 km 6 2 km in size. Over the plot locations,

photo-interpreters manually delineate the stands from aerial

photography and characterize the required forest attributes

according to established and published NFI standards

(Gillis, 2001). In northern regions of Canada, logistical and

financial constraints often prevent the acquisition of aerial

photography, and the NFI has used a Landsat-based land

cover product, namely Earth Observation for Sustainable

Development of Forests (EOSD) (Wulder et al., 2008a), to

provide a limited number of the required forest inventory

attributes (i.e., cover type, density, volume, and biomass)

(Gillis et al., 2005). More recently, very high spatial resolu-

tion (VHSR; ,1 m) remotely sensed satellite imagery has

been acquired to fulfill the information needs of the NFI,

particularly in northern regions (Falkowski et al., 2009).

VHSR images provide spatial and spectral information com-

parable to that from aerial photography and enable, with

limitations, the estimation of forest inventory attributes

(Wulder et al., 2008b). Consequently, and as suggested by

Falkowski et al. (2009), possible semi-automatic image pro-

cessing avenues employing VHSR images could be defined to

delineate forest stands and determine their forest inventory

attributes.

Several studies demonstrated the capacity of VHSR

optical images to provide relevant information for tree spe-

cies identification. Sugumaran et al. (2003) used IKONOS

imagery and aerial photography to map trees in an urban

area with maximum likelihood and classification tree meth-

ods. A spatial resolution of 1 m provided improved clas-

sification accuracy compared with 0.25 m and 4 m spatial

resolutions. Zhang et al. (2008) combined airborne VHSR

optical and light detection and ranging (lidar) imagery to map

tree species over a mixed conifer–hardwood forest in Ontario,

Canada, at the tree level. Chubey et al. (2006) employed pan-

chromatic and multispectral IKONOS imagery and a clas-

sification tree to map pine, spruce, and aspen stands with an

overall accuracy of 85% in Alberta, Canada. The classification

was implemented using commercial software to segment the

IKONOS imagery into objects representing forest stands

(Baatz and Schäpe, 2000; Definiens Imaging, 2004). The result

of this study demonstrated the utility of using segment-level

metrics derived from multispectral high spatial resolution

imagery (4 m pixels) for species classification; however,

acquiring multispectral VHSR imagery over large spatial

extents can be financially prohibitive. By comparison, VHSR

panchromatic imagery is less costly, especially when pur-

chased from an archive, and contains information that can

be used for tree species identification (Kim and Hong, 2008;

Wulder et al., 2008b).

Oliver and Larson (1996) posit that crown shapes are

predictable, as each species tends to grow in an expected man-

ner in given environmental conditions. Based on such under-

standing and practical experience, Sayn-Wittgenstein (1978)

developed an airphoto interpretation key for the recognition

of the most important Canadian tree species. Interpreta-

tion keys were primarily based on tree branch morphology

(e.g., radiating, tapering branches), crown shape charac-

teristics (e.g., perimeter regularity, area), and seasonal varia-

tions (via foliage characteristics). Murtha and Sharma (2005)

determined five criteria to identify tree species from photo-

interpretation: crown boundary (outline), crown topography,

crown tone and hue, branching habit, and foliage density.

The spatial resolution of panchromatic VHSR images

does not provide sufficient detail to discern branch structure,

crown topography, or foliage density; however, crown shape

metrics can be derived from individual tree crowns. Kim and
Hong (2008) have shown the potential of crown shape met-

rics and image texture indices based on QuickBird imagery

for species identification. Gougeon (1995) developed an indi-

vidual tree crown (ITC) delineation method based on a val-

ley following logic and approach. The effectiveness of this

ITC algorithm has been proven over a range of image types

and forest conditions (Leckie et al., 2003; Gougeon and

Leckie, 2006); however, at northern latitudes, tree isolation
and delineation can be confounded by the complex interac-

tions between sun–sensor–surface geometry and forest struc-

tural characteristics (Wulder et al., 2008c). Mora et al. (2010)

demonstrated the application of a within-stand, object-based

approach for mean stand height estimation.

The main objective of this study was to test the capa-

city of panchromatic VHSR imagery for identifying stand-

level leading species over four study sites in the Yukon

Territory, Canada. Given this objective, we first defined a

semi-automatic method to delineate forest stands from pan-

chromatic VHSR imagery and then manually interpreted a
series of attributes within these stands for calibration and

validation purposes. Second, we applied an algorithm that

automatically delineated individual tree crown objects, and

from these we calculated a number of tree crown metrics.

Third, we assessed whether statistics on tree crown metrics,

when summarized at the stand level, were useful for discrim-

inating leading species. Lastly, we used the crown metrics as

inputs to a classification tree to estimate leading species for
the stands in our study sites.

Material and methods

Study area

The study area is composed of four sites located in the

southern and central Yukon Territory, Canada (Figure 1).
The four sites have areas ranging from 625 to 2400 ha and

were selected based on road access, the availability of cloud-

free QuickBird imagery, and the range of species and struc-

tural conditions represented. All of the study sites were

located within the Boreal Cordillera ecozone (Ecological

Stratification Working Group, 1995), which is characterized

by a cold climate with subhumid to semi-arid moisture con-

ditions. Mean annual temperatures range from 1.0 to 5.5 uC,
with mean annual precipitation ranging from less than

300 mm in valleys shadowed by coastal mountain ranges to

more than 1500 mm at higher elevations. The topography
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of the ecozone is characterized by mountains and extensive

plateaus, separated by wide valleys and lowlands. The original

topography of the area was altered by glaciation, erosion,

solifluction, and eolian and volcanic ash deposition, resulting

in the current landscapes commonly characterized by glacial

drift, colluvium, and outcrops. Permafrost is common in

northern areas and higher elevations of this ecozone. The

dominant species at these sites were white spruce (Picea

glauca), black spruce (Picea mariana), lodgepole pine (Pinus

contorta), alpine fir (Abies lasiocarpa), trembling aspen (Popu-

lus tremuloides), balsam poplar (Populus balsamifera), and

white birch (Betula papyrifera). Forest disturbances in the

Yukon Territory are primarily due to wildfire, insects, and,
to a lesser extent, forest harvesting.

Data and preprocessing

Figure 2 presents an overview of the methodology imple-

mented in this study. For each study site, an 8 km 6 8 km

panchromatic (0.45–0.90 mm) QuickBird-2 image with a

spatial resolution of 0.60 m was acquired (Table 1). Images

were delivered in 16-bit unsigned format. We performed a
top-of-atmosphere (TOA) radiance conversion according to

Krause (2003). The images were orthorectified using a 15 m

panchromatic Landsat-7 Enhanced Thematic Mapper Plus

Figure 1. Study area located in southern and central Yukon Territory, Canada, with the four

study sites noted where the QuickBird images were acquired.
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334 E 2010 Government of Canada



(ETM+) orthoimage (Wulder et al., 2008a), with an average

root mean square error (RMSE) of less than 5 m. Note that

only the panchromatic imagery was considered in this study

to reduce image acquisition costs and enable the extension of

the method over large areas.

Image segmentation

A segmentation algorithm implemented through the Defi-

niens Cognition Network Technology software (Definiens

Imaging, 2006) was used to delineate homogeneous forest

units on the QuickBird images that were analogous to manu-

ally interpreted forest stands (Wulder et al., 2008b). To avoid

oversegmentation as a result of the spatial resolution of the

images (Wang et al., 2004), the segmentation process was

applied to a 7 6 7 or 15 6 15 pixel median-filtered version

of the orthorectified panchromatic image. A median-filtered

image is likely to produce more homogeneous image seg-

ments and may reduce the amount of convolution in stand

boundaries (Falkowski et al., 2009). A protocol for seg-

mentation (Henley et al., 2009) in support of improved char-

acterizations of northern Canadian ecosystems (Falkowski

et al., 2009) was used to define an initial set of segmentation

parameters: scale 5 1200, colour 5 0.3, and compactness 5

0.9. To account for differences in land cover composition,

these parameters and the median-filter window size were

adjusted to address the unique characteristics of each image.

The final segments were manually reviewed to ensure quality

(Wulder et al., 2008b).

Image classification and manual interpretation

The delineated segments from the QuickBird images were

classified according to a basic land-cover stratification so
that treed segments could be identified and then manually

photo-interpreted (Figure 3). The fuzzy classifier in Defi-

niens Cognition Network Technology software was used,

and the following classes were applied: forest, herb, shrub,

bryoid, wetland, exposed land, rock, snow–ice, and water.

Class definition was created following NFI and EOSD pro-

ject standards (Wulder and Nelson, 2003). Segments that

were identified as forest were then manually interpreted
and attributed in compliance with the NFI Photo Plot stan-

dards (Natural Resources Canada, 2004). Treed segments

with a crown closure less than 10% were considered nonfor-

est (Wulder and Nelson, 2003; Boudewyn et al., 2007) and

were excluded from our analysis (with a label relating the

dominant land cover condition, e.g., herb, shrub as appro-

priate). Photo-interpreters identified the following species

over the four study sites: black spruce, white spruce, lodge-
pole pine, white birch, trembling aspen, and balsam poplar.

Tree crown delineation and metrics calculation

We applied the ITC algorithm by Gougeon (1995) to the

treed stands (Figure 3). This method, which is based on a
valley following principle, requires an upper and lower grey

level value threshold to be set to determine whether a pixel

represents a portion of a tree crown or the surrounding sha-

Figure 2. Flow chart of the methodology.
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dow or understorey. For each image the threshold values

were manually adjusted according to differences in vegeta-

tion structure and distribution.

The crowns delineated by ITC are assessed on a segment

(stand) level to compute metrics that described the crown

object shapes: area, length, and roundness. Length is defined

as the square root of the object area times the length to width

ratio derived from a bounding box, and roundness is defined

as the difference between the radii of enclosed and enclosing

ellipses of a given object (Russ, 2002). As the calculation of
length and roundness metrics is unique, these metrics provide

complementary information for the characterization of crown

shapes.

Comparison of species crown metrics

As indicated by Sayn-Wittgenstein (1978) and Murtha and
Sharma (2005), crown shape can be used to discriminate tree

species. Sayn-Wittgenstein describes lodgepole pine crowns

as being irregularly rounded, and white spruce crowns are

described as symmetrical, narrow, and conical. Black spruce

crowns are described as narrow and almost cylindrical. As

one of the four study sites had a forest fire in 1950, the overall

crown distribution statistics for trembling aspen could have

been affected (lower variance, percentile values closer to the
median).

We conducted a series of statistical tests to demonstrate if

a selection of crown metrics (area, length, and roundness),
when summarized at the stand level and described by vari-

ance, mean, and 25th, 50th, and 75th percentiles, could be

used to discriminate leading species.

As leading species were identified and organized by

canopy rank during the photo-interpretation process, we

implemented a complementary protocol whereby the leading

species was identified according to the following steps: spe-

cies of rank 1 layer (dominant trees) with a canopy cover of

at least 50% (by basal area) was selected as the leading spe-

cies if the leading species in the rank 2 layer (codominant and

(or) intermediate trees) was at least the same genus. This
protocol ensured the consistency of the dataset for the cal-

ibration of the classification tree.

A maximum tree crown size for inclusion in the algorithm
was defined (30 m2) to preclude outliers (reflecting crown

conditions not present in the field). As described by Gou-

geon and Leckie (2006), if the ITC algorithm cannot find any

path (via valley following) to properly delineate tree crowns,

the algorithm will instead delineate a cluster of trees. These

clusters can impact the reliability of crown statistics. By

defining a maximum tree crown size, these tree clusters can

be excluded from further analysis. Crown metrics were then
summarized at the stand level. Stands with metric values that

are three or more standard deviations from the mean value

were considered as outliers and removed from the dataset.

To determine the utility of the aforementioned crown

characteristics for separating stand leading species, we first

applied the Jarque–Bera normality test (Jarque and Bera,T
a
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1987) on area, length, and roundness stand value distribu-

tions for each species. As a result of non-normal distribu-

tions of species metric, nonparametric tests were used to

compare variances and means between species. The analysis

of variance by ranks (Kruskal and Wallis, 1952) was used to

compare the variances, and the Nemenyi test (Nemenyi, 1963)

was used to compare the means. To facilitate the Kruskal–

Wallis test, which requires samples of equal size, we randomly

selected a sample of stands for each species, with the size of the

samples constrained to the smallest sample size available (lodge-

pole pine; N 5 26). A multiresponse permutation procedure

(MRPP) proposed by Mielke and Berry (2001) was performed

to ensure that there was no significant difference between the

samples selected and the remaining dataset. This nonparametric

method tests the hypothesis of no difference between two or

more datasets for a range of parameters (i.e., the crown metrics

in this study).

Estimation of leading species

Classification trees were used to predict the leading species

in each treed stand. A classification tree is a nonparametric

method that is capable of handling large datasets composed

of heterogeneous variables (numerical and categorical).

Therefore, no assumptions are made regarding variable dis-

tributions (Breiman et al., 1984). Moreover, classification

trees are straightforward to interpret and easy to implement,

which is an important operational consideration (Chubey

et al., 2006). Another advantage of classification trees is their

ability to select the best variables to discriminate the potential

classes of the model (Yu et al., 2006; Laliberte et al., 2007).

To prevent the establishment of a weak classification tree

as a result of unbalanced samples sizes (Table 2), a new data-

set D was created with a stratified random selection of an

equal number of stands per species (Figure 2). An MRRP

test was used to ensure that the random selection was not

significantly different from the remaining part of the dataset.

Then calibration and validation datasets were created by

splitting the dataset D in half using a random procedure.

The random division of the dataset D was followed by an

MRPP test to ensure the equivalence of the calibration and

validation datasets. The p value of the MRPP test had to

equal 0.15 or more to accept the dataset partition. A clas-

sification tree with a K-fold cross-validation (K 5 10) was

then built with the calibration dataset. Subsequently, the clas-

sification tree was pruned and the leading tree species was

predicted for each stand of the validation dataset. As each

of the three metrics used to characterize the stands was

described by five statistics, a total of 15 input variables were

used. The sequence of randomly splitting the dataset D,

establishing the classification tree, and predicting the leading

species was run multiple times to circumvent the effect that a

single random splitting could have had on the classification

tree establishment and the accuracy of its predictions. More

precisely, the sequence was repeated so that each stand of the

dataset D was selected at least 30 times in the validation

dataset. Lastly, for each stand, the majority class from all

of the trials was retained as the predicted class and compared

Figure 3. (a) Stand delineation (white lines) with QuickBird imagery overlaid by ITC objects in forested segments in

background. (b) Tree crown objects delineated with the ITC suite (in black).

Table 2. Metric values and number of stands per species with classes from photo-interpretation.

Species

Area (m2) Length (m) Roundness (m)
No. of

standsMean Variance Mean Variance Mean Variance

Black spruce 5.9 0.07 3.3 0.005 0.25 461025 31

White spruce 7.3 1.00 3.7 0.150 0.30 0.004 163

Lodgepole pine 7.1 0.50 3.7 0.050 0.30 561024 26

Trembling aspen 7.2 0.40 3.6 0.060 0.26 0.001 44
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to the leading tree species defined by the photo-interpreter.

Thus, we ensured that for each stand the majority class (the

leading species) was established on a reliable number of trials.

Stands not selected during the first random selection were

added to the validation dataset so that the validation data

were representative of the stand leading species abundance

over the study area. Note that these stands were constantly

part of the validation dataset over the course of the trials. The

classification tree was implemented using the R software (R

Development Core Team, 2005) and the library ‘‘rpart.’’

Results

Image segmentation and interpretation

The segmentation process over the four study sites gener-

ated a total of 426 segments, of which 289 were considered

treed after the initial stratification following the fuzzy clas-

sification and the rule-based refinement of the interpretation

process (crown closure . 10%). Lastly, 270 treed stands,

with a mean area of 14.5 ha, were selected according to the

species homogeneity criterion defined for this study. Note

that only one stand had white birch as leading species and

only five stands had balsam poplar as leading species; as a

result of their small sample sizes, these species and stands

were omitted from further analysis.

Tree crown delineation and metrics calculation

Approximately 1.2% of the crown objects produced with

the ITC algorithm were identified as large multiple tree

clusters and excluded from further analysis. As the average

number of crowns per stand was approximately 10 500, the

average number of excluded tree clusters (area . 30 m2) was

approximately 130. Table 2 provides the mean and variance

values for each of the three metrics and the distribution size

per leading stand species.

Comparison of species crown metrics

When comparing species crown metrics, the distribu-

tions of each of the metrics were found to be non-normal

(Jarque–Bera test; a 5 0.05). Thus, the Kruskal–Wallis test

was used to compare variances between species, using a

stratified random selection of 26 samples per species. The

MRPP test indicated a chance-corrected within-group agree-

ment A of 20.012 and a p value of 0.90. Kruskal–Wallis tests

led to the conclusion that there was a significant difference

between the species for all three metrics (Table 3). The Neme-

nyi test was then used to compare the means between species

for the three metrics. The results of the Nemenyi tests are

provided in Table 4, in which the values in bold indicate

species combinations with a significant difference (a 5 0.05

and critical value Q 5 3.7).

Leading stand species classification

The MRPP test was used to ensure the representativeness

of the stand selection process, which obtained an equal num-

ber of stands per species with a chance-corrected within-

group agreement A of 1.5 6 10–3 and a p value of 0.19.

For the classification trees trials, 26 stands per species were

used. As a result, classification trees were computed with a

calibration dataset composed of 13 stands per species (52

stands in total). Table 5 presents the 10 crown metrics that

were selected by the classification trees, by the frequency of

their occurrence across the iterations. Figure 4 presents

stands of the entire dataset plotted according to the three

most selected metrics. The error matrix is presented in

Table 6, and the resulting overall accuracy was 72.50%.

Figure 5 presents the percentage of species selection per stand

computed over the iterations then averaged per leading stand

species. In addition, to characterize the effects of crown clos-

ure on species prediction, the accuracies per species were

computed according to crown closure (Figure 6). Figure 7

shows the crown closure distribution per species.

Discussion

Stand and crown delineations

Automatic stand delineation provided satisfying results

because only 10 stands out of 289 had an area smaller than

that of the NFI standards (segment area § 2 ha) and

required manual modification. As expected, segment bound-

aries were more convoluted than those typically obtained

from a manual stand delineation (Wulder et al., 2008b).

These boundaries can be smoothed if desired; however, we

preserved these boundaries because they represented local

conditions and the spatial detail of the VHSR imagery used.

Table 3. Results of the Kruskal–Wallis tests.

Area Length Roundness

x2 52.1 43.7 19.7

p 2.8610211 1.761029 1.961024

Table 4. Statistics q to be compared with the critical value Q for the Nemenyi test.

BS–WS BS–LP BS–TA WS–LP WS–TA LP–TA

Area 7.7 8.0 8.9 0.2 1.1 0.8

Length 6.9 8.8 6.2 1.8 0.7 2.6

Roundness 3.1 6.1 1.9 3.0 1.1 4.1

Note: Values in bold indicate that species combination is significantly different at a 5 0.05. BS, black spruce; LP, lodgepole
pine; TA, trembling aspen; WS, white spruce.
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Stand leading species identification

Kruskal–Wallis tests showed significant differences between

species for all crown metrics. Therefore, variance statistics

could be employed as potential parameters to discriminate

leading species with the classification tree. Table 5 shows that

the variances in the area and roundness metrics were the two

most frequently selected input parameters for the classification

trees. The 50th percentile of area was the third most frequently

selected input parameter. The Nemenyi tests showed that some

tree species could also be discriminated using metric mean

values.

Black spruce stands could potentially be well discriminated

from the other species with the mean area or length metrics

(Table 4). Mean roundness was pre-identified as a potential

crown metric suitable for discriminating black spruce from

lodgepole pine; however, mean roundness was not selected by

the classification trees. Moreover, despite the fact that the

Kruskal–Wallis test showed significant differences between

species, the Nemenyi test did not identify any metric as poten-

tially able to discriminate white spruce from either lodgepole

pine or trembling aspen. Figure 4 shows that black spruce

clusters could potentially be identified on each two-metric

space defined by the most selected statistics. Figure 5 shows

that over the classification trees, black spruce was the most

frequently identified species in black spruce stands. The clas-

sification trees were able to predict black spruce as the lead-

ing species with 100.00% accuracy (Table 6).

White spruce stands had the highest mean crown areas.

However, the full distribution of white spruce crown area

overlapped with the crown area distribution of other species

(Figure 4), possibly contributing to the resulting accuracy of

only 43.90%. The low accuracy observed for white spruce

could be explained by the highest variance values observed

for the three metrics of the species (Table 2). Therefore, the

wide range of values induced overlapping metric distribu-

tions with the other species (Figure 4). Figure 5 confirms that

Table 5. Proportion of statistics

selection across classification trees.

Area variance 82%

Roundness variance 73%

Area 50th percentile 64%

Length 50th percentile 22%

Mean area 20%

Length variance 13%

Length 25th percentile 5%

Mean length 4%

Area 75th percentile 4%

Roundness 25th percentile 2%

Figure 4. Species scattering along combinations of the best statistics: #, black spruce; D, white spruce; +, lodgepole

pine; 6, trembling aspen.
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there was confusion among all species for the white spruce

stands. The highest degree of overlap occurred with stands

dominated by lodgepole pine and trembling aspen (Table 6).

Confusion in identifying the leading species has likely also

occurred during the photo-interpretation process. In addi-

tion, recall that for a given stand, leading species was defined

as the species of the rank 1 layer (dominant trees) with a

canopy cover of at least 50% (by basal area), as long as the

leading species in the rank 2 layer (codominant and (or)

intermediate trees) was at least the same genus. Therefore,

the metrics associated with the leading species could be affec-

ted by the other species, especially when the species canopy

cover in the rank 1 layer was close to 50%. Moreover, climax

white spruce stands, which are widespread across northwes-

tern Canada (Lutz, 1956), often codominate or form a sig-

nificant part of the vegetation in mixed stands with other tree

species. Furthermore, white spruce grows on a wide variety of

soils of marine, alluvial, lacustrine, and glacial origin (Eyre,

1980). This variety of suitable soil conditions associated with

within-stand species variability may have increased the vari-

ance values of the crowns metrics.

Lodgepole pine stands were identified with an accuracy of

80.75%. However, the smaller sample size of the lodgepole

pine dataset may have affected the capacity to assess the

reliability of the model for this species. Figure 4c shows that

the area variance, which is the most frequently selected input

parameter, was an efficient statistic to discriminate lodge-

pole pine from the other species. Figure 5 shows that over

the classifications, the three remaining species were selected

as well but in reduced proportions. Most of the confusion

between lodgepole pine stands and the other stand types

occurred with the other coniferous-dominated stands (i.e.,

stands dominated by black and white spruce).

Trembling aspen could be well discriminated from the

other species by the area variance metric (Figure 4), although

the variance was similar to that of lodgepole pine (Table 2).

However, Nemenyi tests showed that mean roundness and

length could enable a separation of trembling aspen with

lodgepole pine and black spruce, respectively (Table 4). Con-

versely, no statistic was identified as being able to separate

trembling aspen and white spruce, and Figure 4 shows an

overlap between trembling aspen and white spruce clusters.

Figure 5 shows that trembling aspen was largely selected

across the classifications in trembling aspen stands. The final

accuracy of trembling aspen was 65.90%, and most of the

confusion occurred with stands dominated by black spruce

and lodgepole pine.

Refinement of methodology and future work

The semi-automated approach to the identification of

leading species presented herein would be particularly bene-

ficial to Canada’s NFI in areas where logistical or financial

constraints preclude the acquisition of aerial photography

(Falkowski et al., 2009). Furthermore, such an approach

would be an improvement on the existing Landsat-based

data sources that are currently used in these areas (Wulder

et al., 2008a). Opportunities exist to refine the methodology

as presented, with the objective of improving the accuracy of

the model’s species predictions and thereby also improving

the estimation of attributes that are dependent on species

information, such as volume and biomass.

For example, despite the fact that different species have

unique crown metrics, there are other factors besides species

that can alter tree crown morphology and impact crown

metrics. According to Oliver and Larson (1996), side shade

effect, possible phototropism, climatic events such as wind

and ice storms, and sudden changes in the tree’s hormonal

Figure 5. Mean species prediction proportions per reference

stand species. BS, black spruce; LP, lodgepole pine; TA, trem-

bling aspen; WS, white spruce.

Table 6. Error matrix (%) deduced from the classification trees trials.

Predicted class

Validation Black spruce White spruce Lodgepole pine Trembling aspen

Black spruce 100.00 0 0 0

White spruce 12.90 43.90 25.75 18.40

Lodgepole pine 15.40 3.80 80.75 0

Trembling aspen 13.60 4.50 15.90 65.90
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balance are all potential sources of crown shape alteration.

One approach to address variability in crown size may be to

reduce the size of large crowns identified by ITC based on a

predetermined crown size expectation. In this study, we have

established a threshold for a maximum crown area of 30 m2;

however, a threshold based on the crown size distribution

within a stand would consider the specific stand character-

istics (species, crown closure, etc.) and may therefore be

more effective. Similarly, stratifying by crown closure may

also improve estimates of leading species. In this study, we

found a linkage between the range of crown closures and the

accuracy of leading species predictions (Figure 6; Table 6).

A protocol was designed to discard outlier tree crown

objects and stands during the modeling process; however,

stands dominated by white spruce suffered from among-class

confusion, particularly with stands dominated by lodgepole

pine (Figure 5; Table 6). The collection of more extensive

training data, through additional photo-interpretation or,

where possible, field data collection, may help address this.

Alternatively, a data-driven classification approach could

be followed (i.e., clustering), with the species classification

applied to the resulting groups, thereby mitigating any error

introduced by faulty calibration data.

Image acquisition parameters (e.g., in-track view angle,

satellite azimuth) should also be considered when developing

models that are to be extended across large areas or to other

areas with similar characteristics. High spatial resolution

satellites have nimble sensor heads that can drastically

reduce the satellite revisit time to a given location but can

also have implications for representations of forest structure

(Wulder et al., 2008c). We note in this study that there was

some variability in image acquisition parameters (Table 1)

that may have contributed to some confusion in the clas-

sification tree model.

Tree crown parameters such as area and shape change as

trees grow and age (Oliver and Larson, 1996). Since an

accurate mean stand age is difficult to estimate, particularly

from remotely sensed data (Wulder et al. 2004), the potential

impact of age on crown metrics was not considered in this

study. In our study area, airphoto interpretation indicated

that more than two thirds of the forest stands were greater

than 100 years old. Therefore, changes in crown size as a

result of age are unlikely in our study area; however, in areas

with a more heterogeneous distribution of ages, access to

ancillary information sources like forest fire history or silvi-

cultural records may provide useful information on stand

ages in lieu of direct age estimation. Some tree species, such

as lodgepole pine, tend to regenerate in relatively homogen-

eous stands after a major fire event, and successional pat-

terns for other species are known as well (Fortin et al., 1999;

Perry and Millington, 2008). Such information, although not

always available, may improve species identification.

Figure 6. Influence of stand crown closure on the species classification accuracy.
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Future work should consider additional inputs, such as

topographic variables and soil layer information, as some

species spatial patterns are driven by such factors (Oliver

and Larson, 1996). Furthermore, the method presented

herein should be extended to areas with different tree species

and to mixed-species stands. The accuracy level and the nat-

ure of omission errors related to the stands dominated by

white spruce in this area further encourage the creation of

generic stand volume and biomass equations by broad cover

type (i.e., conifer and deciduous stands). If the accuracy of

leading species predictions is considered to be too low, the

application of species-specific attribute estimation models

for biomass and volume may imply a false precision. In such

a scenario, combining regionally appropriate species-specific

models with lower precision models based on cover type

should be considered. A higher accuracy and likely more

parsimonious estimation of cover type may accommodate

the lower precision of the subsequent volume and biomass

models that are applied.

Conclusion

In this study, we investigated the potential of classification

trees to discriminate stand leading species from crown met-

rics calculated from VHSR satellite images. The four study

sites were located in the Yukon Territory, Canada, and were

largely represented by four major, regionally important tree

species. Preliminary statistical tests identified the potential of

some crown statistics summarized at the stand level to dis-

criminate, in a statistically significant fashion, leading spe-

cies. The most frequently selected input parameters to the

classification tree were the variances of crown area and the

roundness and mean crown area. An overall accuracy of

72.50% was obtained, with accuracies for individual species

ranging from 43.90% to 100.00%. This study demonstrated

the potential of crown metrics derived from panchromatic

satellite imagery and classification trees to provide informa-

tion that enables the discrimination of stand leading species

in boreal forest stands. Suggestions for the refinement of the

methodology presented herein and for future work could

potentially lead to an improvement of the model’s ability

to predict leading species, which in turn could enable more

robust estimates of other forest inventory attributes such as

stand volume and biomass.
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342 E 2010 Government of Canada



References
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