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Abstract Remote sensing has established a key role in modern wildlife ecology, but the 
data types and methods are both varied and complex, and the potential for misuse by the 
uninformed is high.  The basic attributes of earth-observing sensors and data products 
can be described by their spectral, spatial, radiometric, and temporal resolutions, and 
general categories of data products are normally consistent across agencies and organi-
zations. Users of remote sensing technology seeking to link information needs with 
remote sensing strategy must balance knowledge of data and processing techniques 
with a clear understanding of the nature of the information desired.  Wielded within a 
sophisticated application framework, remote sensing allows for an impressive suite of 
wildlife ecology and habitat attributes to be modeled, predicted, and monitored through 
time, including land cover physiognomy, vegetation structure and condition, forage 
characteristics, specific nutrient concentrations, overall productivity, and biomass.

           11.1 Introduction 

 A spatial information management approach to applied wildlife ecology will rely 
on our capacity to link animal-based data sets – observations related to a species’ 
distribution, abundance, health, or genetics, for example – to a variety of spatially 
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explicit environmental variables. This idea is based on the general concept that 
an organism’s characteristics and behaviors at both the individual and population 
levels are inextricably linked to the physical habitat in which it occurs (Guisan 
and Zimmermann  2000 ; Braun  2005) . While the investigation of these links must 
be well-grounded by solid field observations, the multiple scales and extent over 
which information must be compiled suggests a key role for remote sensing 
instruments and related technologies. For example, it is becoming increasingly 
evident that the health of wild species is adversely affected by human activities 
and landscape change (e.g. Daszak et al.  2001 ; Farnsworth et al.  2005) . Ongoing 
research may reveal a direct link between human-induced habitat changes and 
long-term  physiological stress, leading to damaging health consequences in 
individual animals (i.e. impaired reproduction, diminished growth, suppressed 
immune function) and  subsequent negative effects at the population level (i.e. low 
natality and survival rates, diminished abundance). An approach to understanding 
these relationships, based on sensitive and reliable measures of health, stress, and 
landscape change, is both urgently needed and impossible to conceive without 
remote sensing. 

 For decades, remote sensing has been acknowledged as a critical data source 
of environmental information, theoretically capable of supporting a broad range 
of ecological applications (Robinson  1985 ; Greegor  1986 ; Graetz  1990 ; Franklin 
 2001 ; Lewis  2003) . The promise of the technology lies in its ability to deliver high-
quality, spatially explicit observations over large areas with regular revisit intervals, 
in a format that is both well-suited for ecological interpretation and readily inte-
grated with data from other components of a modern spatial information manage-
ment system (e.g., GPS, GIS modules). Recent reviews by Cohen and Goward 
 (2004) , Leimgruber et al.  (2005) , McDermid et al.  (2005) , and Gottschalk and 
Huettmann  (2006) , for example, document more than 30 years of success applying 
remote sensing technology to the analysis and modeling of wildlife–habitat rela-
tionships. However, as with all such multi-disciplinary partnerships, effectiveness 
can be hindered by miscommunication between the  methods  experts – practitioners 
of remote sensing, GIS, and other spatial technologies – and  applications  personnel 
with expertise in wildlife and ecology. 

 The linkages between ecologists and remote sensing scientists can be improved 
by addressing gaps in understanding through the establishment of widely accepted 
standards. As a data source and analysis tool, remote sensing is still relatively new, 
and its data are often not well known and improperly handled. However, in the 
few decades that the data have been available, solid synthesis applications have 
emerged. For example, land-cover and change-detection analyses are two instances 
of remote sensing products that have become widely accepted in the various user 
communities (Franklin and Wulder  2002 ; Wulder et al.  2003) . Overall user satisfac-
tion with these products can be partially attributed to an increased understanding of 
development strategies and characteristics, leading in turn to realistic user expecta-
tions surrounding results. However, remote sensing rarely replaces traditional field 
work. Instead, the technology represents a powerful suite of data sets and methodo-
logical procedures capable of  complementing and extending  ground observations 



11 Wildlife Ecological Knowledge and Management 195

accurately and efficiently over large geographic areas, and, as a result, provides an 
effective foundation for performing wildlife-ecological studies. 

 In this chapter, we explain the basic operation of remote sensing devices, and 
provide an overview of information products and major distribution centers. We 
then review the critical targets that remote sensing can address in support of  wildlife 
research and modeling, with specific reference to key advancements and sample 
applications of interest to researchers in applied wildlife ecology. We conclude with 
the presentation of an application framework designed to link ecological informa-
tion needs with the correct remote sensing imagery and information–extraction 
strategies in order to improve wildlife research and management.  

11.2   Remote Sensing Background 

 For our purposes, remote sensing devices can be thought of as instruments, 
typically mounted on air- or space-borne platforms, which are designed to measure 
the electromagnetic radiation that is reflected and/or emitted by the surface of the 
Earth. For the most part, these earth-observing (EO) instruments are adapted to 
exploit portions of the electromagnetic spectrum that are not strongly impacted by 
the atmospheric gases and particles through which this radiation must pass. These 
 atmospheric windows  occur primarily in the visible, infrared, and microwave 
 portions of the spectrum, and represent the wavelengths within which the vast 
majority of relevant sensors operate.  Passive  remote sensing devices rely primarily 
on the visible and infrared light provided by the sun, and constitute the familiar 
optical systems most commonly applied to wildlife studies.  Active  sensors such as 
lidar (light detection and ranging) and radar (radio detection and ranging) provide 
their own sources of illumination, and are increasingly employed in ecological 
work. Together, they represent a valuable emerging component of the discipline 
that is especially adept at difficult applications, such as characterizing the detailed 
vertical structure of vegetation (e.g., Hyde et al.  2006) . Here we focus  primarily on 
the use of passive EO instruments, a selection of which are presented in Table  11.1 . 
To augment the background summary on remote sensing provided here, readers 
are advised to consider general text books by Campbell  (2007) , Richards and Jia 
 (2006) , and Lunetta and Elvidge  (1998) . We do not provide information on the aer-
ial photography aspects of remote sensing, which have been reviewed in a related 
context elsewhere (   Hall  2003) .  

 Lefsky and Cohen  (2003)  review the background and considerations for the 
selection of remotely sensed data, describing in detail the various resolutions used 
to describe remote sensing systems:  spatial, spectral, temporal,  and  radiometric . 
Gaining an understanding of these characteristics helps users select the data source 
that is best-suited to meet a given information need.  Spatial resolution  is the image 
characteristic that is typically of most interest to users. While the true concept is 
more nuanced, spatial resolution is often considered analogous to the pixel size 
of a digital image. A given image’s pixel size indicates the instantaneous field of 
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view of the sensor, or the surface area across which radiance measures have been 
generalized; 30 × 30 m in the case of Landsat Thematic Mapper, for example. This 
generalization occurs for each spectral band that is acquired for a given image type, 
and different bands may have different spatial resolutions. 

 The  extent  of an image is also linked to the spatial resolution, through sensor 
optics and altitude, among other factors. Images with smaller pixels typically cover 
a smaller portion of the Earth’s surface, while those with larger pixels generally 
cover larger areas. 

 The  spectral resolution  defines the specific electromagnetic wavelengths across 
which an individual instrument acquires measurements. Multispectral sensors 
commonly have a relatively modest number of bands (up to 20) placed at loca-
tions where vegetation reflectance or absorption features are known to be present, 
and that also coincide with clear atmospheric windows. Hyperspectral systems are 
characterized by having a large number (greater than 20) of near-contiguous narrow 
spectral bands. The quality of spectral resolution is established not by the  number  
of bands of data collected, but rather by their width. Narrow spectral bands are bet-
ter able to characterize detailed reflectance characteristics, without unnecessarily 
generalizing the response (Wulder et al.  2004) . 

  Temporal resolution  is the frequency at which a given location on the Earth’s 
surface is imaged, or can be imaged. A high temporal resolution would indicate 
that a location is imaged frequently. The  temporal extent  of a remote sensing 

  Table 11.1    Characteristics of low-, medium-, and high-spatial-resolution optical sensors (after 
Coops et al. 2006)   

 Sensor  Footprint (km × km) 
 Spatial 
resolution a  (m) 

 Spectral 
resolution (nm) 

  Low spatial resolution sensors  
 NOAA 17 (AVHRR)  2,940  1,100  500–1,250 
 SPOT 4 (VGT)  2,250  1,000  430–1,750 
 Terra (MODIS)  2,330  500  366–14,385 
  Medium spatial resolution sensors  
 Landsat-5 (TM)  185  30  450–2,350 
 Landsat-7 (ETM+)  185  30 (MS/SWIR); 15 (pan)  450–2,350 
 SPOT 2 (HRV)  60  20 (MS); 10 (pan)  500–890 
 SPOT 4 (HRVIR)  60  20  500–1,750 
 SPOT 5 (HRG)  60  10 (MS); 20 (SWIR)  500–1,730 
 IRS (RESOURCESAT-1)  141  23.5  520–1,700 
 Terra (ASTER)  60  15  530–1,165 
 EO-1 (HYPERION)  37  30  433–2,350 
  High spatial resolution sensors  
 Orbview-3  8  4 (MS); 1 (pan)  450–900 
 WorldView-1  17.6 km swath  0.5 (pan)  450–900 
 QuickBird-2  16.5  2.44 (MS); 0.8 (pan)  450–900 
 IKONOS  13.8  4 (MS); 1 (pan)  450–850 

   a  MS  multispectral,  SWIR  shortwave infrared,  pan  panchromatic  
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data source is an aspect for additional consideration in wildlife ecology studies, 
indicating the historical holdings and archives of a given sensor. Efforts to quan-
tify changes in habitat through change detection, for example, require imagery 
that ‘bookends’ the targeted time interval, and can be limited by the temporal 
extent of the relevant data sets.    Coops et al. (2006) provide insights regarding im
age selection and processing options for monitoring ecological disturbance and 
change. 

  Radiometric resolution  refers to the precision with which radiance measurement 
is possible from a given data type, as indicated by the range of digital numbers 
recorded for each pixel. Inevitably, users must consider the trade-offs between such 
characteristics as image extent, desired local detail, temporal revisit frequency, and 
spectral information when selecting imagery for a given application. The ‘perfect’ 
remote sensing data source does not exist. 

11.2.1   Remote Sensing Data Products and Sources 

 A description of the technical details surrounding the processing of raw sensor 
measurements into useable information products is beyond the scope of this chap-
ter; interested readers are referred instead to the general remote sensing text books 
cited previously for the basics on this topic. However, users of remote sensing 
technology seeking to acquire appropriate data products require (1) a basic under-
standing of the various outputs available, and (2) some general guidelines regarding 
image sources and data distribution centers. 

 While remote sensing outputs are typically sensor- and organization specific, 
the general categories tend to be consistent across agencies and organizations. 
The Committee on Earth Observation Satellites categorizes EO data products 
according to their level of processing (Table  11.2 ). Level 0 represents  raw  data, 
which are generally not suitable for use in applied wildlife ecological studies. Level 
1 products, by contrast, have been radiometrically calibrated, are often geometri-
cally registered, and represent the familiar  unprocessed  imagery that supports large 
numbers of contemporary wildlife initiatives. However, while L1 is certainly the most 
flexible and widely used brand of EO imagery, the data remain unrefined, and typi-
cally require significant investments in order to generate useable information layers. 
Less well-known to the wildlife community is the wealth of  derived  L2 and L3 
products available from many sensors: biophysical and geophysical information 
attributes generated by science teams eager to add value to EO data for the benefit 
of researchers and managers in other fields. For example, the National Aeronautics 
and Space Administration’s (NASA’s) Earth Observing System of satellites support 
hundreds of L2 and L3 data products designed to contribute to the measurement 
and monitoring of our planet (Parkinson and Greenstone  2000) . While the global 
focus of EOS data emphasizes spatial scales that are often too coarse for detailed 
wildlife research, regional studies would be well-advised to take advantage of these 
underutilized – and often free – sources of information.  

[Au3]
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 The strategy and cost of acquiring EO imagery and products depends primarily 
on the sensor and platform of interest. Sensors are managed by a wide range of 
corporate and government entities that operate under a variety of price structures 
and copyright arrangements. In general, public organizations such as NASA and 
the European Space Agency provide relatively low-priced outputs under generous 
copyright conditions, and archived image databases are often freely available to 
the public through various on-line geoportals. The International Center for Remote 
Sensing Education maintains a useful list of Internet clearinghouses and data distri-
bution portals for satellite imagery at   http://www.r-s-c-c.org    . Of particular interest 
to ecologists is the recent release of the full 30-plus-year archive of the Landsat 
mission into the public domain (Woodcock et al.  2008) , and available through the 
United States Geological Survey at   http://landsat.usgs.gov    . 

 Unlike the widely available low- and medium-spatial-resolution satellite sen-
sors operated by government organizations, most high-spatial-resolution sensors 
are controlled by private corporations with more restrictive copyright policies and 
market-driven data prices. Complicating the issue of data availability in these cases 
(and in some medium-spatial-resolution systems as well) is the need to  task  the sen-
sor in order to acquire imagery over a given area of interest. This obviously requires 
forethought and communication with the satellite operator. Projects seeking to pur-
chase these types of data after the fact will often come away frustrated. Up-to-date 

  Table 11.2    Summary of standard remote sensing data products. Product levels are generally 
consistent across earth-observing agencies and organizations throughout the world   

 Data product  Description  Example 

 L0  Reconstructed but unprocessed 
‘raw’ data with all available 
supplementary information 
(ephemeris, calibration) appended 

 Landsat 7 L0R 

 L1  Radiometrically corrected data 
converted to units of absolute 
radiance; often scaled to integers 
(digital numbers) for storage 
efficiency. Some L1 products have 
also been corrected for systematic 
geometric errors, and re-sampled to 
a user-specified map projection 

 Landsat 7 L1R (radiometrically 
calibrated) and L1G 
(radiometrically calibrated and 
geolocated) data; MODIS L1A 
(radiometrically calibrated) and 
L1B (radiometrically calibrated 
and geolocated) 

 L2  Derived biophysical and geophysical 
information products, distributed at 
the same locations and resolutions 
as the L1 source data 

 MODIS Surface Reflectance, LAI, 
Evapotranspiration, Land Cover, 
Sea, Sea Ice Cover, Chlorophyll 
Fluorescence, and Surface 
Temperature products 

 L3  Derived biophysical and geophysical 
information products that have 
been resampled in space and/
or time, often for the purpose of 
completeness and consistency. 
Resampling may include aspects 
organization of averaging and 
compositing 

 MODIS gridded land, ocean, and 
atmosphere products. Polar grids 
and climate modeling grids are 
also provided to facilitate use by 
those research communities 
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information on pricing, availability, and tasking requirements is normally available 
from official sources on-line.   

11.3   Linking Information Needs with Remote Sensing Strategy 

 The widespread availability of digital imagery and sophisticated software packages 
has greatly enhanced the accessibility of remote sensing technology in wildlife 
ecology studies. However, the data and processing strategies are both varied and 
complex, and, as a result, the potential for misuse by the uninformed is high. Chief 
among all concerns regarding the use of remote sensing data sources and processing 
strategies is the selection of the  proper  tools and techniques, and a subsequent 
correct interpretation of findings. The ecological literature contains multiple 
references to disappointing experiences with remote sensing data products (e.g. 
Plummer  2000 ; Thogmartin et al.  2004 ; Gottschalk and Huettmann  2006) , and 
while some have asserted that the technology has failed to deliver consistently on 
its initial ecological promise, it seems clear that the larger issue revolves around a 
lack of solid understanding regarding the use of the remote sensing in an ecological 
setting (McDermid et al.  2005 ; Fassnacht et al.  2006) . As with all technical col-
laborations, there is an on-going need for users and producers of remotely sensed 
information to seek common ground with respect to the capabilities of the tools, 
and the wildlife community would benefit substantially from the development and 
adoption of a methodological framework that links ecological information needs 
with appropriate remote sensing strategy. 

 The past decade has witnessed a tremendous increase in the number of publicly-
accessible imaging platforms designed to deliver data at ever-increasing spatial, 
spectral, radiometric, and temporal resolutions. In addition to the familiar optical sys-
tems, there are the newly emerging technologies of lidar and various types of radar. 
While these recent choices have greatly enhanced our ability to conduct ecological 
modeling and monitoring activities, they also present complex challenges surround-
ing the selection of appropriate data and processing techniques. However, since the 
characteristics of ecosystems are generally determined by the primary tropic level – 
vegetation (Graetz  1990)  – the discussion of information–extraction strategies for use 
in ecological studies must begin with a review of the remote sensing scene model, and 
how it relates to vegetation as a hierarchical, multi-scale phenomenon.  

  11.4 Multi-Scale Vegetation Structure 

 Complex systems theory describes the behavior of ecological systems characterized 
by a large number of components interacting in a non-linear fashion and exhibiting 
adaptive properties through time (Kay  1991 ; Hay et al.  2002) . An important charac-
teristic of these systems – or at least, our perception of them – is that they intuitively 
take on the form of a nested hierarchy, in which finer objects (leaves, branches, 
trees) are nested within broader ones (stands, forests, cover types). These ideas are 
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important, since they help to define conceptual models that categorize vegetated 
landscapes amongst scale domains, and express the spatial dimensions at which 
selected information occurs. These considerations are the foundation of a variety 
of classification systems (e.g. Anderson et al.  1976 ; Woodcock and Harward  1992 ; 
Franklin and Woodcock  1997)  that are designed to organize information hierarchi-
cally, and provide a helpful basis for linking ecological information with remote 
sensing data sources and appropriate information–extraction techniques.  

  11.5 The Remote Sensing Scene Model 

 Strahler et al.  (1986)  described the remote sensing model as one composed of three 
distinct elements: the sensor, the atmosphere, and the scene. The scene comprises 
the area of interest, which, in the context of a terrestrial ecology application, might 
consist of a forested landscape viewed at a specific scale. A model of this landscape 
can normally be constructed as a series of two- or three-dimensional objects distrib-
uted on a homogeneous background (Jupp et al.  1988,   1989) . In real imagery, these 
objects would appear as groups of similar-looking pixels, and could take several 
different forms depending upon scale. For example, a conifer forest could be mod-
eled at fine scales as a series of two-dimensional objects representing trees, shad-
ows, and patches of understory, or, at a broader scale, as collections of structurally 
homogeneous forest stands. In these two cases, the groups of pixels in the imagery 
might appear similar, but they would represent markedly different ground objects. 

 One of the keys to understanding the nature of remote sensing imagery is to 
know the relationship between the objects of interest in the scene and the pixels 
in the image. Generally speaking, this relationship can be described as belonging 
to one of two distinct types: H-resolution or L-resolution (Strahler et al.  1986) . 
The H-resolution case occurs when the pixels are  smaller  than the objects under 
investigation; in other words, when there are many pixels per object. L-resolution 
imagery, on the other hand, occurs when the pixels are  larger  than the objects, or 
there are many objects per pixel. This designation is important, since it neatly sum-
marizes the physical relationship between pixels and objects: knowledge that can be 
exceptionally useful in selecting the appropriate image-processing techniques. 

 H-resolution imagery tends to display high amounts of local variability, and, as a 
result, contains large amounts of spatial information. In general, H-resolution scenes 
are best suited for classification; particularly strategies involving object-based 
approaches (e.g. Burnett and Blaschke  2003 ; Benz et al.  2004) , texture variables (e.g. 
Cohen and Spies  1992 ; Franklin and McDermid  1993 ; Carr and de Miranda  1998) , 
contextual decision rules (e.g. Gong and Howarth  1992 ; Groom et al.  1996 ; Sharma 
and Sarkar  1998) , and other forms of spatial analysis (e.g. Atkinson and Lewis  2000 ; 
Csillag and Kabos  2002) . By definition, classification involves the placement of pix-
els into distinct categories, and works best, therefore, on H-resolution entities that fit 
cleanly into information classes of interest defined at a specific scale. 

 L-resolution imagery, on the other hand, typically has low amounts of local vari-
ability, and, consequently, small quantities of spatial information. These scenes tend 
to be better-suited for a variety of sub-pixel analyses, such as mixture modeling (e.g. 
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Hall et al.  1996 ; Atkinson et al.  1997 ; Heinz and Chang  2001) , or empirical tech-
niques that operate on a per-pixel basis and relate multi- or hyper-spectral response 
patterns to various intra-pixel properties (e.g. Michaelsen et al.  1994 ; Cohen et al. 
 2001,   2003) . The selection of an inappropriate processing strategy – texture analy-
sis in an L-resolution scene, for example, or per-pixel regression modeling in an 
H-resolution case – leads almost invariably to frustration to many users. 

 Since natural systems are comprised of a hierarchy of objects nested one inside 
another at different scales, a single image can be H-resolution with respect to some 
objects and L-resolution with respect to others. For example, Landsat imagery 
would be considered L-resolution with respect to tree objects, since a single 30 m 
pixel contains several individual tree crowns (top part of Fig.  11.1 ). However, at 

  Fig. 11.1    Examples of H- and L-resolution imagery for a forested scene. At the tree level ( top ), 
Landsat ETM+ pixels are L-resolution, while IKONOS panchromatic pixels are H-resolution. At 
the stand level ( bottom ) Landsat pixels are H-resolution, while visible-band MODIS pixels are 
L-resolution       
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the stand scale, the same imagery would be considered H-resolution, since a 500-
ha forest stand can contain many different 30 m pixels (bottom part of Fig.  11.1 ). 
As a result, the  correct  information–extraction strategy is obtained not through 
blind devotion to a single image type or processing routine, but depends on a rather 
more sophisticated evaluation of (1) the scale of the information desired and (2) the 
 spatial resolution of the imagery available.   

11.6   Critical Targets for Remote Sensing in Wildlife Ecology 

 The diversity of remote sensing systems and their varying spectral, spatial, 
 temporal, and radiometric resolutions allows for an impressive suite of wildlife 
ecology and habitat attributes to be modeled, predicted, and monitored through 
time. Principally, these attributes provide information on such factors as land cover 
physiognomy, vegetation structure and condition, forage characteristics, specific 
nutrient concentrations, overall productivity, and biomass. From these attributes, 
information on the distribution of shelter, shade, and nesting resources for wildlife, 
as well as potential to meet their metabolic needs, can be assessed. We surveyed 
the literature to investigate the role remote sensing has played in contemporary 
wildlife research (Table  11.3 ). In the following section, we highlight a number of 
the critical attributes that have been successfully predicted using remote sensing 
technology and have high relevance for wildlife ecology studies. Remote sensing of 
animals – another key remote sensing contribution to wildlife ecology – is reviewed 
elsewhere (Gillespie  2001 ; Ramanujan  2004 ; Majumdar et al.  2005) .   

  11.7 Land Cover, Condition, and Change 

 A large number of key issues for wildlife management, including habitat suitability, 
land clearing and conversion to other land uses, and regional conservation planning, 
all require information on contemporary land cover condition and change. In most 
cases, remote sensing technology is used to predict  land cover  which is then used 
to infer spatially explicit habitat suitability for a wide range of wildlife species. 
One of the most common approaches to predicting land cover information from 
remotely sensed data is through the use of image classification, which involves 
the categorization of pixels a number of land cover classes, based on their similar 
spectral and/or spatial properties. When the user supervises this process by locating 
optimum examples of the land cover classes based on prior knowledge, field plots, 
or other information, the process is known as  supervised classification  (Richards 
and Jia  2006) . 

 Cannon et al.  (1982)  was one of the first researchers to utilize Landsat Multi-
Spectral Scanner (MSS) (80 m spatial resolution) imagery in a wildlife context, 
using 1978 MSS data to classify shinnery oak rangelands in Western Oklahoma, 
US. A strong positive correlation was found between percentage of grassland 
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habitat and the population density of male lesser prairie chicken ( Tympanuchus 
pallidicinctus ). Even at this early adoptive stage, wildlife managers were encour-
aged to consider the use of timely satellite-based remote sensing observations as 
a cost-effective means of supplementing ground surveys. In a similar approach, 
Palmeirim  (1988)  undertook a supervised classification to generate a land cover 
map using Landsat Thematic Mapper (TM) imagery (30 m spatial resolution) to 
produce habitat suitability estimates for a number of avian species in northeastern 
Kansas. Seven land cover classes were predicted, and from this, patch statistics of 
different key land cover types such as the ratio of forest to grasses were calculated 
and related to different bird populations. 

 Also using Landsat TM data, Luoto et al.  (2004)  performed a supervised classi-
fication to produce a five-class land cover map of the boreal forests of Finland, and 
again, combined the land cover information with patch statistics and topographic 
data to predict the distribution of selected bird species. Areas of high predicted-
bird-species richness in the boreal agricultural-forest mosaic were found mainly 
concentrated along river valleys with steep topography. Analysis indicated that the 
explanatory power of the topography-moisture models increased when the compo-
sition and land cover information, derived from remote sensing, were included. 

 Rather than undertaking a broad land cover classification, Peery et al.  (1999)  
classified TM imagery into seven classes, using a supervised classification 
approach which captured a range of conifer age classes, as well as aspen stands, to 
predict Mexican spotted owl ( Strix occidentalis lucida ) distributions. Raw spectral 
bands and image band ratios were combined with topographic data in the final clas-
sification. Habitat composition and suitability was then assessed by overlaying the 
mapped home ranges of the species. Results indicated that Mexican spotted owls 
occurred in sites with more mature, mixed conifer species, and with proportionally 
less pinyon pine, than random sites on the landscape. 

 Miller and Conroy  (1990)  employed slightly finer SPOT High Resolution 
Visible (HRV) imagery (20 m spatial resolution) and a supervised classification 
to predict seven land cover classes ranging from agriculture and native grasses 
to a variety of broadleaf successional stages. Maps of the early seral stages were 
then linked to potential habitat for the Kirtland’s warbler ( Dendroica kirtlandii ), 
an endangered species wintering in the Bahamas. In their conclusions, Miller and 
Conroy  (1990)  highlighted that remotely sensed data provided critically important 
information due to its timeliness and ability to provide information on vegetation 
composition in areas which were logistically difficult to access. 

 In a number of countries, remote sensing-based land cover maps have been 
generated over extensive areas, and are publicly available (for example, the 2001 
National Land Cover Database of the United Stated –   http://www.mrlc.gov    ; the 
Land Cover Map of Great Britain –   http://www.ceh.ac.uk/data    ; and the land cover 
map of the forested region of Canada –   http://www.pfc.forestry.ca/EOSD    ). Cardillo 
et al.  (1999)  assessed the benefit of a remote sensing-derived land cover map of 
Great Britain based on a supervised classification of land cover with 25 classes. 
These land cover maps were aggregated to a 1 × 1 km grid and then related to the 
richness and occurrence of 29 terrestrial mammals from four regions of Britain. 
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Results indicated that over the entire country, the predictive power of the land cover 
information was poor and explained less than half of the variation in mammal spe-
cies richness and occurrence. This predicative ability was considerably stronger 
however when the country was stratified into regions and analyzed separately 
( R  2  = 0.21–0.55 for the stratified regions, versus  R  2  = 0.05–0.29 for the aggregated 
data). The same land cover dataset was also used by Fuller et al.  (2005)  to examine 
bird habitat preferences across south-eastern England. They found the land cover 
products to be an effective way to link predictions of bird species richness to  habitat, 
and that the maps captured strong regional patterns associated with distinctive habi-
tat assemblages. The authors concluded that remote sensing was an excellent tool 
to assess habitats, comprehensively, over large areas. 

 In addition to birds, remote sensing technology has also been used to map 
land cover in support of other wildlife studies. Waller and Mace  (1997)  utilized a 
Landsat TM supervised classification to obtain seven land cover classes to predict 
grizzly bear ( Ursus arctos ) populations in Montana, US. Results indicated the bears 
utilized avalanche chutes and slab rock (classified as soil and bare ground) all year 
round, whereas shrub and timber harvest areas were selected relative to availability 
in summer and fall. Clear patterns of movement were also differentiated using a 
combination of the land cover maps with data from radio-collared bears. Recent 
work with grizzly bears in Alberta (Nielsen et al.  2006)  has examined relationships 
between spatial landscape structure, human-caused landscape change, grizzly bear 
health and population performance through combined use of remote sensing tech-
nology, Global Positioning System (GPS) radio-telemetry, wildlife health evalua-
tion, and molecular techniques. 

 Elk ( Cervus canadensis ) habitat mapping was undertaken by Huber and Casler 
 (1990)  in Colorado, US. Again, a land cover map was produced using a supervised 
classification with 13 classes of forest, grass, and shrub communities. Results showed 
that the large number of detailed forest classes resulted in significant misclassification 
of some of the key classes critical for elk habitat mapping. The study concluded cau-
tion should be exercised when attempting to classify highly-detailed land cover types, 
which may not appear spectrally distinct from other classes in satellite data. 

 In the above cases, satellite remote sensing imagery was classified using a super-
vised approach, wherein the user guides the land cover classes being created through 
training data.  Unsupervised classification  involves the statistical examination of a 
sample of image pixels with the goal of dividing the image into spectral classes 
based on the inherent spectral clusters present within the image. Unlike supervised 
classification, unsupervised approaches do not require the user to specify training 
data to initiate the process, rather classes are labeled after the classification process 
based on ground truth information. Debinski et al.  (1999)  used an unsupervised 
classification approach on Landsat TM imagery to produce an initial separation of 
50 classes, which allowed for subsequent discrimination of gross land cover types, 
both individually and along a hydrological gradient. Each spectral class was sub-
sequently identified and labelled using aerial photography and personal knowledge 
of the study area, resulting in a detailed and locally-specific vegetation map. Six 
non-forested meadow classes, representing a distinct xeric-to-hydric gradient, were 
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mapped and correlated to the abundance of a number of butterfly and bird species. 
Results indicated that the sites of highest species richness coincided for both birds 
and butterflies, and could be found predominately in the mesic meadows. Hatten 
and Paradzick  (2003)  employed a similar unsupervised classification routine to 
map vegetation and floodplain land cover types, developing a relationship with 
southwestern flycatcher habitat in Arizona, US. The method provided a basis for 
predicting landscape configuration at both the local site location and environments 
200 km further away. 

 In the tropics, Ortega-Huerta and Medley  (1999)  performed an unsupervised 
classification on Landsat TM imagery to derive a range of land cover classes for 
input into a jaguar ( Panthera onca ) habitat suitability model for sites in Mexico. 
Land cover classes were combined with topography and hydrological layers to map 
optimum jaguar habitat and provide management criteria to maintain and further 
enhance available habitat. Similarly, Cua on  (2000)  compared land cover and land 
cover change data from 1974 to 1986 derived from Landsat MSS data to a number 
of mammal abundance records in Neotropical regions of South America. Results 
indicated that there was a declining trend in the amount of habitat suitable for 
approximately 59% of the tropical species examined. 

 Image classification techniques can also be applied to high-spatial-resolution 
imagery from satellite or airborne platforms. Dechka et al.  (2002) , for example, 
applied both supervised and unsupervised techniques on two Ikonos satellite 
images (4 m spatial resolution) to map a number of wetland habitat classes and 
vegetation communities in southern Saskatchewan, Canada. A number of image 
processing approaches were used, resulting in a range of accuracies of land cover 
classes, including a key wetland habitat class used to map waterfowl and migratory 
bird patterns across central Canada.  

  11.8 Biomass and Primary Production 

 There is strong evidence that contemporary climate drives broad-scale species rich-
ness gradients of both plants and animals (Hawkins et al.  2003) . For plants, it is 
widely accepted that energy and water together drive diversity and form (Currie 
and Paquin  1987 ; Leathwick et al.  1998 ; Francis and Currie  2003) . For animals, 
energy either alone or in combination with water has been linked to large-scale 
variation in diversity, depending largely on the location in the world the study is 
focused (Hawkins et al.  2003) . Primary production can be derived using remotely 
sensed data by examining the spectral reflectance centered on the near-infrared and 
visible red bands of the electromagnetic spectrum. Within-leaf scattering is high in 
the near-infrared region, thus the reflectance signal returned from the canopy is also 
high in this spectral region. In contrast, the red wavelengths of the electromagnetic 
spectrum are selectively absorbed by leaf pigments, which results in low reflectance 
in these bands (Coops et al.  2007) . As a consequence, foliage area and increasing pho-
tosynthetic activity are correlated to the contrast in reflectance between near-infrared 
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and red wavelengths. The Normalized Difference Vegetation Index (NDVI) is the 
most common and widely-applied of these  vegetation indices . NDVI has been used 
as an estimator of ‘greenness’ (Stow et al.  2007)  and a surrogate for large number 
of vegetation attributes, including biomass, leaf area index, phytomass, amount of 
green cover, productivity, photosynthetic activity, and leaf nitrogen content (Turner 
et al.  1992 ;    Huete et al.  1994 ; Asner and Wessman  1997) . 

 Bailey et al.  (2004)  computed the annual maximum value of Landsat NDVI to 
provide an estimate of maximum annual primary productivity and the relationship 
between this measure of productivity and its spatial heterogeneity and bird and 
butterfly species richness was then examined. Positive linear relationships between 
the Landsat imagery and the number of functional guilds of birds and species rich-
ness of neotropical migrant birds were found. Spatial variation in NDVI however 
was negatively correlated with number of functional guilds, and species richness,of 
resident birds. In a more species-specific study, Wallin et al.  (1992)  analyzed a time 
sequence of 1-km NDVI data from the NOAA Advanced Very High Resolution 
Radiometer (AVHRR) sensor to relate vegetation dynamics to potential breeding 
habitat of the African weaver-bird. The very large continental spatial scale of the 
imagery, combined with the highly mobile nature of the species, made the scale of 
the datasets well-matched. The results demonstrated that coarse-spatial-resolution 
satellite data could be effectively used to monitor potential breeding habitat through 
time. Relationships between avian species diversity and annual vegetative biomass 
were also found in Senegal using broad-scale satellite information on vegetation 
greenness (Jorgensen and Nohr  1996) . Similarly, Skidmore et al.  (2003)  predicted 
mammal and bird species richness using broad-scale (1 km spatial resolution) satel-
lite indicators of vegetation greenness. However, they noted that climate parameters 
were better predictors of species richness than the satellite data alone. Bonn et al. 
 (2004)  used a similar approach to investigate the relationship between species rich-
ness and productivity, and found that higher productivity levels do relate to higher 
levels of species richness. 

 Rodriguez et al.  (2005)  utilised a global vegetation index (GVI – an indicator of 
standing plant biomass), obtained from the AVHRR at 1 km spatial resolution to 
predict amphibian richness. Results indicated that while potential evaporation was 
the best explanatory variable overall, plant biomass derived from GVI was almost 
as good as potential evaporation at predicting amphibian richness, suggesting that 
plant productivity plays a role in determining diversity for this group. Van Bommel 
et al.  (2006)  used NDVI from a number of seasonal Landsat TM scenes to develop 
subclasses of broad physiognomic vegetation types in Botswana and related them 
to the occurrence of impala at landscape scales, under seasonally varying condi-
tions. Results indicated that impala displayed selectivity for vegetation subclasses 
assigned on the basis of NDVI characteristics only, and not climate, allowing simple 
population models to be developed. Given the recent progress in the fields of sat-
ellite tracking of animals in the field (Amstrup et al.  2004)  and vegetation condi-
tion assessment using the NDVI and other indices, a strong link between animal 
movements and functional vegetation analysis using remote sensing was proposed. 
Earlier, Verlinden and Masogo  (1997)  utilized AVHRR-derived NDVI and found 
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excellent relationships between NDVI and green grass conditions in the Kalahari of 
Botswana. Based on these predictions of green cover, the density and distributions 
of a number of species, including wildebeest, hartebeest and ostrich, were made. 
In general, relationships between NDVI and animal distribution were difficult to 
test using the available presence/absence data. However, results indicated that both 
ostrich and wildebeest were associated with areas with higher NDVI. The authors 
concluded that NDVI from AVHRR data could be used to monitor suitable habitat 
in the wet season for some abundant species that preferentially select green patches 
in their environment. 

 In a study which attempted to employ phenological information from NDVI time 
series, Stow et al.  (2004)  used the annual median and rate of change of NDVI to 
estimate the quality and quantity of green forage that was available to the Porcupine 
caribou herd in northern Alaska and the Yukon Territory of Canada. At the broad 
scale, females were found to select annual calving grounds with a high proportion 
of easily-digestible forage (characterized by a high rate of NDVI increase), and 
then locally select concentrated calving areas with relatively high plant biomass. 
The amount of forage available at peak lactation times of the year provided the 
best model of calf survival. The authors concluded the timing of snowmelt and 
vegetation phenology influenced both the annual selection of calving areas and 
subsequent survival rate of the calves. Similarly, Nilsen et al.  (2005)  linked satellite 
measured greenness with measures of fauna diversity by comparing variations in 
the mean and seasonal greenness over a two year period with the home ranges of 
12 carnivore species in the northern hemisphere, testing the hypothesis of Harestad 
and Bunnell  (1979)  that species’ home ranges should decrease as a function of 
increasing productivity. Results indicated that the accuracy of prediction of eight 
of the 12 species’ home range sizes was improved through the inclusion of satellite 
estimated greenness.  

  11.9 Energy Relations 

 In grasslands in particular, information on vegetation productivity and biomass can 
be combined with remotely sensed estimates of land surface temperature. As NDVI 
increases over grasslands, a linear decrease in surface temperature can be observed. 
This pattern is ascribed to an increase in latent heat flux away from the surface due 
to transpiration by grassland plants. While this relationship changes based on land 
cover type and season, it can be exploited to describe the moisture availability of 
the landscape (Hill  2004) . This type of analysis has been applied in epidemiology 
studies such as estimating risk for the snail-borne diseases caused by  Schistosoma  
spp. and  Fasciola  spp. Models using NDVI and temperature data derived from the 
AVHRR over regions of Ethiopia explained over 90% of the variance in observed 
snail sample sites (Kristensen et al.  (2001) . 

 Torgersen et al.  (1999)  utilized remotely sensed stream temperature data to 
evaluate changes in the riverine habitat and thermal spatial structure that may influ-
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ence the distribution patterns of Chinook salmon (Oncorhynchus tshawytscha). Using 
airborne thermal imagery, at 20–60 cm spatial resolution in north-eastern Oregon, 
results indicated that cool-water temperature patterns were strongly related to salmon 
distributions. The authors concluded that the heterogeneity of thermal properties in 
streams should be recognized for their biological potential to provide habitat informa-
tion for species existing near the margin of their environmental tolerances.  

  11.10 Chemical/Pigment Constituents 

 An important application for remote sensing technology, in addition to the classification 
of land cover and habitat types and the prediction of biomass, is the detection of 
different vegetation characteristics based on underlying pigment and chemical 
constituents. These differences in the composition of vegetation are often diffi-
cult to detect, since the changes are often subtle and gradual, with species having 
many similar spectral characteristics. These surveys however can be successfully 
undertaken using data with very fine spectral resolution, allowing finer detail in 
the spectral signatures of vegetation to be examined. This type of remote sensing 
imagery is available predominately from airborne sensors, such as the Airborne 
Visible/Infrared Imaging Spectrometer (AVIRIS) and the Compact Airborne 
Spectrographic Imager (CASI). Most recently, however, the Hyperion sensor 
onboard the Earth Observer (EO1) satellite platform, launched in 2000, provides 
similar imagery over larger areas in a more cost-effective manner. Finally, spectra 
can also be obtained from hand-held instruments, using near-infrared reflectance 
spectroscopy, allowing for in situ estimation of detailed vegetation properties. 

 Initial research in this area was undertaken by Norris et al.  (1976)  who utilized 
near-infrared-reflectance spectra of 87 samples of ground dry forages such as 
alfalfa and tall fescue. Multiple-linear-regression techniques were used to deter-
mine the optimum wavelengths for predicting each of the chemical concentrations, 
with the authors concluding that infrared reflectance has the potential to assist in 
the rapid evaluation of forage quality. 

 McIlwee et al.  (2001)  investigated the potential of hand-held reflectance spec-
troscopy as to assess the chemical constituents of Eucalyptus leaves in Australia, 
and thus directly assess the quality of intake of foliage by gliders and possums. 
The authors concluded that concentrations of foliar nitrogen, tannins, and phenolics 
could be estimated using regression approaches correlating near-infrared reflectance 
spectra of foliage samples. Spectral-based models of food intake were found to be 
highly accurate for both species, and these models were then used to assess the food 
intake for gliders and examine the relationship between leaf palatability and food 
preferences of the mammals. Differences in leaf palatability for a number of tree spe-
cies were consistent with the known food preferences of greater gliders, and it was 
concluded that field-based spectroscopy provides a powerful tool for predicting the 
foraging behavior of herbivores in situations where forage choices are determined by 
the compositional attributes of food. In a follow-on study, Dury et al.  (2001)  assessed 
the feasibility of extending the results spatially across larger areas using airborne 
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remotely-sensed canopy biochemistry. Using laboratory spectra, they first reported 
on developing calibration equations for key concentrations based on the reflect-
ance spectra, then scaled-up the relationships using airborne hyperspectral imagery 
(HYMAP). Strong correlations were found to exist between canopy-level pigment 
contractions and mean spectra. The study also identified several other spectral bands 
that corresponded to other key chemical concentrations, with the authors concluding 
that airborne HYMAP data could be used to estimate selected foliage chemical con-
centrations at the canopy level with acceptable accuracy (Huang et al.  2002) .  

11.11   Non-Photosynthetic Vegetation 

 In addition to live vegetation components, information on dry plant materials such 
as dry leaves, dry reproductive structures, bark, and woody debris can also provide 
important insights to wildlife populations and abundance, due to their key roles as 
both food source and shelter. Elvidge  (1990)  acquired very fine, hand-held spectra 
of green leaf (or green stem), senesced leaf, decayed leaf, brown wood, grey wood 
and bark for eight tree species including sagebrush, pinyon pine, white peppermint 
and sycamore. Results showed that the spectral features of dry plant materials bear 
little resemblance to those of green leaves. Green leaf spectra are dominated by the 
spectral features of chlorophyll and water, but when leaf senescence occurs these 
two compounds are lost and a host of previously-masked spectral features emerge. 
Elvidge  (1990)  concluded that all previous vegetation indices had been based on the 
spectral features of green vegetation. The development of vegetation indices for dry 
plant materials will be of major utility in assessing the biomass and biochemistry of 
dormant plant communities, vegetation stress, and measuring fuel loadings in areas 
subject to fire, and may also have a key role to play in biodiversity assessment. 

 Following on these ideas, Kawamura et al.  (2005)  employed AVHRR and 
Moderate Resolution Imaging Spectroradiometer (MODIS) sensors to detect sea-
sonal vegetation changes (phenology) with regard to forage quantity and quality, 
focusing on, amongst others, attributed dead standing biomass. The dynamic range 
of the MODIS NDVI was analyzed and its sensitivity in discriminating between 
vegetation differences was evaluated across sparsely- and densely-vegetated areas. 
Results suggested that the MODIS NDVI can reliably detect the phenology and 
attributed dead biomass forage quantity and quality of grassland steppe areas. 

 In research on understory fuel loads associated with fire potential, Roberts et al. 
 (1992)  developed techniques to map non-photosynthetic vegetation (NPV), shade, 
and soil from a hyperspectral AVIRIS airborne image, and then interpreted these 
maps in an ecological context. Results confirmed the maps of NPV were distin-
guished from soil through spectral variations attributed to lignin and cellulose. 
These types of spatial predictions, in addition to being useful for fire fuel estima-
tion, have direct relevance on wildlife habitat, wherein these components provide 
food, shelter, and grazing (Wessman et al.  1997) . Similarly Jia et al.  (2006)  used 
airborne AVIRIS imagery to map major forest components in montane coniferous 
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forests in Colorado, US. Again, mapping the fractional covers of NPV and bare soil 
proved critical, with high fractions of NPV and bare soil found in areas with recent 
disturbance such as fire or insect infestation.  

  11.12 Vertical Vegetation Structure 

 Thus far, all the techniques discussed in this chapter have employed  passive  sat-
ellite or airborne data. These systems, such as Landsat, collect data by sensors 
operating in the visible and infrared regions of the spectrum, designed primarily to 
detect reflected light and temperature (such as weather or meteorological satellites). 
Alternatively,  active  remote sensing systems are those that emit energy, in one form 
or another, and then measure the rate or amount of return back to the instrument. 
Active sensors can therefore operate under expanded meteorological conditions, 
since solar illumination is not required. The choice of active versus passive systems 
for vegetation structural mapping will depend primarily on the information need. 
Since active sensors can operate regardless of weather, they may be most effec-
tively used in areas where there is perpetual cloud cover (e.g. tropical rainforests) 
(Lefsky and Cohen  2003) . Synthetic aperture radar (SAR) is one form of radar 
remote sensing that utilizes microwave wavelengths many times longer than that of 
visible light. Terrestrial lidar sensors typically capture data at a single spectral band, 
often between 900 and 1,064 nm using cohesive laser beams operating primarily 
on airborne platforms. 

 Information on vertical vegetation structure is difficult to quantify from passive 
remote sensing technology, and yet is a key mechanism underlying many wildlife–
habitat models. Manual survey of vegetation structure becomes prohibitive in terms 
of time and cost if sampling needs to be of sufficient density to characterize fine-
grained heterogeneity at a landscape extent (Bradbury et al.  2005) . Zimble et al. 
 (2003)  characterized a suite of vertical and horizontal forest attributes at fine scales 
for inclusion in decision-support systems in central Idaho. Analysis of field-derived 
tree height variance demonstrated that this metric could accurately distinguish 
between single-storey and multi-storey vertical structural classes. 

 Mason et al.  (2003)  used a combination of lidar and high-spatial-resolution opti-
cal data to extract information on landscape and vegetation structure at a spatial 
scale fine enough to match the fine-grained predictor variables used in most wild-
life–habitat models. Results for the predicted abundance of two bird species, the 
sky lark and the great/blue tits, indicated that the derivation of vegetation structure 
data from airborne lidar has several clear advantages over field surveys in the con-
struction of habitat models. First, the vertical resolution and sampling density of the 
data is equivalent or better than that which can be achieved by field measurement; 
second, the vertical and horizontal resolution available from LIDAR is scalable to 
landscape scales; and finally, the predicted attributes from these data allow hetero-
geneity in vegetation structure to be expressed at a variety of spatial scales, ranging 
from the foraging patch or territory to landscape (Bradbury et al.  2005) . 
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 Nelson et al.  (2005)  utilized an extensive lidar dataset over the state of Delaware 
to identify forested sites that potentially could support Delmarva fox squirrel (DFS; 
 Sciurus niger cinereus ) populations, an endangered species endemic to mature for-
ests with open understories. The study indicated that, based on site characteristics 
of known habitat, a systematic airborne lidar data can be used to screen extensive 
areas of forest to locate potential DFS habitat, and that over 70% of locations met 
the canopy structural criteria thus supporting DFS populations, according to a 
habitat suitability model. The authors recommended also that a systematic survey 
across the county and state could be developed and undertaken at regular intervals 
to monitor changes to the areal extent of potential habitat over time. 

 In contrast to lidar data, radar remote sensing employs microwave energy 
emitted from airborne or spaceborne antennas, rather than laser bursts. These 
microwave pulses are emitted and received at wavelengths from 1 cm to 1 m and 
are configured on either a single vertical or horizontal plane (known as polarization; 
Coops  2002) . Operationally designated wavelengths for radar are 3 cm (X-band), 
5.5 cm (C-band), 24 cm (L-band) and 68 cm (P-band). Surfaces inclined towards 
the radar will have a stronger reflection (termed backscatter) than those which slope 
away from the radar. As a result, smooth flat surfaces will reflect little or no micro-
wave energy and thus will appear dark in radar images. Vegetation, which is usually 
moderately rough at the scale of most radar wavelengths, appears gray. 

 A key attribute affecting the response of vegetation on radar backscatter is vegeta-
tion structure, in particular the vertical distribution of biomass through the canopy. 
As a result, the natural and anthropogenic processes that affect vegetation structure, 
such as regeneration and succession, can be readily-apparent in radar imagery. 
Kasischke et al.  (1997)  undertook a detailed review of the application of radar in 
ecological studies and highlighted a wide range of radar applications, including 
land cover classification (Henebry and Kux  1995 ; Hoekman and Quinones  2000) , 
measurement of above ground woody biomass (Bergen and Dobson  1999) , and 
delineation of wetland inundation (Falco et al.  1996) . Imhoff  (1995)  compared forest 
canopy biometric data from a variety of tropical and sub-tropical forests with vary-
ing structural differences to simulated scenes of radar backscatter, showing that the 
structure of forest stands can have a considerable effect on backscatter amount, even 
when the amount above ground biomass remains equivalent. Beaudoin et al.  (1994)  
utilized multi-polarized P-band data to document significant correlations with forest 
biomass, and found backscatter amount to be sensitive to a variety of ground surface 
attributes such as plant undergrowth, relief, and soil conditions.    Yanasse et al. (1997) 
showed the ability of L-band, HV-polarized data to detect biomass changes occur-
ring during tropical forest succession, and found backscatter to provide an accurate 
measure of biomass when soil conditions were dry. Imhoff et al.  (1997)  integrated 
aerial photography and field data with P-, L-, and C-band SAR data obtained from 
NASA’s airborne AIRSAR system to study landscape spatial heterogeneity and 
bird community ecology at Kakadu National Park in Australia. Results indicated 
that SAR data were able to discern structural vegetation differences, and that mul-
tispectral sensors successfully identified floristic differences relevant to bird habitat 
quality. The authors concluded that the developed approaches advanced the use of 



214 G.J. McDermid et al.

SAR data for three-dimensional mapping of animal habitats from remotely sensed 
data (Imhoff et al.  1997) . 

 Dobson et al.  (1995)  used multi-polarized SAR data and ancillary terrain 
information to estimate a range of forest structural attributes in boreal forests 
of Northern Michigan, including basal area, height, and dry crown biomass. 
Results indicated that biophysical attributes could be estimated with relatively 
small errors from SAR data, and that the combination of shorter wavelengths (X 
and C) yielded substantial improvements in estimates of crown biomass. Despite 
this success, a number of other studies have found SAR to be unresponsive to 
biomass when a certain threshold has been reached. For example Rauste et al. 
 (1994)  found that L-band SAR reached saturation at 70 mg/ha. The recent launch 
of advanced satellite-based SAR platforms, including the Canadian 3-m-resolu-
tion, fully polarimetric RADARSAT-2 instrument, potentially promises future 
advances on this front. 

 Demonstrating the exciting potential of  integrated  passive and active remote 
sensing data sets, Hyde et al.  (2006)  investigated the estimation of structural 
information from lidar, SAR, and optical sensors including Landsat to combine 
the highly-accurate vertical information available from active remote sensing with 
the broad-scale capabilities of optical imagery. The results indicated that while 
lidar was the best single dataset for estimating stand height and biomass, the use 
of Landsat metrics in addition, improved the prediction of large tree structures. 
Results also showed that high-spatial-resolution Quickbird imagery improved 
estimates only marginally when compared to the lidar datasets, however the com-
bination of all sensors combined was better than lidar alone, however only slightly 
better than the dual combination of lidar and Landsat. 

 Despite the overriding message here that active remote sensing instruments are 
better-suited for extracting vegetation structural information, a number of authors 
have reported considerable success using passive high-spatial-resolution opti-
cal imagery from either satellite or airborne systems (Wulder et al.  2004) . These 
include estimation of individual crown closure (Cohen et al.  1995,   2001) , prediction 
of stem density and stand height (Franklin and McDermid  1993) , and classification 
of relative stand age or stage of development (Cohen et al.  1995,   2001 ; Franklin et 
al.  2001 ; Nelson et al.  2005) . Employing high-spatial-resolution imagery to extract 
structural attributes also lends itself to the use of textural attributes, which can 
provide information on stand crown gaps (Blackburn and Milton  1997)  and foliage 
estimation (Wulder et al.  1998) . Additionally, the derivation of image variance and 
semivariance to provide measures of stand structure (St-Onge and Cavayas  1997 ; 
Wulder et al.  1998 ; Levesque and King  2003) , and the fitting of spatial statistical 
models such as semivariograms to represent forest structure (Levesque and King 
 2003) , has also been successful. In this latter approach, the semivariogram range, 
sill, and nugget are fitted to image objects and subsequently interpreted. For exam-
ple, Coops and Catling  (1996)  used a modified local variance method that assessed 
the changes in the standard deviation of a moving 3 × 3 window on successively 
spatially degraded images. A relationship was then developed that related the maxi-
mum level of variance observed with the vertical distribution of biomass within 
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a forested canopy. These assessments were then applied to estimate mammalian 
distributions and abundances over large areas (Coops and Catling  2002) .  

  11.13 Energy Relations 

 In grasslands in particular, information on vegetation productivity and biomass can 
be combined with remotely sensed estimates of land surface temperature. As NDVI 
increases over grasslands, a linear decrease in surface temperature can be observed. 
This pattern is ascribed to an increase in latent heat flux away from the surface 
due to transpiration by grassland plants. While this relationship changes – based 
on land cover type and season – it can be exploited to describe the moisture avail-
ability of the landscape (Hill  2004) . This type of analysis has been applied already 
in epidemiology studies driving risk models for the snail-borne diseases caused 
by  Schistosoma  spp. and  Fasciola  spp. Models using NDVI and temperature data 
derived from the AVHRR over regions of Ethiopia explained over 90% of the vari-
ance in observed snail sample sites (Kristensen et al.  2001) . 

 Torgersen et al.  (1999)  utilized remotely sensed steam temperature data to evalu-
ate changes in the riverine habitat and thermal spatial structure that may influence 
the distribution patterns of Chinook salmon ( Oncorhynchus tshawytscha ). Using 
airborne thermal imagery, at 20–60 cm spatial resolution in north-eastern Oregon, 
results indicated that cool-water temperature patterns were strongly related to 
salmon distributions. The authors concluded that the heterogeneity of thermal prop-
erties in streams should be recognized for their biological potential to provide habitat 
information for species existing near the margin of their environmental tolerances.  

  11.14 An Application Framework 

 An application framework is a strategy for optimizing the appropriate remote sens-
ing data and methods in an ecological context (Phinn et al.  2003) . The process con-
sists of a number of steps, including: (1) identifying the information requirements 
for the project (e.g. McDermid et al.  2005) ; (2) organizing the information needs 
into an ecological hierarchy (e.g. Franklin and Woodcock  1997) ; (3) conducting 
an exploratory analysis using existing digital data (e.g. Franklin  2001) ; (4) iden-
tifying the ideal remote sensing data, considering spatial, spectral, radiometric, 
and temporal resolutions (e.g. Lefsky and Cohen  2003 ; Coops et al. 2006); (5) 
selecting and applying a suitable set of processing strategies to extract the required 
information (e.g. Wulder  1998 ; Campbell  2007) ; and (6) conducting a cost-benefit 
analysis (e.g. de Bruin and Hunter  2003) . In developing this application framework 
for ecological studies, Phinn et al.  (2003)  stressed the importance of the (typically) 
interdisciplinary analysis team understanding that the specifications for the ideal 
remote sensing data can vary, depending on vegetation conditions, study area size, 
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and available image processing techniques. The choice of data should dictate – at 
least initially – the subsequent image processing techniques to be pursued: in gen-
eral, classification for H-resolution data and per-pixel modeling for L-resolution 
imagery. Assessing the benefits of the resulting investment should take into 
account, among other things, the accuracy of the information products generated, 
the value of the resulting habitat maps, and the utility of the vegetation database for 
other resource management applications.      
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