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Abstract

Background: The construction of comprehensive reference libraries is essential to foster the development of DNA
barcoding as a tool for monitoring biodiversity and detecting invasive species. The looper moths of British Columbia (BC),
Canada present a challenging case for species discrimination via DNA barcoding due to their considerable diversity and
limited taxonomic maturity.

Methodology/Principal Findings: By analyzing specimens held in national and regional natural history collections, we
assemble barcode records from representatives of 400 species from BC and surrounding provinces, territories and states.
Sequence variation in the barcode region unambiguously discriminates over 93% of these 400 geometrid species. However,
a final estimate of resolution success awaits detailed taxonomic analysis of 48 species where patterns of barcode variation
suggest cases of cryptic species, unrecognized synonymy as well as young species.

Conclusions/Significance: A catalog of these taxa meriting further taxonomic investigation is presented as well as the
supplemental information needed to facilitate these investigations.
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Introduction

For monitoring biodiversity and detecting invasive species,

knowing what species exist in a given location is paramount.

However, the subtle morphological characters that separate closely

related species often demand expert interpretation (e.g. [1]),

forcing studies to either limit their taxonomic scope, or to only

identify specimens to a higher taxonomic category (e.g. family,

genus). DNA barcoding can circumvent these limits by transform-

ing the often lengthy chore of identifying specimens to a rapid,

accurate and unbiased task [2–4]. For the identification of

arthropods in particular, where high diversity and low access to

taxonomic expertise complicate the job, DNA barcoding has

proven capable of the task, in numerous groups including

collembolans [5], spiders [6], tephritid fruit flies [2], mosquitoes

[7], tachinid flies [8], aphids [9], ants [10], wood wasps [11], black

flies [12], and mayflies, stoneflies and caddisflies [13]. Lepidoptera

has seen the most studies of barcode performance to date, and

results suggest barcodes permit correct identification in .90% of

previously recognized taxa [14–17].

To continue the development of DNA barcoding as a tool for

biodiversity monitoring and invasive species detection, it is

necessary to both construct complete reference libraries and assess

their efficacy for discriminating species. The taxa for which

barcoding delivers results that are discordant with current

taxonomy are of particular interest — they generally warrant

further investigation as they may represent overlooked species

[18,19], species that are hybridizing, cases of synonymy or

situations that require a secondary barcode marker for species

diagnosis. It is also worthwhile to explore the effect of sampling on

estimates of genetic variation, both in terms of number [20,21]

and geographic coverage [16,17].

The loopers or inchworm moths (Lepidoptera: Geometridae)

are one of the largest insect families, composed of nearly 23,000

species worldwide [22] and roughly 1400 in North America [23].

They are an abundant, diverse component of most forest

ecosystems — this, along with their weak flight ability and low

propensity to migrate [24,25], make them excellent indicators of

environmental quality [26]. A large proportion of the species are

also important defoliators, including native species such as the fall

cankerworm (Alsophila pometaria (Harris)) and invasive pests such as

the winter moth (Operophtera brumata (L.)). Because most larvae and

adults possess cryptic coloration, they are a notoriously tough

group in which to discriminate species. To further complicate

matters, most North American geometrid genera are in need of

revision. This latter gap is now being addressed through an
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‘integrative approach’ [27] that employs DNA barcodes to

accelerate the revisionary process in both North America (e.g.,

[28,29]) and elsewhere (e.g., [30,31]).

The geometrids of British Columbia (BC), Canada present a

challenging case for DNA barcoding. There are presently 349

species known from the province — a large fauna with varying

levels of taxonomic maturity (JRD unpublished). In this study, we

assemble representatives of nearly all these species, from BC and

the surrounding region, and from geographically separated

individuals, to examine patterns of barcode divergence. We test

the hypothesis that the barcode region is able to reliably

discriminate geometrid species as demonstrated in other taxa

(see [32–35]) and determine which species merit further

investigation of their taxonomic status. The result is a reliable

identification library with immediate application for monitoring

looper moth biodiversity and detecting invasive species in BC.

Materials and Methods

Sampling
We chose the province of British Columbia as the primary scope

of our library; its boundary does not correspond with the limits of

particular biomes. However, this regional focus was chosen to

maximize the development of a barcode library that would have

high value for biodiversity monitoring and invasive species

detection in the province. Although BC is primarily in the

Western Cordillera biome, it includes some plains, maritime and

subarctic ecosystems [36] so the fauna has considerable overlap

with surrounding provinces, territories and states. Since the ranges

of many geometrid moths are poorly known, and many will shift

with climate change, we also sampled selected taxa from adjacent

regions, including Alaska, Yukon Territory, Alberta, Washington

State, and Idaho, but did not attempt to sample their entire faunas.

We also included Callizzia amorata Packard (Epipleminae), the sole

BC representative of the Uraniidae, sister group to the

Geometridae (e.g., [37]) within the Geometroidea.

We selected specimens from eight regional and national insect

collections: Canadian National Collection of Insects and Arachnids

(Ottawa, ON), Royal BC Museum (Victoria, BC), Canadian Forest

Service (Victoria, BC), University of British Columbia’s Spencer

Collection (Vancouver, BC), Washington State University’s James

Entomological Collection (Pullman, WA), University of Idaho’s

WFBARR Collection (Moscow, ID), Northern Forestry Centre

(Edmonton, AB) and University of Alberta’s Strickland Collection

(Edmonton, AB). An effort was made to sample at least five

geographically distinct specimens for each species, to best appraise

the genetic variation across its range. Specimens less than 30 years old

were chosen when possible to avoid problems associated with DNA

degradation. Some of the specimens may have been misidentified due

to the difficulty of the group and lack of an expert curator in most of

the collections. Where availability of taxonomic literature and time

permitted, species identifications were corrected prior to or following

DNA analysis by examining genitalia and external morphology of the

vouchered specimens. In addition, a few specimens were freshly

collected on targeted collecting trips, or by making requests to

entomologists in the region. All specimens were labeled, databased

and imaged and made publicly available on the Barcode of Life Data

Systems (BOLD) [38] in the project ‘GOBCL – Geometridae of BC

Library’. The institution storing each vouchered specimen is listed in

the BOLD project and Table S1.

DNA analysis
One or two legs were removed from each dried specimen and

stored in an individual tube of a 96-tube sample box (Matrix

Technologies) or an individual well of a microplate. DNA

extraction, amplification, and sequencing of the barcode region of

the mitochondrial cytochrome c oxidase I (COI) gene followed a

variety of high-throughput techniques recently developed at the

Canadian Centre for DNA Barcoding ([39–41]; www.barcodinglife.

ca). The full-length primers LepF1 and LepR1 [42] were attempted

first, but amplification and sequencing using the ‘Lep mini primers’

(MLepF1, MLepR1) [14] was necessary for most of the older

material. The electropherograms were edited and aligned in

Seqscape v. 2.5 (Applied Biosystems), then deposited along with

the edited sequences to BOLD and GenBank (accessions are listed

in Table S1). In the 61 instances where we were unable to

successfully sequence a desired species from BC, sequences were

obtained from specimens collected in other regions.

Data analysis
To investigate the efficacy of barcodes to differentiate geometrid

species, sequence divergence within and between species was

calculated using the Kimura 2-parameter model [43] and the

neighbour-joining algorithm [44], as implemented in BOLD and

MEGA4 [45]. We first tallied the proportion of species that could

successfully be distinguished by DNA barcoding to calculate an

overall success rate. The successful differentiation of a species

required that its barcodes formed monophyletic clusters and were

not shared with other species. We also determined which species

displayed sequence diversity .3%, an arbitrary threshold that

generally falls within the so-called ‘barcode gap’ (i.e. the lack of

overlap between intra- and inter-specific divergence, sensu [46]).

And lastly, to ascertain the potential of sampling bias, we tested the

significance of the relationship between mean intra-specific

divergence and the number of individuals analyzed by performing

a linear regression in SPSS v17 (IBM).

Results and Discussion

A total of 2392 COI sequences were generated in this study,

providing coverage for 400 species and 125 genera. Most

sequences were derived from specimens from BC (N = 1390) or

surrounding provinces, territories and states (N = 966). The

remainder was collected in other North American regions

(N = 35) and from a single German specimen (of the biological

control agent Minoa murinata (Scopoli)). Of the 349 species listed for

BC (JRD unpublished), only Hydrelia brunneifasciata (Packard) was

not successfully barcoded. Most species were represented by

multiple samples (mean = 6.0 individuals/species; maximum =

46), but 62 species had only a single COI barcode. All but nine

sequences were greater than 500 bp (mean = 648 bp, range =

238 to 658 bp) and therefore meet the ‘BARCODE data standard’

(see [20]). The assembly of this comprehensive dataset reveals the

important role that natural history collections possess for barcode

library construction, both in terms of access to entire regional

faunas and to specimens conducive to DNA analysis.

The neighbour-joining analysis resulted in a tree with most

species forming distinct, cohesive units displaying minimal

sequence variation (Figure S1). We found 27 species (6.8%) with

undifferentiated or overlapping barcodes (Table 1), whereas the

remaining 373 (93.2%) formed non-overlapping monophyletic

clusters. Taxa that have undergone recent taxonomic revision

appeared to have a higher proportion of species with diagnostic

barcodes e.g. Eupithecia spp. (revised in [47]) – 55 of 55 species

formed non-overlapping monophyletic clusters; species of Macar-

iini [48] – 53/54; and Tetracis spp. [28] – 6/6. Conversely, taxa

known to be in need of revision were often comprised of several

species that could not be differentiated by barcodes, such as

Geometridae of British Columbia Barcode Library
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Lobophora (noted in [29]) where 3 of 5 species lacked diagnostic

barcodes. There was also a single case, the species pair of Probole

alienaria and amicaria Herrich-Schäffer, [1855], where the COI

data were unable to differentiate the two taxa, corroborating

unpublished revisionary work by Tomon [49] who considers it a

single, highly variable species. The rate of species-level identifica-

tion in the present dataset is slightly lower than in most previous

barcoding studies on Lepidoptera [14–17], but it is likely to

increase with re-examination of potentially misidentified speci-

mens and further taxonomic investigation of this fauna.

As the mean interspecific divergence between congeneric taxa

(9.17%; range = 0 to 17.27%) was 16-fold higher than mean

intraspecific variation (0.56%; range = 0 to 8.73%), the

distributions of intra- and interspecific divergences showed limited

overlap (Figure 1). There was no association between mean intra-

specific distance and sample size (Figure 2, linear regression,

R2 = 0.09, P = 0.07) suggesting our sampling strategy was

representative for all taxa. There were 26 instances of high

intra-specific divergence (.3%) among the 338 species with

multiple samples (Table 2). Of these, 22 cases involved two distinct

clusters and 4 involved three clusters. These discrete clusters may

indicate the presence of cryptic species, as barcoding has proven

invaluable for flagging species that have gone previously

unrecognized (e.g. [19,42,50–52]). Conversely, one or more

instances may be attributable to misidentifications. Five of these

26 taxa demonstrating high intraspecific variation are also listed in

Table 1 as taxa indistinguishable by barcodes, so the total number

of BC geometrid species that require re-examination of specimens

and further taxonomic scrutiny is 48.

In summary, two tangible products have arisen from the current

study. First, a comprehensive reference library was constructed for

the Geometridae of British Columbia that can be employed

immediately for biodiversity monitoring and invasive species

detection. This library provides species-level resolution in over

93% of cases, and resolution to a congeneric species pair or group

in the remaining cases. This small proportion of recognized taxa

that apparently do not possess diagnostic barcodes, as well the

fraction of species potentially housing cryptic species, constitutes

the second product — a catalog of taxa that require taxonomic

investigation. Moreover, this catalog includes the materials

necessary to facilitate the investigations — a database of specimens

vouchered in permanent collections, each linked to publicly

Table 1. Geometrid species not distinguishable by DNA barcodes.

Taxon Condition Congener involved

Caripeta divisata Walker paraphyletic angustiorata Walker

Eufidonia discospilata (Walker) paraphyletic convergaria (Walker)

Hydriomena edenatâ Swett paraphyletic crokeri Swett

Macaria signaria (Hübner) paraphyletic oweni (Swett)

Hydriomena furcata (Thunberg) paraphyletic quinquefasciata (Packard)

Dysstroma hersiliata (Guenée) paraphyletic rutlandia McDunnough

Eustroma semiatrata (Hulst) paraphyletic fasciata Barnes & McDunnough

Epirrita autumnata (Borkhausen), paraphyletic undulata (Harrison)

Lobophora magnoliatoidata (Dyar) polyphyletic nivigerata Walker, simsata Swett

Dysstroma colvillei Blackmore polyphyletic formosa (Hulst), hersiliata (Guenée), rutlandia
(McDunnough)

Xanthorhoe ramaria Swett & Cassino polyphyletic lagganata Swett & Cassino, baffinensis McDunnough

Lobophora simsata Swett identical barcodes nivigerata Walker

Lobophora nivigerata Walker identical barcodes simsata Swett

Cabera exanthemata (Scopoli) identical barcodes erythemaria Guenée

Cabera erythemaria Guenée identical barcodes exanthemata (Scopoli)

Drepanulatrix falcataria (Packard) identical barcodes carnearia (Hulst)

Drepanulatrix carnearia (Hulst) identical barcodes falcataria (Packard)

Xanthotype urticaria Swett identical barcodes sospeta (Drury)

Xanthotype sospeta (Drury) identical barcodes urticaria Swett

Orthofidonia exornata (Walker) identical barcodes tinctaria (Walker)

Orthofidonia tinctaria (Walker) identical barcodes exornata (Walker)

Probole amicaria (Herrich-Schäffer) overlapping barcodes alienaria Herrich-Schäffer

Probole alienaria Herrich-Schäffer overlapping barcodes amicaria (Herrich-Schäffer)

Chlorosea banksaria Sperry overlapping barcodes nevadaria Packard

Chlorosea nevadaria Packard overlapping barcodes banksaria Sperry

Rheumaptera subhastata (Nolcken) identical and overlapping barcodes hastata (Linnaeus)

Rheumaptera hastata (Linnaeus) identical and overlapping barcodes subhastata (Nolcken)

The 27 taxa in the left column cannot be diagnosed by COI based on one of five conditions: paraphyletic with respect to one congener; polyphyletic with two or three
congeners; share an identical COI haplotype with a congener; haplotypes of one taxon do not form distinct clusters and overlap with haplotypes of congeners; or a
combination of the latter two conditions.
doi:10.1371/journal.pone.0018290.t001
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Figure 1. Combined histograms of pairwise Kimura 2-Parameter (K2P) sequence variation. Solid triangles indicate interspecific
divergences between 116 congeneric taxa (70,580 comparisons) while the open squares indicate intraspecific divergences in the 339 species with
multiple samples (11,949 comparisons).
doi:10.1371/journal.pone.0018290.g001

Figure 2. The relationship between mean intra-specific divergence and the number of individuals analyzed. The linear regression is
not significant (P = 0.07).
doi:10.1371/journal.pone.0018290.g002
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available genetic and collateral data. Used in combination, these

components can accelerate integrative taxonomic studies [51,53]

and define the ‘taxonomy of the future’ [54].

Supporting Information

Figure S1 Neighbour-joining tree for 400 species of Geome-

tridae and Uraniidae from British Columbia, Canada and

surrounding provinces, territories and states. BOLD process IDs

and collection localities are provided for each sequence.

(PDF)

Table S1 List of specimens analyzed in the present study.

Specimen accessions, BOLD process IDs, GenBank accessions,

collection localities, and the storing institution are provided for

each specimen.

(PDF)
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