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Abstract 1 
Discrete changes in forest abundance, distribution, and productivity are readily detectable using a 2 
number of remotely sensed data sources; however, continuous changes such as growth and 3 
succession processes are more difficult to monitor. In this research we explore the potential of 4 
spectral trajectories generated from a 35-year (1973–2008) time-series of Landsat imagery to 5 
characterize change processes in a dynamic forest environment in northwestern Alberta, Canada. 6 
We propose a method of hierarchical spatio-temporal segmentation that enables the 7 
characterization of change processes that are spatially diffuse and temporally imprecise. 8 
Calibrated imagery from Landsat sensors are radiometrically normalized and two metrics derived 9 
from the Tasseled Cap Transformation components, greenness and brightness, are used to 10 
generate the Tasseled Cap Angle (TCA). The TCA is a measure of the proportion of vegetation to 11 
non-vegetation (the occupation state), and its derivative, the Process Indicator (PI), is a measure 12 
of change in this proportion through time. These indices condense information from the visible 13 
and near-infrared wavelengths, and facilitate lengthy time series analysis of forest landscape 14 
change using data from all Landsat sensors. 15 
 A combination of the original TCA and its derivative sequence are input to a three level 16 
hierarchical segmentation process with the highest and lowest levels defining homogeneous 17 
objects at the initial and final date, and the intermediate level identifying trajectories with similar 18 
change processes. The development through time of the TCA and PI are described, and the spatial 19 
and temporal associations of processes are statistically assessed using the Moran's Index. 20 
 A full range of change types were identified on the landscape, from stand replacing 21 
disturbances to more subtle growth and succession processes. Results indicate that the study area 22 
is in a constant state of change, and maintains a high average proportion of vegetation to non-23 
vegetation. The amount of total landscape modified per decade increased from 18% and 14% in 24 
the 1970s and 1980s respectively, to more than 30% and 33% in the 1990s and 2000s. On 25 
average, the proportion of vegetation to non-vegetation was increasing prior to 1981, decreasing 26 
between 1981 and 1997, and increasing post-1997. There was a high degree of spatial 27 
autocorrelation amongst change processes, with a maximum Moran’s I of 0.79 in 1973; landscape 28 
change became more spatially disperse and widespread after 1981. Temporal correlation of 29 
change processes was observed locally, with the period 1990-1995 having the most persistent 30 
change. 31 
 32 

Introduction 33 
Forests are naturally dynamic ecosystems in continuous change with a key role in water (Van 34 
Dijk and Bruijnzeel, 2001) and carbon cycles (Muukkonen and Heiskanen, 2007), and in wildlife 35 
habitat quality (Nadkarni et al., 2004). Ecological benefits provided by forests depend on the 36 
stage of development, health condition, spatial distribution, and structural characteristics (Spies et 37 
al., 1994; Wulder et al., 2008a; Numa et al., 2009). The ecological and economic services 38 
delivered by forests are markedly altered after disturbances such as fire or harvest, and are more 39 
steadily modified when subtle growth, natural succession, or decay occur. 40 

Insights into patterns, rates, and trends of landscape changes are necessary to understand 41 
forest dynamics, enable preservation, and assess the effectiveness of management approaches 42 
(Hayes & Cohen, 2007; Huang et al., 2009a). Remotely sensed data have become a major 43 
information source for change detection (Lu et al., 2004) and are possibly the only feasible and 44 
cost-effective option for extensive areas (Lunetta et al., 2004). The Landsat series of satellites, the 45 
first of which was launched in 1972, provides a lengthy temporal sequence of images, and is 46 
unique among Earth observing satellites with imagery systematically collected to ensure global 47 
coverage, processed to an end-user applications ready state, and available via the Internet without 48 
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cost. The spatial resolution (30 m), revisit cycle (16 days), and spatial extent (185 km x 185 km) 49 
of Landsat data are well suited to characterizing forest change (Wulder et al., 2008b). 50 

Our goal is to explore the capacity of spectral trajectories generated from a 35-year time-51 
series of Landsat images for exploration and analysis of spatially and temporally diffuse change 52 
in a dynamic forest environment. For this purpose we develop a hierarchical spatio-temporal 53 
segmentation method that combines information at various spatial and temporal resolutions; the 54 
persistence of relations between objects at the multilevel scale is assured by its hierarchical 55 
character. Specific objectives of this study are: 56 

1. To characterize forest landscape change using an index generated from the Tasseled Cap 57 
Transformation components Greenness and Brightness, as well as the first derivative of 58 
this index. This index characterizes the proportion of vegetation to non-vegetation in a 59 
pixel and uses spectral channels that enable bridging across all Landsat sensors. 60 

2. To incorporate both spatial and temporal properties into a hierarchical segmentation 61 
process to capture landscape-level change and incorporate spatial information regarding 62 
these change units through time. 63 

3. To analyze the spatial and temporal correlations of changes through time over an area with 64 
changing amounts, rates, and related spatial distributions of disturbance in a study area 65 
important from both ecological (habitat) and economic perspectives. 66 

Background 67 

1.1 Disturbances and subtle change 68 
Abundant research effort has focused on the assessment of disturbances in large area monitoring 69 
programs. Stand replacing disturbances, such as clearcuts and wildfires that drastically modify the 70 
landscape and require a lengthy period of time to recover their initial state, can be detected with 71 
confidence using remotely sensed data (Coops et al., 2006), particularly Landsat data. For 72 
example, Cohen et al. (1998) applied and compared various methods for mapping clearcuts in 73 
Western Oregon, achieving results with greater than 90% accuracy. In the same region, Cohen et 74 
al. (2002) characterized the rate and distribution of stand replacing disturbance over a 23-year 75 
period with MSS and TM images, finding public land more affected by natural disturbance, while 76 
private land was more intensely harvested. Healey et al. (2005) compared the ability of four 77 
Tasseled Cap (TC) structures in detecting harvest disturbance; a newly developed Disturbance 78 
Index (DI) was the best performer in areas with slower succession rates. The DI was later used by 79 
Masek et al. (2008) to compile a 10-year record of forest disturbances in North America, 80 
reporting omission errors of 30-60% and commission errors of 20-30%. 81 

Less studied is the characterization of subtle, slow, continuous change related to partial 82 
harvest and natural regeneration or decay processes, which have less obvious effects on the 83 
landscape (Coops et al., 2006). Forest successional stages have been described (Cohen et al., 84 
1995; Jakubauskas, 1996; Helmer et al., 2000), but studying the transitions between development 85 
stages is less common: Peterson and Nilson (1993) described trajectories of reflectance change in 86 
secondary succession of mono- specific birch and pine stands in Estonia; Schroeder et al. (2007) 87 
characterized patterns of recovery post-harvest in Western Oregon, and Vogelmann et al. (2009) 88 
characterized forest decline and mortality caused by persistent insect defoliation from 1988 to 89 
2006 in New Mexico. 90 

1.2 Time series of images and spectral trajectory 91 
Two images acquired at different dates may be sufficient for identifying landscape change 92 
(Coppin & Bauer, 1996); however, the use of more than two image dates is recognized as a 93 
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superior technique when the objective is to characterize the rate of change (as opposed to just the 94 
presence or absence of change) (Goodwin et al., 2008). A time series of remotely sensed images 95 
enables the identification of a greater range of processes (Gillanders et al., 2008) as well as the 96 
characterization of temporal patterns. Dense time-series are particularly useful for detecting 97 
change in very dynamic forests with a fast recovery rate (Huang et al., 2009b; Lunetta et al., 98 
2004). Interpretation of a sequence of images, or temporal trajectory, makes it possible to 99 
characterize vegetation dynamics on different temporal scales (Bontemps et al., 2008). With the 100 
extensive Landsat image archive of the USGS being made freely available to the public 101 
(Woodcock et al., 2008) it has become possible to obtain a considerable number of images for 102 
long-term monitoring of ecosystems and for trajectory analysis approaches (Linke et al., 2009). 103 

1.3 Object analysis approach for change detection 104 
Object-based analysis has increased in the Earth Observation community in the last decade (Hay 105 
et al., 2005; Blaschke, 2010) as an alternative to pixel based analysis. Among the strengths of 106 
object-based analysis for change detection are the reduction of misregistration and shadowing 107 
effects (Johansen et al., 2010) and the inclusion of contextual information. 108 

The spatial resolution of the imagery selected is crucial in the definition of objects 109 
analogous to forest stands. Landsat medium spatial resolution is well suited to the detection of 110 
change in forest environments at the stand level. The study of change with an object approach, 111 
and particularly the definition of objects can be done in a number of ways: if using various 112 
images, the segments can first be defined on a reference image and compared later in other dates 113 
(Hall and Hay, 2003); alternatively, objects could be defined by a pre-existing GIS layer as in 114 
Walter (2004); a third approach is the simultaneous segmentation of various dates of images 115 
(Desclée et al., 2006; Bontemps et al., 2008). 116 

Methods 117 

1.4  Study area 118 
The study area covers 13,818 km2 of the Foothills boreal forest region (Rowe, 1972) on the 119 
eastern side of the Rocky Mountains, Alberta, Canada (Figure 1). It is a transition zone between 120 
boreal and sub-alpine forest regions with lodgepole pine (Pinus contorta Dougl.ex Loudon), 121 
trembling aspen (Populus tremuloides Michx), and balsam poplar (Populus balsamifera L.) as 122 
prevalent pioneer tree species appearing after catastrophic events. Other species normally found 123 
in older stands are white spruce (Picea glauca (Moench) Voss) and black spruce (Picea mariana 124 
(Mill.) BSP) and less frequently white birch (Betula papyrifera Marsh.), tamarack (Larix laricina 125 
(Du Roi) K. Kock), balsam fir (Abies balsamea (L.)) and alpine fir (Abies lasiocarpa (Hook.) 126 
Nutt.). Elevation ranges from 600 to 2500 m. 127 

The area is rich in live and fossilized natural resources (Alberta Sustainable Resource 128 
Development, 2009) and provides important habitat for grizzly bear (Ursus arctos L.) (Nielsen et 129 
al., 2004) and woodland caribou (Rangifer tarandus caribou Gmelin). Industrial extraction 130 
activities such as oil and gas, mining, and forest harvesting have been ongoing since the 1950s 131 
(Andison, 1998), with an increased intensity in recent decades (Schneider et al., 2003). 132 

<Insert Figure 1 around here> 133 

1.5 Data 134 
We used a time sequence of fourteen images (Table 1) acquired between 1973 and 2008 by the 135 
Landsat series of satellites with various sensors: the Multi-Spectral Scanner (MSS), the Thematic 136 
Mapper (TM), and the Enhanced Thematic Mapper Plus (ETM+). All images were selected 137 
within the summer and early fall seasons for consistency in forest phenological condition (Wulder 138 
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et al., 2004). Images were obtained from the United States Geological Survey (USGS), the Global 139 
Land Cover Facility (GLCF), and the Canada Centre for Remote Sensing (CCRS) archives. 140 

<Insert Table 1 around here> 141 

1.6 Image Preprocessing 142 
Preprocessing of a sequence of images for change detection has two critical stages: spatial 143 
registration to assure positional coincidence of features, and radiometric calibration and 144 
normalization to ensure changes in spectral reflectance correspond to actual change events. 145 
Failure to correctly perform either of these two could trigger significant errors in the analysis and 146 
lead to misinterpretation of change events (Lu et al., 2004). 147 

All but two of the images were acquired in an orthocorrected format. The two images 148 
received in raw format were geometrically corrected using Toutin’s model (PCI Geomatica) and 149 
registered to the 1995 TM base image using 250 Ground Control Points (GCPs) and the thin plate 150 
spline algorithm. All of the MSS images were resampled from their original 57 m spatial 151 
resolution to 30 m. Finally, an image-to-image registration was used to co-register all of the 152 
images to the base image with a RMS error of less than 30 m (1 pixel). 153 

Robust radiometric preprocessing is essential for monitoring landscape change (Lu et al., 154 
2004) and for linking images with biophysical phenomena (Gong and Xu, 2003); it is particularly 155 
challenging if images from various sensors are included in the analysis (Roder et al., 2005). We 156 
used the approach of Han et al. (2007) to convert digital numbers to Top of Atmosphere (TOA) 157 
radiance with coefficients recommended by Chander et al. (2009). Greenness and Brightness 158 
components of the Tasseled Cap Transformation (TCT) (Kauth and Thomas, 1976; Crist and 159 
Cicone, 1984; Huang et al., 2002) were calculated and normalized to the reference image 160 
Greenness and Brightness, as in Powell et al., (2008). For relative radiometric normalization we 161 
applied IR-MAD (Iteratively Reweighted Multivariate Alteration Detection) (Canty et al., 2004) 162 
as recommended by Schroeder et al., (2006) for temporal spectral trajectories. This automatic 163 
process is based on the invariance property of MAD transformation and performs an orthogonal 164 
linear regression (Canty and Nielsen, 2008) of the target image pixels on to the reference image 165 
pixels; the process is invariant to linear transformations (Nielsen et al., 1998; Canty et al., 2004). 166 
The reference was a Landsat-5 TM image free of clouds and haze, dated 1995, in the middle of 167 
the series. The process of normalization reduces the amount of artifacts due to illumination or 168 
atmospheric variations, enabling more reliable detection of true change (Song et al., 2001). 169 

1.7 Tasseled Cap Angle (TCA) 170 
The Tasseled Cap Transformation (TCT) (Kauth and Thomas, 1976; Crist and Cicone, 1984; 171 
Crist, 1985; Huang et al., 2002) is a linear transform of the original Landsat spectral space that 172 
has been broadly employed in forestry applications (Cohen and Goward, 2004). It has served to 173 
characterize forest structure (Hansen et al. 2001; Cohen et al., 2002), condition (Wulder et al., 174 
2006; Healey et al., 2006), successional state (Peterson et al. 1993, Helmer et al. 2000), and also 175 
for change detection (Lea et al. 2004, Jin and Sader 2005). The first two orthogonal components 176 
of the TCT, Brightness (B) and Greenness (G) define the vegetation plane (Crist and Cicone, 177 
1984) (Figure 2, a) and are a practical bridge between MSS and TM-ETM+ imagery (Powell et 178 
al., 2008). 179 

The study of forest stands’ spectral behavior in the vegetation plane provides insights into 180 
forest cover densities (Cohen et al., 1995; Cohen et al., 1998) and forest development stages 181 
(Peterson and Nilson, 1993; Price and Jakubauskas, 1998). The B component is by definition a 182 
positive value, whereas G depends on the contrast between the visible and near-infrared bands 183 
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(Table 2), with exposed soil having negative values (Gillanders et al., 2008) and vegetated areas 184 
having positive values. 185 

<Insert table 2 around here> 186 
The Tasseled Cap Angle (TCA), defined as the angle formed by G and B in the 187 

vegetation plane (equation 1), condenses in a single value the information of the relation G/B 188 
(Figure 2, a) and represents essentially the proportion of vegetation to non-vegetation. A range of 189 
studies in coniferous forests have confirmed higher values of G and lower values of B in dense 190 
cover classes when compared to open stands or clearcuts (Cohen et al. 1995, Price and 191 
Jakubauskas, 1998). Accordingly, dense forest stands show higher TCA values than more open 192 
stands or bare soil (Figure 2, a). We evaluated the TCA in the study area, assessing values over a 193 
set of 5000 stand replacement disturbance events dated between 1972-2008, finding TCA in 194 
recent clearcuts significantly lower than in any other cover stage of the forest and a clear 195 
increasing tendency with time-since-disturbance (Figure 2, b). 196 

TCA = arctan (G/B) (1) 197 

<Insert Figure 2 around here> 198 
The range of values of the TCA is scene dependent, as are the TCT components (Crist 199 

and Cicone, 1984). An absolute assessment of forest density with the TCA would require local 200 
calibration with field data. On the contrary, evaluating relative changes of TCA does not require 201 
calibration: increments or reductions in the proportion of vegetation to non vegetation results in a 202 
concomitant change of TCA values. 203 

The TCA images for each date were combined into a single, multi-band image file, 204 
hereafter called TCA image for further analysis. To describe the forest landscape cover with the 205 
TCA we define the occupation state characterizing categories of proportion of vegetation to non-206 
vegetation: areas more densely occupied by vegetation have higher values of TCA than areas with 207 
less dense vegetation; the bare soil situation, with zero proportion of vegetation is illustrated with 208 
negative values of the TCA. 209 

1.8 Image Masks 210 
To reduce the detection of false changes, we excluded areas with elevations greater than 1700 m, 211 
water bodies, clouds and cloud shadows prior to analysis. High elevation areas were identified 212 
with a digital elevation model, water bodies were identified with 1:50,000 National Hydrology 213 
Network data; clouds and cloud shadows were identified using a semi-automatic approach for 214 
each image. The area remaining for analysis, after all masks were applied to the TCA image, was 215 
approximately 12,740 km2. 216 

1.9 Process Indicator (PI): the TCA derivative 217 
The spectral profile of the TCA image at each pixel characterizes the evolution or trajectory of its 218 
TCA value over time. Each pixel trajectory was approximated with a Lagrange second order 219 
polynomial (Appendix A), which enables interpolation with uneven intervals among occurrences. 220 

The interpolated TCA image was derived with respect to time (years), producing a new 221 
cube with the same number of bands as the TCA image, hereafter called Process Indicator (PI) 222 
image, where each pixel’s spectral profile is the derivative of its corresponding input image’s 223 
profile (Figure 3). Values of this new image represent the rate of TCA change over time, and 224 
unlike image difference methods, this technique assigns a value to each input date. The PI profile 225 
is the derivative of a smoothed curve, and is appropriate for detecting continuous subtle changes 226 
such as natural succession and decay, and progressive decadence due to disease or insect attack, 227 
which are difficult to assess with traditional change detection techniques (Coops et al., 2006).  228 
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<Insert Figure 3 around here> 229 

1.10 Hierarchical spatio-temporal segmentation 230 
Image segmentation is the partitioning of an image into homogeneous spatial units (Devereux et 231 
al., 2004) based on one or more attributes to facilitate visualization and analysis of spatially 232 
correlated properties; basic subdivisions contain information about raster attributes, shape, and 233 
position. Hierarchical spatio-temporal segmentation is a technique for exploration and analysis 234 
of changing properties of the landscape at various spatial and temporal scales: an image is divided 235 
in a hierarchy of levels, each one inheriting or passing on the boundaries of its objects to the 236 
subsequent level. The attributes of the spatial units, e.g. the spectral trajectory can be analyzed. 237 
The underlying assumption is that forest change processes are spatially and temporally correlated 238 
at certain scales. 239 

There is no unique and singular solution to how an image partitions the landscape 240 
(Burnett and Blaschke, 2003) for ecological analysis and no single spatial scale is optimal for 241 
characterizing the multiple options in which the image can be divided (Hay et al, 2005). 242 
Attempting to interpret processes with a multi-scale segmentation requires the definition of 243 
semantic rules to relate lower level landscape units to higher levels of organization (Burnett and 244 
Blaschke, 2003). Three is the minimum number of levels recommended for landscape analysis 245 
(O’Neill, 1986). 246 

The current landscape in the study area is highly fragmented as a result of natural factors 247 
and human activities (Andison 1998), and spatial units at the same occupation state are smaller 248 
than a few decades ago. We define two levels of segmentation based on initial (1973) and final 249 
(2008) TCA values (L3 and L1 respectively). The smaller objects in L1 made up larger 250 
homogeneous spatial units at the beginning of the period considered; each of them has evolved 251 
following a different process path. An intermediate process level (L2) defined by the PI trajectory 252 
(change process) links both state levels (Figure 4). 253 

<Insert Figure 4 around here> 254 
We introduce a mixed top-down/bottom-up approach whereby information at higher 255 

levels of the segmentation hierarchy (top: larger objects) is used to derive information at lower 256 
levels of the segmentation hierarchy (bottom: smaller objects) and vice versa (Hay et al., 2001). 257 
The order followed in the definition of objects in a hierarchical multi-scale segmentation of the 258 
landscape incorporating state and processes is important for interpretation and analysis. At the 259 
state levels L1 and L3, intra-object TCA variability is smaller that inter-object variability. The 260 
intermediate process level L2 acts as a bridge between the actual conditions (2008 TCA) and the 261 
initial state (1973 TCA), its segments have had similar changing path (PI trajectory) during the 262 
study period (1973-2008). Adjacent objects in level 2 followed a significantly different evolution 263 
path, and there is more variability in the process path between objects than within objects 264 
(Definiens, 2005). 265 

The process of segmentation is performed with Definiens Cognition Network 266 
Technology® (Baatz and Schäpe, 2000; Definiens, 2005). L1 is defined with scale parameter 10, 267 
color-shape 0.7-0.3, smoothness-compactness 0.5-0.5 (Wulder and Seemann, 2003); the scale is 268 
20 for L2 and 50 for L3. In defining the process level all PI layers are equally weighted. 269 

1.11 Spatio-temporal correlation of forest occupation states and forest change processes 270 
Once objects were defined, we sought to describe how occupation states and change processes 271 
were arranged across the study area within single years, and whether the condition of an object in 272 
one year was related to its condition and its neighborhoods’ in a subsequent year. Thus, we 273 
required spatial statistics that could be calculated both at a local scale and a global scale, and 274 
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could include both intra- and inter-year effects. We employed the Moran’s Index (Moran, 1948) 275 
statistic (Appendix B) implemented in GeoDaTM which is free software dedicated to spatial data 276 
analysis (Anselin et al., 2006). 277 

Moran’s I can be interpreted as a spatially weighted form of Pearson’s correlation 278 
coefficient (Goovaerts et al., 2005): positive and negative z-values point to positive and negative 279 
spatial correlation of objects’ values respectively, and a zero value indicates there is no spatial 280 
association in the dataset. The Moran scatterplot facilitates visual exploration and interpretation 281 
of the global value of Moran’s I (Anselin, 1993) (Figure 5): the distribution of the cloud of points 282 
(observation versus spatial lag (neighbor’s weighted averaged values)) reflects the pattern of 283 
spatial association, and the slope of the regression line is an estimation of the global Moran’s I. 284 

<Insert Figure 5 around here> 285 
For explicitly spatial description, local associations (clusters) and outliers can be 286 

identified and analyzed with a Local Indicator of Spatial Analysis (LISA) (Anselin, 1995). In this 287 
study we implemented the local Moran’s I for detection of local patterns of forest occupation 288 
state and forest change processes, and created maps of clusters (LISA cluster map) that identify 289 
and classify (high-high, low-low, high-low and low-high) locations with significant association. 290 

Spatial and temporal correlations of objects’ TCA and PI values were assessed 291 
independently as a variable evaluated at multiple dates. LISA analysis of univariate data enables 292 
detection of spatial patterns of correlation at a single date. Furthermore, the option of bivariate 293 
LISA analysis facilitates temporal analysis of the spatial correlation, detecting if there is any 294 
association between the variable measured at a reference time and the same variable measured in 295 
the neighborhood at a different time (Anselin, 2003). In all our spatial analysis we defined the 296 
neighborhoods with the first order Queen’s contiguity measure, i.e. each object’s neighborhood 297 
consists of all other segments sharing some boundary with it. 298 

Results 299 

1.12 Hierarchical spatio-temporal segmentation 300 
The hierarchical spatio-temporal segmentation yielded a number of objects at each level of 301 
segmentation with the average size per object shown in Table 3. There are 4.46 L2 objects per 302 
each L3 object on average, and 3.27 L1 objects in each L2 object on average. The average size of 303 
the smaller objects (L1) is approximately 40 ha. 304 

<Insert Table 3 around here> 305 
Most of the statistical summaries and results shown in following sections concern L1 306 

objects; results at other levels of segmentation show similar trends. 307 

1.13 Landscape occupation state--TCA 308 
Considering the entire study area, the mean value of the objects’ TCA is consistently greater than 309 
190 over the whole period of analysis, and describes a landscape with a high proportion of 310 
vegetation to non-vegetation. Between 1997 and 2001, the mean TCA was at its lowest, with the 311 
minimum mean TCA occurring in 1997 (minimum average TCA value, Table 4, Figure 6) – the 312 
coincidence of three consecutive late season images in this period encourages a cautious 313 
interpretation. After 2001, TCA values trend upwards, indicating a global average increase in the 314 
proportion of vegetation to non-vegetation. 315 

The standard deviation of the TCA (Figure 6, Table 4) indicates that the lowest dispersion 316 
in objects’ TCA values occurred before 1990—images from the MSS era, with 6-bit rather than 317 
the 8-bit radiometric resolution of later Landsat sensors encourages cautious interpretation; since 318 
that time, the standard deviation has been higher, with a maximum in year 2001, which was the 319 
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ceiling of diversity of occupation states at L1. As we would expect, from a high cover state, 320 
increased variance implies reduced cover, with non-vegetation locations (stand replacing 321 
disturbances) intermingled with forest stands at various stages of coverage and growth. 322 

<Insert Table 4 around here> 323 
<Insert Figure 6 around here> 324 

The histograms of TCA distribution at all dates are similar, with a maximum occurring 325 
between values 220 and 240, but some differences are apparent (Figure 6). Of particular note is 326 
the variation, by year, of negative TCA values, indicative of non-vegetated areas, and of the high 327 
positive TCA objects that have a high proportion of vegetation or are densely occupied. To gain 328 
better insights of these changes, the range of TCA values over the scene was split in four 329 
categories, with a criterion based on the statistical distribution (the mean TCA, considering all 330 
dates, ± one standard deviation (i.e. 140, 310), and zero). Groups were labeled as Negative (TCA 331 
below zero, corresponding to non-vegetated objects), Low, Medium, and High, having an 332 
increasing proportion of vegetation to non-vegetation. Objects were classified in these four 333 
groups and their progression through TCA categories analyzed at a quasi-decadal interval: from 334 
1973 to 1981; 1981-1990; 1990-2000; 2000-2008. Objects for which the TCA value changed 335 
category from initial to final date in each decade were counted (Figure 7). 336 

<Insert Figure 7 around here> 337 
In the 1970s, 17.8% of all L1 objects (5273) changed the occupation state enough to 338 

switch TCA category. Among these, 47% evolved from medium to high and 31% from low to 339 
medium: there was a clear net change towards higher densities and abundant interchange in the 340 
high and medium groups— areas with high coverage and also common change events inducing 341 
average TCA variations. In the 1980s, 13.8% of all L1 objects (4083) changed their occupation 342 
state sufficiently to switch TCA category. The high to medium and vice versa changes were again 343 
marked, with a net 11% change from high to medium. Medium to low changes accounted 29% of 344 
all changing objects; the overall change was towards lowering density. In the 1990s, 30.4% of all 345 
L1 objects (8989) switched the occupation state sufficiently to move TCA category, relating a 346 
transition over the landscape towards lower canopy cover densities: more than half of the changes 347 
in TCA category (56%) occurred from the high group to the medium group, followed by 348 
transition from medium to low (22%). 349 

The last period analyzed, 2000-2008, experienced the highest rate of TCA category 350 
switches: 9972 L1 objects (33.7% of the total) swapped occupation state group. Among these, 351 
60% exchanged from medium to high, 22% from low to medium, and 9% moved from high to 352 
medium. Despite the frequency of transformations produced in this time period, the global 353 
average occupation state was maintained (Figure 6). 354 

We considered all mathematical options of transition amongst these TCA categories; in 355 
reality, however, frequent swaps at the spatial scale considered only occurred between adjacent 356 
groups, reflecting that changes of occupation state at the landscape level occur in a progressive 357 
manner. Transitions such as high to negative, high to low, or negative to high were infrequent or 358 
nonexistent in the study area at the time and spatial scale considered; such drastic changes would 359 
reveal alterations in occupation state produced by typical stand replacing disturbances such as 360 
fire, windthrow, or an accumulation of forest harvesting. 361 

Summarizing change by decade is a useful approach, but sometimes a more detailed 362 
temporal examination is necessary for detecting trends. The total number of objects in each TCA 363 
category (Figure 7 left inset) reveals changing tendencies and aids in understanding fluctuations 364 
in the global average (Figure 6). TCA medium category objects are significantly more common 365 
than any other group between 1973 and 2008, oscillating between 67% and 84% of the total 366 
number of objects. The diminution of high objects between 1997 and 2001 is noteworthy and 367 
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mathematically explains the decrease in the TCA global average (Figure 6). Negative and low 368 
categories of TCA are the least common objects for all dates, with a slight increment in low 369 
objects between 1997 and 2000; but late season images used to study this period (1997-2000) 370 
could somehow have conditioned lower values of the TCA. 371 

1.14 Landscape change processes—PI 372 
The average PI value describes the global state of change at the landscape level; assessing this 373 
average at consecutive dates (Figure 6) permits examination of trends in the study area. Prior to 374 
1981, low positive values of the PI indicate a slow increasing rate in the proportion of vegetation 375 
to non-vegetation: the landscape is in an average state of forest growth. From 1981 to 1997, the 376 
average PI values are negative, indicating a decline in the proportion of vegetation to non-377 
vegetation mainly caused by forest harvesting and, to a lesser extent, other disturbances; in the 378 
2000s PI values are again positive (Table 4, Figure 6). The standard deviation of PI values (Table 379 
4, Figure 6) is relatively high for the entire period indicating that this forest landscape is very 380 
dynamic and that there is a great variety of change processes occurring simultaneously. 381 

Although the variation in the interval between image dates was considered when 382 
computing the PI values, the dearth of image data in the 1980s limits the analysis of trends. 383 
Further, the effect of late season imagery on PI values has to be considered in interpretation of 384 
changes. Despite these facts, a general decline in the occupation state (negative PI average) is 385 
observed in the 1980s and 1990s (Table 4, Figure 6) and a time of frequent and diverse change 386 
reflected by the high values of PI standard deviation. 387 

For most image dates, the distribution of polygons with different change processes (PI 388 
values) is unimodal (Figure 6), with the majority of objects having a mean PI value close to zero 389 
(i.e., stable). The sample was divided in groups of PI values for exploration of changing patterns. 390 
With no ground truth to determine splitting thresholds, we used statistical criteria. The stable 391 
group, with PI close to zero, is a relevant group, representing areas with no change in the 392 
proportion of vegetation to non-vegetation. The slow increase and slow decrease groups were 393 
defined approximately by the values of the mean ± two standard deviations of PI at all dates (i.e., 394 
60 and -70). The fast increase and fast decrease groups include the remaining extreme values 395 
(Figure 6). 396 

Objects in the fast decrease group (i.e., being highly disturbed), are the smallest group in 397 
all time periods (Figure 8): there is a small proportion of the landscape with a rapid net loss of 398 
vegetation. Similarly, objects in the fast increase group (i.e., in a state of rapid emergence or 399 
occupation) are also relatively infrequent. In contrast, the slow increment PI objects (i.e., growing 400 
stands) are normally the most frequent, with the exception of 1995 and 1997, when slow decrease 401 
(i.e., decay by aging, disease, or partial harvest) was more common. 402 

<Insert Figure 8 around here> 403 

1.15  Spatial autocorrelation of forest occupation states and forest change processes 404 
Global values of Moran’s I show there is a consistent positive and high spatial autocorrelation of 405 
forest occupation states (TCA values) during the period from 1973 to 2008 (Table 5), with an 406 
average value of 0.643 at the L1 level of segmentation, and slightly lower for larger levels (results 407 
not shown). Change processes (PI values) are also positively and highly spatially correlated, with 408 
an average global Moran’s I of 0.636 (Table 5). Whilst Moran’s I values of TCA do not follow a 409 
clear trend, Moran’s I values for PI generally decrease through time (Figure 9): similar change 410 
processes were spatially more concentrated at the beginning of the period of analysis, and have 411 
progressively lost spatial association, turning the landscape into a mosaic of change processes 412 
with smaller but more spread disturbance events and subsequent recovery. Observation of Figure 413 
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9 suggests there is no apparent correspondence between global spatial associations of TCA and PI 414 
values over time, state and process seem to have a different pattern. 415 

<Insert Table 5 around here> 416 
<Insert Figure 9 around here> 417 

Exploration of the Moran’s scatterplot informs about patterns of spatial autocorrelation, 418 
in particular if associations are between values over or below the average. As an example, the 419 
1997 scatterplot of occupation states (TCA) (Figure 9, 1) illustrates that spatial associations at this 420 
date are produced between a large range of values below the average (Figure 9, Panel 1, Notation 421 
A). Spatial associations are also produced between values over, but close to the average (Figure 9, 422 
Panel 1, Notation B). In this case a few points in the upper left and lower right quadrants depict 423 
spatial outliers with markedly different occupation state compared to those neighboring; for 424 
instance these areas relate to changed areas (island polygons) amid unchanged forest areas (or the 425 
converse, unchanged islands amidst change). 426 

The pattern of spatial association shown by the Moran’s scatterplot of change processes 427 
(PI values) in 1973 is different, the distribution of points in both quadrants of positive correlation 428 
is similar (Figure 9, 2): there is spatial association between values below and over the average, 429 
i.e., processes of change are spatially associated, wether they are related with growth, disturbance 430 
or stabilization. 431 

The temporal correlation of occupation states (TCA) and change processes (PI) is 432 
explored by studying the bivariate (temporal) Moran’s I. The spatial association of the target 433 
variable at two consecutive dates is evaluated (Table 5) to investigate the impact of particular 434 
ocurrences on its neighborhood over time; care with different time intervals is necessary for 435 
interpretation. Results show global positive correlation of TCA at all time intervals (similar 436 
occupation states are spatially associated at consecutive dates, which seems very natural in the 437 
absence of disturbance), with a minimum of 0.352 in period 1976–1978 and a maximum of 0.656 438 
in period 1978–1981. Bivariate (temporal) global Moran’s I of PI is in most cases positive (Table 439 
5) and not very large; a maximum of 0.494 occurs in period 2000-2001 and a minimum of -0.032 440 
in period 1997–2000. The pattern of Moran’s scatterplot of TCA (2000–2001 as an example in 441 
Figure 9, 3) is similar to the univariate case, with TCA values dispersed in the low-low quadrant 442 
and few outliers. In the PI example (1978–1981), the temporal Moran’s scatterplot is an 443 
agglomeration of points around zero, different to the univariate case: while the univariate picture 444 
shows clustering of similar change processes, there is not a clear pattern of association in the 445 
bivariate case (Figure 9, 4) and areas at varying change processes of growth or decay at 446 
consecutive dates are intermingled. 447 

Local analysis with a map of clusters can provide spatially explicit information on 448 
clustering (Figure 10) informing and characterizing local associations; it is a useful tool for visual 449 
interpretation. The examples in Figure 10 illustrate the association type of change processes (PI) 450 
in the study area for the period investigated (1973–2008). Red polygons denote association of 451 
values greater than average (high-high), blue polygons association of values less than average 452 
(low-low); purple polygons are high-low outliers (with a value greater than the mean at the initial 453 
date, and surrounded by polygons with values less than the mean at the second date) and green 454 
denotes low-high outliers (with a value less than the mean at the initial date, and surrounded by 455 
polygons with values greater than the mean at the second date). Polygons of the same type 456 
grouped together indicate larger homogeneous areas with respect to the variable analysed, as 457 
occurs in 1995–1997, whereas small groups of clusters or isolated patches indicate a more 458 
heterogeneous landscape, as is the case in 1978–1981. 459 
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Despite the low values of global Moran’s I for temporal PI correlation (Table 5), local 460 
analysis and examination of the cluster maps reveal that there is a substantial number of change 461 
process clusters of all categories. 462 

<Insert Figure 10 around here> 463 
The varying time intervals between available image data makes inference of trends in 464 

temporal association less reliable; a periodic series of images would facilitate a thorough temporal 465 
study. To investigate a possible trend, we calculated global and local correlations at quasi-466 
quinquennial intervals: 1976-1981, 1981-1990, 1990-1995, 1995-2000, and 2000-2006, and 467 
analysed total amounts of each category of local clusters (Table 6, Figure 10). Given the location 468 
(latitude and alpine transition) combined with local forest productivity levels influencing 469 
successioal processes, five to ten years is an adequate period to capture and portray the forest 470 
stand dynamics occuring; however, to detect more frequent changes, a complete series of annual 471 
images would be required. 472 

<Insert Table 6 around here> 473 
The highest number of significant (p<0.001) spatial clusters occur in the central periods, 474 

1995-2000 and 2000-2005 (Figure 11, Table 6), a time with persistent change. It is between 1981-475 
1990 when more positive spatial associations of change processes happens; interestingly, in this 476 
longer time lapse spatiotemporal associations are equally distributed between processes over the 477 
average (regrowth) and below the average (disturbance and decay) change process. A close look 478 
at the original images reveals that clearcutting practices and subsequent regrowth were more 479 
concentrated in fewer areas than during more recent dates. The time interval is an important 480 
parameter to control in the analysis of temporal correlation of change processes for accurate and 481 
reliable reports and conclusions, and although global values of correlation do not give exhaustive 482 
information, local analysis can give important and detailed spatial information. 483 

<Insert Figure 11 around here> 484 

Discussion  485 
The Tasseled Cap derived indices employed in this work are valuable tools for the capture and 486 
assessment of forest cover condition and change. The Tasseled Cap Angle reports the proportion 487 
of vegetation to non-vegetation (occupation state) in a defined area and its derivative, the Process 488 
Indicator informs the current process of change. These indices condense information from the 489 
visible and NIR wavelengths, and facilitate comparison of data from all of the Landsat sensors, 490 
enabling the study of forest landscape change with a lengthy series of historical satellite images 491 
dating from 1973 to 2008. Results of our study indicate that the landscape change was more 492 
spatially clustered prior to 1981, but that change became more widespread and dispersed in later 493 
years. Certain periods had more intense change, as indicated by their temporal spatial correlation. 494 

Forest landscapes, particularly managed forest landscapes, are dynamic ecosystems with 495 
a number of different change processes ongoing at any given time. Although a variety of remote 496 
sensing techniques have the capacity to detect stand replacing events, the detection of subtle 497 
alterations that result in only minor spectral changes remains a challenge (Goodwin et al., 2010) 498 
as different phenology and illumination of images induce detection of false change. With 499 
disrupting artifacts suppressed, the PI would be able to account for a wide variety of change 500 
types, providing information of slight or substantial modifications that is leveraged by a temporal 501 
series of three or more normalized images: low positive values of PI indicate a slow increment in 502 
the occupation state due to natural growth, while low negative values of PI point to natural 503 
processes of decay, such as aging or disease, or human induced modifications such as partial 504 
harvest or thinning (Table 7). More notable and fast changes in the occupation state, like a 505 
disturbance with reduction of vegetation or a process of vegetation emergence are indicated with 506 
high negative or positive values, respectively. The capacity to relate both positive and negative 507 
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changes is a powerful aspect of the PI, enabling insights relating both forest (vegetation) gain and 508 
loss. 509 

The TCA and PI, as derived from the TCT, are relative to the scene considered and would 510 
require a process of normalization to enable comparisons between different sites. If field data are 511 
not available, a study of relative change is the best option for the examination of trends. The 512 
availability of ground data for calibrating these indices could enable them to work as a look up 513 
table for other attributes, such as cover percentage, seral stage, or biomass content, facilitating 514 
forest monitoring efforts (e.g., Powell et al., 2010). 515 

<Insert Table 7 around here> 516 
Analyzing a temporal series of images supports the assessment of trends and rates of 517 

change that otherwise might be missed with only a bi-temporal change detection approach 518 
(Lunetta et al., 2004). The adequate interpretation of tendencies is conditioned by the time 519 
interval between consecutive images, and the scarcity of data for any one period may preclude a 520 
complete understanding of the landscape change. A decadal interval might be sufficient for 521 
preparing a summary of conditions and for planning silvicultural treatments and wood 522 
extractions, but more frequent information is required for monitoring of forest health and 523 
biomass. Jin and Sader (2005) recommend a period of three to five years for interpretation of 524 
condition and change in a forest area, but the ideal number of images and acquisition timing is 525 
site dependent (Wilson and Sader, 2002) and often restricted by image availability. We used a 526 
quasi-quinquennial interval for evaluation of change processes (PI) and a decadal interval for 527 
summary of change in the landscape state (TCA) obtaining sound and useful outcomes. 528 

As long as temporal factors are considered, the interpretation of TCA and PI may be 529 
combined to provide insights on the change processes that are active in a forest landscape: 530 
varying rates of cover change could have different effects on dense or open forests and could 531 
trigger different phenomena. A simultaneous view of occupation states defining the landscape 532 
pattern and current change processes could help understanding the relation between pattern and 533 
process, a recursive question difficult to solve in landscape ecology (Turner, 1989; Walsh et al., 534 
2009). 535 

Although there is no confirmed link between these indices and ecological succession 536 
stages, the combined interpretation acts to facilitate analysis of succession patterns. The 537 
contextual temporal information given by the TCA enables proper interpretation of change that 538 
may be confounded with traditional techniques (Masek et al., 2008). The TCA provides 539 
information of vegetation proportion and the PI gives an instantaneous picture of the change 540 
process; together with some ecological knowledge, forest seral stages may be identified (i.e., 541 
young stand growing, young stand with disease, mature stand in decay, recovery from 542 
disturbance, or other situation). It must be noted that in order to enable accurate understanding of 543 
a trajectory of change, some knowledge of the local ecology is always required. Figure 12 depicts 544 
possible interpretation of consecutive change processes for a homogeneous area. 545 

<Insert Figure 12 around here> 546 
The object oriented approach implemented to help in the analysis of change at the 547 

landscape level provides meaningful reporting units, that is, objects analogous to forest stands. 548 
The spatial scale is a key parameter for assessment of ecological processes; we opted for a data 549 
driven method in the definition of spatial units, based on homogeneity of areas at the initial and 550 
final dates of the period (1973 and 2008). Establishing the hierarchy on the variables of interest, 551 
the transmission of significant information between levels is assured: initial and final state levels 552 
are connected through an intermediate level of processes accounting for the entire trajectory of 553 
change. Different intermediate levels could be defined for specific applications. For example, a 554 
forest health monitoring study may be interested in the progress of defined segments since the 555 
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time of infection, and subtle changes could be detected from that point on. We reported the state 556 
and change of forest landscape with objects of a mean size of approximately 40 hectares, with a 557 
common initial state and intermediate history of change; however, the method allows any sized 558 
object to be used, enabling the selection of the most appropriate size given the ecological 559 
processes operating in the area. 560 

Spatial and temporal autocorrelation is a complex and scale dependent phenomenon that 561 
is expected in natural environments. In the time period analyzed, some relations and patterns were 562 
unveiled for occupation state and change processes. The spatial correlation of occupation state 563 
was always positive; change processes were also positively correlated at the global spatial level 564 
and with a decreasing tendency over time. Temporal spatial autocorrelation of change processes 565 
was found in local aggregations, necessitating further analysis with local measure to understand 566 
the local variability. 567 

Conclusion 568 
The study of environmental long term historical change is facilitated with the free access to the 569 
United States Geological Survey Landsat data archive. Extensive areas can now be monitored 570 
retrospectively with techniques that incorporate multi-temporal information in a spatially explicit 571 
manner, and which are capable of seamlessly integrating data from a variety of sensors. An index 572 
derived from the well known TCT, the Tasseled Cap Angle, and its derivative, the Process 573 
Indicator, have demonstrated potential for characterizing the change in state and process in a 574 
dynamic forest area, enabling detection of subtle changes as well as more obvious stand-replacing 575 
disturbances. Combined, the interpretation of the TCA and its derivative, the PI, provides a 576 
simultaneous view of the occupation state and the change processes that are operating in a forest 577 
landscape, thereby enabling some understanding of the elusive relationships between landscape 578 
pattern and process—a recursive question of landscape ecology. A hierarchical segmentation 579 
process incorporating spatial and temporal properties provides flexibility in the establishment of 580 
the scale of analysis. Spatial statistics applied to multipixel objects enable assessment of spatial 581 
and temporal correlation of change events at the landscape level. Applications that require 582 
temporally detailed and spatially explicit information, such as forest succession studies, forest 583 
health monitoring, habitat models, and biomass or carbon accounting programs, will benefit from 584 
the use of these tools that provide dynamic information of the forest state and processes. Further 585 
work to link TCA and PI values with better known scales of forest variables is recommended to 586 
facilitate interpretation. 587 

Acknowledgements 588 
We acknowledge the Government Related Initiatives Program (GRIP) of the Canadian Space 589 
Agency (CSA) support of the project “EcoMonitor: Northern Ecosystem Climate Change 590 
Monitoring From Space” that enabled implementation of this research. The constructive 591 
comments of the anonymous reviewers are thanked for providing insightful, detailed, and helpful 592 
direction.  593 



 15

 594 

Appendix A. Lagrange interpolation of the TCA 595 

The Lagrange interpolating polynomial of the TCA profile at each pixel is given by: 596 
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The polynomial formula for the interpolated TCA at each pixel is therefore: 602 
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The PI or derivative of this polynomial can be expressed as: 604 
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Appendix B. Moran’s Index 607 

Moran’s Index can be expressed as:  608 
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Where xi is the variable of interest x measured at location i, N the number of 610 
observations, μ the mean of the variable, and ijw  are the elements of the spatial weights 611 

matrix, which expresses the membership of observations in the neighborhood set for each 612 
location (Anselin, 1992). 613 

A standardized z-value is reported for ease of interpretation. 614 
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Table 1. Landsat time-series of imagery used in the study 

Landsat / 
Sensor 

Path/Row 
Date 

(dd/mm/yyyy) 
Sun elevation 

(degrees) 
Source 

1 / MSS 50/22 16/09/1973 36.21 GLCF 

2 / MSS 50/22 27/09/1976 30.40 CCRS 

2 / MSS 50/22 25/07/1978 49.00 GLCF 

2 / MSS 50/22 14/08/1981 46.10 CCRS 

5 / TM 46/22 06/09/1990 37.38 USGS 

5 / TM 46/22 23/07/1991 50.25 USGS 

5 / TM 46/22 04/09/1995 36.99 USGS 

5 / TM 46/22 25/09/1997 32.21 CCRS 

7 / ETM+ 46/22 25/09/2000 32.82 USGS 

7 / ETM+ 46/22 28/09/2001 31.70 USGS 

7 / ETM+ 46/22 15/09/2002 36.48 USGS 

5 / TM 46/22 11/08/2004 47.31 CCRS 

5 / TM 46/22 30/06/2006 55.86 USGS 

5 / TM 46/22 06/08/2008 48.80 USGS 
CCRS: Canadian Centre for Remote Sensing 
GLCF: Global Land Cover Facility 
USGS: United States Geological Survey 
 
Table 2. Coefficients used for calculation of TCT indices 

Sensor Component R G B NIR SWIR1 SWIR2 

Brightness 0.433 0.632 0.586 0.264 N/A N/A 
MSS 

Greenness -0.290 -0.562 0.600 0.491 N/A N/A 

Brightness 0.3037 0.2793 0.4343 0.5585 0.5082 0.1863 
TM 

Greenness -0.2848 -0.2435 -0.5436 0.7243 0.0840 -0.1800 

Brightness 0.3561 0.3972 0.3904 0.6966 0.2286 0.1596 
ETM+ 

Greenness -0.3344 -0.3544 -0.4556 0.6966 -0.0242 -0.2630 
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Table 3. Characteristics of hierarchical spatio-temporal segments 

Level Similarity Attribute for definition Mean Size (ha) Number objects 

L3 Initial occupation state 1973 TCA 634.4 2021 

L2 Change process trajectory 1973-2008 PI 141.9 9032 

L1 Final occupation state 2008 TCA 43.1 29544 
 
 
Table 4. Statistics of TCA and PI values at L1 level 

TCA 1973 1976 1978 1981 1990 1991 1995 1997 2000 2001 2002 2004 2006 2008

Mean 227.13 229.99 241.33 244.05 231.83 232.73 226.40 195.23 204.64 201.81 235.93 240.01 237.69 244.56

Std deviation 74.21 59.55 66.24 66.02 80.78 84.46 87.18 91.88 95.05 95.73 83.23 80.19 81.59 78.90

Kurtosis 5.57 2.14 5.55 6.30 4.58 10.03 8.62 10.74 15.34 13.48 7.43 7.96 8.30 8.89

Skewness -1.21 -0.58 -0.86 -0.93 -1.21 -1.92 -1.99 -2.45 -2.98 -2.66 -1.67 -1.77 -1.75 -1.90

Min. -463.92 -83.08 -450.94 -491.11 -322.71 -646.56 -505.43 -566.48 -735.87 -701.26 -457.65 -499.27 -539.34 -502.49

Max. 432.41 432.66 399.30 417.55 438.03 407.07 441.63 446.87 454.64 447.31 447.03 413.21 399.25 405.40

PI  1976 1978 1981 1990 1991 1995 1997 2000 2001 2002 2004 2006

Mean  7.10 7.03 -4.75 -5.66 -2.71 -18.75 -10.88 3.29 15.64 19.10 0.88 2.27  

Std deviation  20.30 26.14 18.88 21.38 16.28 34.41 25.15 17.90 25.31 30.58 17.32 12.93  

Kurtosis  7.65 1.26 8.97 12.10 11.91 1.58 8.55 11.51 2.64 4.83 6.22 14.94  

Skewness  1.05 0.06 -1.07 -2.30 -1.21 -0.58 -1.21 -0.70 1.00 0.73 -0.12 -0.20  

Min.  -338.31 -227.89 -217.41 -320.04 -235.86 -310.10 -420.88 -369.72 -109.03 -213.48 -128.77 -126.84  

Max.  189.68 134.98 314.38 97.04 108.96 164.26 202.64 144.69 284.95 378.67 185.01 214.39  

 
 
Table 5. Values of Moran’s Index of univariate (spatial) and bivariate (temporal) TCA 
and PI. All correlations with p-value<0.001 

Spatial 1973 1976 1978 1981 1990 1991 1995 1997 2000 2001 2002 2004 2006 2008 

TCA 0.6740 0.5397 0.6959 0.6709 0.6804 0.6813 0.6625 0.6083 0.5087 0.5983 0.6601 0.6723 0.6848 0.6657 
PI 0.7940 0.6365 0.7275 0.6095 0.6690 0.6422 0.6880 0.6521 0.6311 0.6860 0.6070 0.5086 0.5691 0.5336 

               

Temporal  73-76 76-78 78-81 81-90 90-91 91-95 95-97 97-00 00-01 01-02 02-04 04-06 06-08 

TCA  0.3959 0.3523 0.6557 0.6003 0.6522 0.6290 0.5112 0.5637 0.5744 0.5284 0.6235 0.6448 0.6512 

PI  0.1170 0.2259 0.0434 0.4209 0.1729 0.3140 0.4668 -0.0321 0.2301 0.4940 0.2360 0.1307 0.0397 
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Table 6. Number of significant PI (p<0.01) clusters for quasi-quinquennial intervals 

Cluster 1976-1981 1981-1990 1990-1995 1995-2000 2000-2006 

High-high 612 1559 1448 890 1192 

Low-low 501 1239 885 561 370 

Total positive 1113 2798 2333 1451 1562 

High-low 1273 349 1788 2411 1205 

Low-high 1015 306 2023 2393 1280 

Total outliers 2288 655 3811 4804 2485 

Total 3401 3453 6144 6255 4047 

 
 
Table 7. Interpretation of TCA and PI values 

Value 
TCA 

Occupation state 
PI 

Change process 

High High proportion Veg-nonVeg Emergence 
Positive 

Low Low proportion Veg-nonVeg Growth 

Zero Greenness = 0 Stable 

Low Non-vegetated 
Decrease (natural decay 
or partial harvest) Negative 

High Non-vegetated Disturbance 
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FIGURES 

 

 

 

Figure 1. Location of the study area. The inset displays a combination of Tasseled Cap 

Angle (TCA) layers of years 2001 (Red), 2002 (Green), 2004 (Blue); areas of 

clouds and altitude over 1700 m are masked out. 
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Figure 2. (a) Tasseled Cap Transformation Brightness and Greenness components form 

the vegetation plane (Crist and Cicone, 1984). The TCA is the arc tangent formed 

by Greenness and Brightness. Forest stands with higher proportion of vegetation-

non vegetation show higher values of TCA, bare soil shows negative TCA. (b) 

TCA average values of disturbed areas in the study area in the last 35 years; 

recent clearcuts show negative TCA value. 
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Figure 3. TCA (1973-2008) and PI (1976-2006) trajectories of a L1 object. The PI is 

calculated as the derivative of the TCA curve (interpolated with a second order 

Lagrange polynomial). PI values correspond to each date. 
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Figure 4. Hierarchical spatio-temporal segmentation process. Bottom level 1 of 

homogeneous actual occupation states objects serves as base for creation of top 

level 3 representing homogeneous occupation state objects at initial date. Objects 

of intermediate process level are limited in size and boundaries by both 

occupation state levels. 
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Figure 5. Moran’s I scatterplot. The slope of the regression line is an estimation of the 

global Moran’s I. Relative density of points in the correlation quadrants indicates 

how the global measure of spatial association is determined by association 

between high or low values. 
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Figure 6. Mean ± 1 standard deviation of TCA values of L1 objects (other object levels 

show similar trends) (left). Histograms of TCA and PI distribution (right). 
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Figure 7. Changing objects between TCA categories in each of the last four decades. 

Evolution of total number of objects in different TCA groups at level 1 (top left 

inset) (other levels of segmentation show similar trend). 
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Figure 8. Evolution of change process (PI) categories of level 1 objects. 
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Figure 9. TCA and PI spatial global Moran’s I trends (top). Spatial (univariate: 1, 2) and 

temporal (bivariate: 3, 4) Moran’s I scatterplots of TCA and PI (bottom) 
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Figure 10. LISA Maps of temporal association PI clusters; only significant polygons 

(p<0.01) are colored. 
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Figure 11. Evolution of significant clusters per quasi-quinquennial period 
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Figure 12. Relative TCA values of various occupation states of the coniferous forest in 

the study area and PI values of changing processes. 

 


