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Introduction

Aerial photographs are inexpensive and available from a variety of sources. They are an

imagerywhich can be vastly superiorto commercial satellite imagery for detailed analysis. By utilizing

photography from different years, a resource manager is able to compare changes of selected areas

over time, and thereby address ecological problems which are difficult to do with conventional

ecological experimentsor field manipulations. The specificobjectives ofour projectwere: 1) to discuss

scanning intensities 2) to outline simple methods for manipulating scanned images (filtering), 3) to

explain a procedure for variance removal based on lens optics, 4) to equate photographs of different

qualities 5) to test a set ofreference signatures on different sites, and 6) to discusscurrent research.

Hardware and Software

We use PC platforms although our procedures could easily be run on a SUN or

Macintosh system. Currently we are using a Toshiba 3100 portable personal computer coupled

with a Logitec black and white 400 dpi hand scanner. We have found this system to be adequate

for the small-sized photography. It has the added advantageofbeing portable enough to take into

the field so that training signatures can be developed on site whenever possible. We have been

using flatbed scanners and desktop 486 computers in our laboratory.

IDRISI is the most affordable software package for much ofthe image analysis because it

is readily available and it is taught at many community colleges and universities in Ontario. In

addition two other modules are supplied in the Appendices of this report to perform the Fourier

and inverse Fourier analyseswhich are also needed to standardize photographs taken at different



times or to remove differences due to photographic intensities (i.e. contrast differences etc.). In

this report, the IDRISI modules used for producing figures are listed in brackets.

Acquisition ofPhotographs

Aerial photography is availabe in most Ministry ofNatural Resources officesandmany federal

offices. Archival (historical) photography may be borrowed for a limited time from the Canadian

National Archives, the Archives ofthe MNR as well as several other government and privateagencies.

A complete collection of every aerial photograph taken by provincial or federal government agencies

for Canada is also available throughthe United StatesNational Archives inWashingtonD.C.

Scanning Methods

Scanners areevaluated by the dots per inch or dots per centimetrerecorded. This terminology

has changed dramatically sincethe first dot matrix printers were produced, therefore a brief review is

provided here. The early dot matrix printers ofthe 1980s printed at 80 dots per inch. If one looked at

the printing with a magnifying glass one would see 80 circular dots per inch. This method ofprinting is

still used in manynewspapers. With reference to scanning, scanners do not use circular dots, but rather

square dots. Thus if one magnifies an area ofa scanned image on the computer screen, one would not

see any blank spaces between adjacent squares. If an image is scanned at, for example, 80 dpi, this

means that each square inch of image is divided into 80 X 80, or 6400 small squares. These tiny

squares are referred to as pixels and the computer records one intensity value for each ofthe pixels, or

in the case of 80 dpi, this is a total of6400 intensity measurements per square inch. Thus, the image

analyst must decide how manypixels are needed to represent aunit area and how large must each pixel

be?



To explain the above statement let us consider the following problem. Landsat images

frequently have single pixel sizes which represent 30 by 30 square metres on the ground. Assuming an

aerial photograph is at a scale of approximately 1:15,000, an area of 30 X 30 metres would be

represented by 2 X 2 cm square on the photograph. Scanning such a photograph would be represented

by a 2 X 2 cm square on the photograph. Scanning this photograph would record one intensity number

for every 30x30 metersofground area. Such a pixel size would defeat the purpose ofusing the detail

contained in aerial photographs and only the broadest of categories would be recognized. Clearly,

peatland classification requires pbcels ofa smaller size, but there arelimits to the reduction of pixel size.

As the size of pixel is reduced, the storage requirements and scanning costs increase exponentially.

Scanners providing great detail areexpensive. For example drum scanners which scan up 5000 dpi can

cost over $100,000. In contrast, hand scanners which scan up to 400 dpi canbe purchased for as little

as $80.00.

Scanning Examples
Figures 1, 2, and 3 represent the same image scanned at400,100 and 50 dpi respectively.

Thereisobviously less detail progressing from higher to lowerdpi scanned images. The next question

is: what is the difference in the accuracy ofthe classifications produced from different scanning

intensities? One simple test would be to perform anunsupervised classification. Such amethod

divides the imageinto a specified numberofclasses based on the variance observed in the overall

image. Figures 4, 5, and 6 are the results ofanunsupervised classification oftheseimages, inwhich 12

clusters or classes arerecognized.



Let us assessthe results ofthe unsupervisedclassification. Ofthe three images, it is clearthat

the 100dpieffort (Fig. 5) produces a classified image which is probably more realistic thanthe other

two when compared to the original photograph. The 400 dpi image(Fig. 4) seems to havebeen

classified on a scale too fine to separate the differences between the treed andnon-treed portions ofthe

photograph. The 50 dpi (Fig. 6), while separating some ofthe features, is too coarse. In the sections

that follow we discuss manipulative methodsto enhance both low andhighintensity scans.

Computer Aided Classifications and Variance Removal

Classification is simply the process of grouping items with similar attributes. Computer

algorithms operate much the sameway, classifying on the meanandthe variance which is precisely the

way an unsupervised classification operates. In general, the reason a 100 dpi scan might seem to

classify better than the 400 dpi is probablydue to less variancebetween largersized pixels.

The 400 dpi scan produces a raw image in great detail, which as statedabove is too detailed to

classify. Several methods exist for removing detail, generally known as low pass filtering. The simplest

form of low pass filtering is area averaging. A number of pixels in a square area are averaged with the

average value being used. For example one can average groups ofnine pixels and produce a low pass

filtered image. Filtering our 400 dpi scanand reclassifying it with the unsupervised algorithm produced

the imageshownFigure 7. The filtered 400 dpi scan, in fact, produced the clearest classification.

The 50 dpi scan has pixels so large thatthe image itself lacksdetail to separate clearly.

Variance Removal

The 400 dpi scan produced a detailed image, but as stated above, it is difficult to classify

because of this high degree of detail. Several methods generally known as low-pass filtering exist for



removing detail. The most common form of low-pass filtering is area averaging. A numberof pixels in

a square area are averaged with the average value being used in the classification. Average groups of

nine pixels are used to produce a low-pass filtered image. Filtering our 400 dpi scan and reclassifying

with the unsupervised algorithm produced the image given in Figure 7 (FILTER). This image appears

to produce the most acceptable result.

An opposite problem occurs with the the lowerresolution scans, thatbeingthe lackofdetail to

distinguish classes. A common solution for this problem is an edge enhancement or high-pass filter.

Using a high-pass filter prior to classification on the 100 dpi image resulted in Figure 8. The 100 dpi

was improved andis almostas good as the 400 dpi.

With theunsupervised classifications theusersimply indicates that a number ofclasses are

required and theimage isautomatically segmented. There isnoguarantee that thederived classes will

have relevance to what is on the ground, or to the purpose for whichthe classification is to be used.

The main useofunsupervised classification isdata exploration. For this purpose it is extremely

effective. With rninimal effortone can observe mathematical groupings and gain someinsight into

what acomputer may recognise. However, unsupervised classifications are seldom used in detailed

scientific ortechnical applications where interpretation and analysis are important.

Optimum Classification Methods
Ideally, what is required in classifying aerial photography for peatland analysis is a computer

program with which someone who is totally unfamiliar with peatlands can use to classify images.

Specifically, a user is given a photograph of a peatland, the user scans the photograph, and runs the

program. The results within agiven tolerance should accurately classify the image. Such programs are



common, and generally function as the basis of previous thorough investigations using a supervised

classification system.

In a supervised classification, the algorithm compares pixel intensities and variances to those

represented in a set oftrainingsites (signatures or seeds). Training sites are developed prior to running

a supervised classification, usuallyby some expert manually digitising a few examples of each site type

on a referenceimageor images. These signatures are stored in a small image file and can be repeatedly

used to classify unknown photographs. In this case the the Canadian Forest Service, Sault Ste. Marie

has delineated the training sites, and developed a set of reference signatures which can be tested.

Depending on the algorithm used in the supervised classification a pixel is assigned to a specific class

on the basis of the pixel value and the values of its neighbours (variance). Wetland classes are fairly

distinct on photography, and signatures could be developed by photograph interpreters with extensive

field experience.

Possible difficulties which arise involve equating photographs taken by different equipment, at

different times of the year, or in different years. Photographs are much more variable than most other

images, dueto theirdependence on light. For an image analysis system to be effective it must be able to

equatephotographs having a widedegreeof variability.

Equating Photographs
We see a variable degree ofdetail, from our analysis ofdifferent resolutions, 50, 100, and 400

dpi. It is not possible to use either the 100 or 400 dpi scans and to manipulate them to produce

acceptable scans. Our objective was to develop an equation of coefficients to represent the images.

Sucha combination of coefficients would represent only the required information of the photographs,



without effects due to shadows, glare, fading and the like. Transformations to correct for these are

commonly done the most commonofwhichis the Fourier transformation (Fourier 1763-1830).

The programsgivenin the Appendices calculate the Fourier and inverse Fourier transformation

for images. Rather than proceed into a purely mathematical discussion of this transformation, we

present the required programs to calculate these transforms and the methods for removing the optical

irregularities to equate the images. See the bibliography for references which deal with the methodswe

are describing.

We now outline the steps we perform prior to classification: 1) images are scanned at an

intensity appropriate for the level of detail we are interested in (currently we are working with 400 dpi

to take advantage of the $80.00 scanners), 2) within image distortions are removed (i.e. shadows, light

andphotographic drop off), and 3) between image distortion is removed.

Removal ofWithin Image Distortions
Within image distortions, whether caused by the sun, the motion of the plane (blurring), or by

haze, can negatively affect the final classification. Medical technology which uses dyes to contrast

tissue has similar problems. Depending on the patient and the amount of dye administered tissues may

appear lighter, darker or blurred on their images. In an analogous fashion, astronomers deal with the

effects of motion of planets, incipient light, and clouds. In these fields of research, a Gausian function

withcircular symmetry isusedto remove thesedistortions.

h(x,y) =-^e(x2+y2)/2o>
(1)



x, y =coordinates ofeach point in the image; the variance we have found to work best is set to 3.

The result of applying this equation is a new image we denote as h(x,y). Referring to the

original image as g(x,y), a Fourier transformation is applied to both h(x,y) and g(x,y). H(x,y) and

G(x,y) arenow related as a ratio as follows:

F(x)=G(x,y)/H(x,y) (2)

Finally F(x,y) is inversely Fourier transformed to produce a corrected image.

Adjustmentsfor Images ofDifferent Ages

As mentioned above, it is possible to analyse images of different ages, taken at different

locations, at different contrasts. Though the equations remove distortion within a single image, how

can we remove different degrees of distortion between image distortions so as to make them

comparable. The procedure requires a base image or set ofimages to whichothers are standardized. In

the example below we have used the 1991 image as a base or "reference" image. The steps are as

follows 1) remove the within photograph variance as outlined in previous sections, 2) Fourier

transform the reference image (H(x,y)), 3) Fourier transform the images to be equated (G(x,y)), 4)

divide G(x,y) by H(x,y) and inverse Fourier transform. Note that this is the same as equation 2 above

only with differentimages.

It may seem difficult however all image processing systems have modules which easily allow

theuser to apply mathematical formulae to images. In summary, to equate different images we select

a reference image, apply the Fourier transformation, and divide this into the Fourier transformed

images we wishto standardize. This inverse transformation provides us withourstandardized images.



Before leaving the Fourier transform it should be noted that not all the Fourier coefficients are

necessary to reconstruct an image. Figure 9 is a 400 dpi scan reproduced with 128 coefficients (128

numbers). The original file was represented by an image of 1,267,426 numbers. There are obviously

great advantages in storingimages as Fouriercoefficients rather than original scans.

Supervised Classification

Though there are several ways of approaching a supervised classification. We use a standard

maximum likelihood supervised classification on our adjusted images, with one slight alteration.

Supervised classification modules in image analysis software are capable of analyzing across several

bands ofone imageand more than one imageof the same scene taken at different times. Our procedure

utilizes an adjusted image (produced as described above) and a filtered "adjusted" image, thus

producing two bands. Filtering depends on the level ofdetail in the scan. Usingthe 400 dpi example, a

mean filter produces a second band. Given that the higher intensity scan is too detailed, the image can

be improved by filtering the image in conjunction with the adjusted image. Detail is retained and a

more accurateclassification results. Conversely for scanswhich lack the detail comparable to that of a

400 dpi scan, an edge enhancement filter on the adjusted image can be used to produce the second

band. However boththe higher andthe lower intensity scans produce unsatisfactory results compared

to the results ofthe 100 dpi scan.

Example I: Nahma Bog, Cochrane, Ontario
An openfen community of Nahma Bog nearCochrane and some of the surrounding wetlands

were chosen as one of our test sites. We selected this wetland because the vegetation communities

have been surveyed in detail n the field in 1971 byJ. Jeglum, in 1984 by S. Taylor andP. Adams, in

1990 byP. Adams and J. Jeglum and in 1993 by P. Adams, J. Jeglum, K. Taylor and H. Wilson. With

10



such a thorough survey and historical record of the vegetation, we were confident that we can

accurately interpretboth the 1991 and 1961 photography by havingfield survey information for direct

comparison. We classified both the 1991 and 1961 images using the same reference signatures and

compared the results.

Images were adjusted for within and between image variation. Figures 11 and 12 are the

supervised classifications of the 1991 and 1961 images, respectively, based on our set of reference

signatures. Each legend category was a training signature applied to each image. The results of the

wetland classification were checked in the field in August 1992 by P. Adams and J. Jeglum

In comparing the results of the classifications with the field data, there were some unexpected

results. The classification picksup the boundaries of the defined classes within a few meters. The main

sources oferror occur at the class interfaces. Probably the most glaring is at the lower end of the basin

fen (labelled "A" in Figure 11). The 1991 image depicts a zone of high density treed bog (HDTB)

with narrow zones of swamp on the fen as well as on the bog. In fact the (HDTB) grades into the

medium density (MDTB) thenlowdensity treed bog (LDTB). These communities are not encountered

in the 1961 image (Fig. 9). The ring of trees surrounding the basin fen is narrower, but there are still

patches of"swamp" in the treed bog. There has been expansion of the width of the treed zone in the

intervening 30years between 1961 and 1991. In the 1991 image there is considerable vertical structure

(large, small and layering trees) at the interface between the HDTB and the LDTB. This structure is

not present in 1961.

Further comparison of the 1961 and 1991 classifications reveals a significant expansion in the

fen area. This suggests that Sphagnum encroachment is taking place quite rapidly in this basin fen,

owing to inputs of acid, bog watersfrom the adjacent raised bog.

11



Future Work

Futurework shouldbe aimedat assembling the signatures into a referencecollectionwhich can

be run with either IDRISI or ERDAS. Currently, the collection consists of 15 signatures which are

capable of classifying different kinds of wetland communities for northern Ontario. The user would

simply enter the signature names at a prompt, and run the classification. Setting an acceptable error

level (5%) would ensure that classes not represented in the reference collection were left unclassified.

Clearly the prospect of using black and white aerial photographs for classifying boreal wetlands is

encouraging. It is an easy, accurate and inexpensive technique which field workers will find to be a

good technique to use in their day to day activities. Though more work is required to refine the

techniques more fully, these initial results are most encouraging
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Table 1: Habitat Features for the Nahma Bog
S=Swamp B=Bog F=Fen MS=Mineral Soil

Sample
Point

Classific

ation

-9

S

-8

S

1

8

B

19

B

2

0

B

21

B

22

B

-6

B

-3

B

0

B

3

B

6

B

8

B

8.

5

B

9

F

7

2

F

7

3

F

7

4

F

Depth
to

Water

Table in

cm.

5 1

5

1

4

33.

6

4.

0

47

.6

50.

6

2

0

1

5

1

0

1

5

2

0

2

5

5 -2 0 1

0

4.

3

%

Water

Cover

1

0

2 0 0 1 0 0 2 0 1 1 1 0 1

0

5

0

9

9

0 8.

7

Water

Ph

6.

0

5.

7

3.

5

3.6 3.

5

3.

0

3.5 3.

9

3.

6

3.

8

3.

5

3.

9

3.

8

3.

4

4.

0

6.

1

4.

8

5.

7

Water

Ca

1

1

6.

5

4 3.5 3.

5

3.

6

3.6 2.

9

2.

8

2.

2

2.

0

3.

8

2.

6

4.

5

3.

1

6

4

9

2

2

7

Water

Mg
2.

3

1.

5

.8

5

.76 .6

1

.5

5

.35 .3

2

.4

7

.3

1

.2

3

.3

1

.2

1

.6

4

.2

5

2

7

9.

7

3.

1

Depth
to

Mineral

Soil

.1 2.

2

3.

1

3.3 3.

5

1.

1

1.5 5.

5

5.

8

6.

2

6.

0

4.

5

3.

2

3.

4

3.

4

3.

6

3.

6

3.

0

13



Table 2:Vegetational Features Nahma Bog
S=Swamp B=Bog F=Fen

Sample _ . 1 1 2 2 2 . - 0 3 6 8 8. 9 7 73 74

Point 9 8 8 9 0 1 2 6 3 B B B B 5 F 2 F F

Classificatio S S B B B B B B B B F

n

Structure

Needle Leaf 4 5 0 3 0 0 0 3 5 0 2 1 3 3 0 0 5 1

>1.5m 2 5 0 0 3

Needle Leaf 1 2 0 4 0 2 1 1 2 1 2 1 7 3 0 0 0 0

<1.5m 0 3 0 9 2

Broad Leaf 4 1 0 0 0 3 5 0 0 0 0 0 0 0 0 0 0 0

>1.5m 5 5

Broad Leaf 2 5 0 1 0 1 1 0 0 0 1 0 5 0 0 0 1 1

.5-1.5m

Broad Leaf 1 0 3 6 1 1 1 6 1 1 3 5 6 15 20 1 1 3

.2-.5m 3 0 5 0 0 0

Broad Leaf 0 2 1 3 1 1 2 5 3 1 3 1 5 15 10 1 1 1

<2m 5 0 0 0

Sedges 8 5 1 3 3 4 3 5 5 2 1 1 0 50 40 6 90 63

>.2m 0 0 0 0 0 5 5 0 3

Sedges 0 1 0 0 1 5 1 0 1 1 0 1 0 1 10 0 1 1

<2m

Herbs 2

7

2 1 1

5

5 1 1 1

2

1

0

5 8 1

0

1

0

10 2 1 1 1

Sphagnum 5 5 8 8 8 8 8 8 9 9 9 9 5 95 99 5 63 30

0 0 8 8 8 8 8 8 5 0 8 8 0 0

Feathermos 2 2 0 1 0 0 0 4 3 0 2 1 4 1 0 0 0 0

ses + 0 6 3

Dicranum

Other 0 4 1 0 1 1 1 6 2 1 1 0 2 2 0 1 0 0

Bryophytyt 5 5 0

es

Lichens 1 1 0 2 0 1 1 1 2 0 1 1 5 1 0 0 0 0
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Sample
Point

Classificatio

n

Structure

9

S

8

S

1

8

B

1

9

B

2

0

B

2

1

B

2

2

B

6

B

3

B

0

B

3

B

6

B

8

B

8.

5

B

9

F

7

2

F

73

F

74

F

Needle Leaf

>1.5m

4

2

5

5

0 3 0 0 0 3

0

5 0 2 1

0

3

3

3 0 0 5 1

Mud

Bottom

Algae

2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 3

0

3 15

15



Table 3: Selected Species for the Nahma Bog
S=Swamp B=Bog F=Fen MS=Mineral Soil

Sample Point
Classification 9

S

8

S

1

8

B

1

9

B

2

0

B

2

1

B

2

2

B

6

B

3

B

0

B

3

B

6

B

8

B

8.

5

B

9

F

7

2

F

7

3

F

7

4

F

Populus
balsamifera

2

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Picea mariana 2

0

5

0

0 2

0

0 0 1

0

4

0

2

0

1 3

0

4 4

0

3 0 0 0 0

Abies

balsamea

2

0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Alnus rugosa 1

0

2

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Larix laricina 0 5 0 1 0 0 0 5 5 0 0 2

5

0 3 0 0 0 1

Trientalis

borealis

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Pleurozium

schreberi

1

2

1

0

0 0 0 0 1 4 1 0 1 0 2

5

0 0 0 0 0

Hylocomium
splendens

3 1

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Gaultheria

hispida
5 2 0 1 0 0 1 1 1 0 4 0 5 0 0 0 0 0

Coptis trifolia 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Sphagnum
russowii

1

5

5 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0

S.

magellanicum
2

5

2

0

0 5 0 0 1 5 1 1 5 1

5

1

0

10 3

0

0 1 2

0

S. wulfianum 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Carex

trisperma
1

2

5 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

Ledum

groenlandicum
0 2 0 5 0 0 0 1

5

5 1 1

0

1

0

2

0

1 0 0 0 0
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Sample Point
Classification 9

S

8

S

1

8

B

1

9

B

2

0

B

2

1

B

2

2

B

6

B

3

B

0

B

3

B

6

B

8

B

8.

5

B

9

F

7

2

F

7

3

F

7

4

F

Populus
balsamifera

2

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Chamaedaphn
e calyculata

0 0 1

0

3

0

1 1 3

0

3

5

4

0

1

0

1

2

1

5

1

5

30 2

5

0 1 1

Kalmia

polifolia
0 0 1 1

0

1 1 7 2 1 3 3

0

3 5 1 0 0 1

Eriophorum
spissum

0 0 3

0

1 2

0

2

0

0 3 1

5

2 1 0 5 0 0 0 0

Carex

pauciflora
0 0 0 0 0 0 2 1

0

1 2 1 0 15 0 0 0 0

Oxycoccus
microcarpus

0 0 1 1 1 1 3 8 5 4 3 1 10 5 0 1 1

Sphagnum
fuscum

0 0 0 4

0

0 0

0

3

0

0 0 2

0

1

5

0 30 0 0 0 1

S. capillifolium 0 0 0 0 0 0 0 5

0

1

0

4

5

5

0

5

0

2

0

30 0 0 0 0

S. rubellum 0 0 4

0

1 1 3

0

2

0

0 6

5

4

5

2

0

3 1 0 0 0 0 0

S.cuspidata 0 0 0 0 4

0

1

0

0 0 0 2 1 0 0 0 1

0

0 0 0

Carex

oligosperma
0 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0 0

Rhynchospora
alba

0 0 0 0 0 0 0 0 0 0 0 0 0 0 4

5

2

0

1 1

Menyanthes
trifoliata

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

Carex limosa 0 0 1 1 1

0

1

0

0 0 2 3 2 0 0 2 1 1 1

Sphagnum
majus
+annulatum

0 0 0 0 0 0 0 0 0 3 0 0 1

0

0 6

0

0 0 0

S. angustifoha 0 2 0 0 0 0 0 1 0 1 0 1 2 1 0 0 0 0
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Sample Point
Classification 9

S

8

S

1

8

B

1

9

B

2

0

B

2

1

B

2

2

B

6

B

3

B

0

B

3

B

6

B

8

B

8.

5

B

9

F

7

2

F

7

3

F

7

4

F

Populus
balsamifera

2

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0

Eriophorum
viride-

carinetum

0 1 0 1 1 1 1 1 1 0 0 0 0 0 1 1 0 0

Scheuzeria

palustris
0 0 0 0 1 1 0 0 0 0 0 0 0 1 1

0

1 1 1

Carex rostrata 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

Myrica gale 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

Drepanocladus
exanulatus

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

Drosera

anglica
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

Drosera

linearis

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

Scirpus
hudsonianus

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Carex

lasiocarpa
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4

0

4

0

Utricularia

intermedia

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Salix

pedicellaris
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

18



Appendix A.
Fourier analysis Software:

CLS

REM FIELD LENGTH DEFINED AS IN OPT. PRINT

INPUT "INPUT FILE NAME ", K$
OPEN "I", #1, K$
OPEN "O", #2, "fimg"
DIMfr(5000),fi(5000)
DEFINTI-N

pi = 4 * ATN(1)
ln = 7

n = 2Aln

nv2 = n / 2

nml = n-1

G=l

INPUT " Number ofrows "; cl
INPUT " Number ofcolumns "; rl
INPUT " Number ofRow Coefficents "; nr
REM cl=colums,rl=rows, nr=#for, Hncrement, g may be adjusted to
REM start high
FOR c = 1 TO cl

FORx=lTOrl

fr(x) = 0
fi(x) = 0
NEXTx

FORr=lTOrl

INPUT #1, fr(r)
NEXTr

REM start ofmain program

j = l
FORi=lTOnml

IF(i>=j)GOT0 1
SWAP fr(i), fr(j)
SWAP fi(i), fiQ)

1 :K = nv2

2 :IF(K>=j)GOT0 3
j=j-K
K = K/2

GOTO 2

3 :j=j+K
NEXTi

FORl=lT01n

le = 2Al

lei = le / 2

ur=l

19



ui = 0

wr = COS(pi/lel)
wi = -SIN(pi/lel)
FOR j = 1 TO lei
FORi=jTOnSTEPle
ip = i + lei
tr = fr(ip) * ur - fi(ip) * ui
ti = fr(ip) * ui + fi(ip) * ur
fr(ip) = fr(i) - tr
fi(ip) = fi(i) - ti
fr(i) = fr(i) + tr
fi(i) = fi(i) + ti
NEXTi

url = ur * wr - ui * wi

ui = ur * wi + ui * wr

ur = url

NEXTj
NEXTI

div=l/SQR(n)
FORi=lTOnr

fr(i) = fr(i)*div
fi(i) = fi(i)*div
PRINT #2, USING "+#####.## *'; fr(i); fi(i)
NEXTi

NEXTc

CLOSE

REM add for 3

REM START OF COLUMN TRANSFORMATION

PRINT "colum transformation'"

OPEN "RM, #1, "fimg", 22
OPEN "O", #2, "ff.img"
FIELD 1, 22 AS x$
REM =# OF COLUMS IN ORIGINAL

FORc=lTOnr

G=c

REM ZERO VARIABLES

FORx=lTOcl

fr(x) = 0
fi(x) = 0
NEXTx

REM END OF ZERO

FORr=lTOrl

REM # OF ROWS IN ORIGINAL,reading in first col.
GET #1, G

20



INPUT #1, fr(r), fi(r)
G=G + nr

NEXTr

j = l
FORi=lTOnml

IF(i>=j)G0T0 4
SWAP fr(i), fr(j)
SWAP fi(i), fi(j)

4 :K = nv2

5 :IF(K>=j)G0T0 6
J=j-K
K = K/2

GOTO 5

6 :j=j + K
NEXTi

FORl=lT01n

le = 2Al

lei = le / 2

ur=l

ui = 0

wr = COS(pi/lel)
wi = -SIN(pi/lel)
FOR j = 1 TO lei
FORi=jTOnSTEPle
ip = i + lei
tr = fr(ip) * ur - fi(ip) * ui
ti = fr(ip) * ui + fi(ip) * ur
fr(ip) = fr(i) - tr
fi(ip) = fi(i)-ti
fr(i) = fr(i) + tr
fi(i) = fi(i) + ti
NEXTi

url = ur * wr - ui * wi

ui = ur * wi + ui * wr

ur = url

NEXTj
NEXTI

div=l/SQR(n)
REM **** this n adjust for output # ofcoeff.
FORi=lTOnr

fr(i) = fr(i)*div
fi(i) = fi(i)*div
PRINT #2, USING "+#####.## "; fr(i); fi(i)
NEXTi

NEXTc
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END

Appendix B
Inverse Fourier Analysis Software

CLS

REM FIELD LENGTH DEFINED AS IN OPT. PRINT

OPEN "R", #1, "ffimg", 22
OPEN "O", #2, "fl.img"
FIELD 1, 22 AS x$
DIMfr(500),fi(500)
DEFINTI-N

pi = 4*ATN(l)
ln = 7

n = 2Aln

nv2 = n / 2

nml =n-1

G=l

INPUT " Number ofcolumns "; cl
INPUT " Number ofRows "; rl
INPUT " Number ofCoefficents "; nr
z = rl -nr

REM cl=colums,rl=rows, nr=#for, Hncrement, g may be adjusted to
REM start high
FORc=lTOnr

FORx=lTO500

fr(x) = 0
fi(x) = 0
NEXTx

FORr= lTOnr

GET#1,G
INPUT #1, fr(r), fi(r)
G=G+1

NEXTr

REM start ofmain program

j = l
FORi=lTOnml

IF(i>=j)GOT0 1
SWAP fr(i), frG)
SWAP fi(i), fi(j)

1 :k = nv2

2 :IF(k>=j)GOT0 3
j=j-k
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k = k/2

GOTO 2

3 :j=j + k
NEXTi

FORl=lT01n

le = 2Al

lel = le/2

ur=l

ui = 0

wr = COS(pi/lel)
wi = SIN(pi/lel)
FOR j = 1 TO lei
FORi=jTOnSTEPle
ip = i + lei
tr = fr(ip) * ur - fi(ip) * ui
ti = fr(ip) * ui + fi(ip) * ur
fr(ip) = fr(i) - tr
fi(ip) = fi(i) - ti
fr(i) = fr(i) + tr
fi(i) = fi(i) + ti
NEXTi

url = ur * wr - ui * wi

ui = ur * wi + ui * wr

ur = url

NEXTj
NEXTI

div=l/SQR(n)
FORi=lTOn

fr(i) = fr(i)*div
fi(i) = fi(i)*div
PRINT #2, USING "+#####.## "; fr(i); fi(i)
NEXTi

G = G + z

NEXTc

CLOSE

REM add for 3

REM START OF COLUMN TRANSFORMATION

PRINT "colum transformation'"

OPEN"R",#l, "fl.img",22
OPEN "O", #2, "ffl.img"
FIELD 1, 22 AS x$
REM =# OF COLUMS IN ORIGINAL

FORc=lTOn

G = c

23



REM ZERO VARIABLES

FORx=lTO500

fr(x) = 0
fi(x) = 0
NEXTx

REM END OF ZERO

FORr=lTOnr

REM # OF ROWS IN ORIGINAL

GET #1, G
INPUT #1, fr(r), fi(r)
G=G+n

NEXTr

j = l
FORi=lTOnml

IF(i>=j)GOT0 4
SWAP fr(i), fr(j)
SWAP fi(i), fi(j)

4 : k = nv2

5 :IF(k>=j)GOT0 6
j=j-k
k = k/2

GOTO 5

6 :j=j + k
NEXTi

FORl=lT01n

le = 2Al

lel=le/2

ur=l

ui = 0

wr = COS(pi/lel)
wi = SIN(pi/lel)
FOR j = 1 TO lei
FORi=jTOnSTEPle
ip = i + lei
tr = fr(ip) * ur - fi(ip) * ui
ti = fr(ip) * ui + fi(ip) * ur
fr(ip) = fr(i) - tr
fi(ip) = fi(i)-ti
fr(i) = fr(i) + tr
fi(i) = fi(i) + ti
NEXTi

url = ur * wr - ui * wi

ui = ur * wi + ui * wr

ur = url

NEXTj
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NEXTI

div=l/SQR(n)
REM **** this n adjust for output # ofcoeff.
FORi=lTOn

fr(i) = fr(i)*div
fi(i) = fi(i)*div
PRINT #2, USING »+#####.## "; fr(i); fi(i)
NEXTi

NEXTc

END
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Figure 1. Map showing the location ofthe study sites.

Figure 2. A 400 dpi scan ofthe Nahma bog complex.

Figure 3. A100 dpi scan ofthe Nahma bog complex

Figure 4. A SO dpi scan ofthe Nahma bog complex

Figure 5. An unsupervisedclassification ofthe 400 dpi scan.

Figure 6. An unsupervised classification ofthe 100 dpi scan.

Figure 7. An unsupervised classification ofthe 50 dpi scan.

Figure 8. An unsupervisedclassfication ofFigure 1 with low-passfiltering.

Figure 9. An unsupervised classification ofFigure2 with high-passfiltering.

Figure10. A reproduction ofthe 400 dpi scan (Figure 1) using 128 Fouriercoefficients.

Figure11. A1992 aerialphotograph ofthe Nahma bog showing the general vegetation zones.

Figure12. A supervisedclassification ofthe 1991 image (400 dpi scan) using the resultsofthe

low-passfilter as band one and the adjustedimage as band two.

Figure13. A supervisedclassification ofthe 1961 image (400 dpi scan) using the resultsofa low-

passfilter as band one and the adjustedimage as band two.
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