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Introduction 

An increasing number of remotely sensed data sources are available for detecting and 
characterizing forest disturbance and spatial pattern. As the information that is extracted from 
remotely sensed data is often a function of image characteristics, matching the appropriate data 
source to the disturbance target of interest requires knowledge of these image characteristics. 
Furthermore, an understanding of the implications of the dependencies between imagery 
selected, disturbance of interest, and change detection approach used, are required to facilitate 
the selection of an appropriate data source. The method used to capture the disturbance 
information must also be considered within the context that not all methods inherently support all 
data sources and vice versa. The goals of this Chapter are to: identify the key issues for 
consideration during the data selection process; highlight how these issues impact upon the 
successful detection and characterization of forest disturbance and spatial pattern; and finally, 
review the range of methods available for detecting forest disturbances and emphasize the link 
between these methods and the selection of an appropriate data source.  
 

Background 

Observations of ecological disturbances have been acquired since remote sensing technologies 
first became available (Cohen and Goward, 2004). Since the invention of photography, it was 
apparent that images captured from the air provided important information on the spatial patterns 
on the Earth's surface (Colwell, 1960), and quickly became critical for resource managers. As 
early as the 1910s for example, barely a decade after the first aerial remote sensing platforms 
were developed, the synoptic view afforded by aerial sensors benefited a number of disciplines 
including forestry and ecology (Spurr, 1948). During the 1920s, improved camera systems for 
producing vertical aerial photographs with minimal distortion were developed (Thompson and 
Gruner, 1980). As a result, the United States Department of Agriculture (USDA) began to 
systematically photograph agricultural lands throughout the United States in the 1930s (Rango et 
al., 2002). By 1950, aerial photography was a standard tool for resource managers concerned 
with mapping land cover and land use change (Goward and Williams, 1997). Aerial coverage has 
continued to the present day to provide an invaluable resource to examine the dynamics of 
spatial pattern (Rango et al., 2002; Goslee et al., 2003).  
 
Space based remote sensing of the Earth’s surface began from Explorer 6 in 1959 and the TIROS 
NOAA series of satellites began in 1960 (Goward and Williams, 1997). Since then, imagery 
from the Advanced Very High Resolution Radiometer (AVHRR), and more recently from the 
Moderate Resolution Imaging Spectrometer (MODIS) sensors on TERRA and AQUA, have 
made routine mapping of global vegetation possible (Running et al., 1999, Cohen et al., 2002). 
However, these systems are principally designed for global coverage with low spatial resolution 
(approximately 1 to 5 km), which is generally too coarse for monitoring localized or regional 
disturbance events (Cohen et al., 2002). Imagery at much finer spatial scales, at around 80 m, has 
been available since the launch of Landsat-1 in 1972 (Cohen and Goward, 2004). Since then, a 
family of Landsat satellites have orbited the Earth, with many other similar successful satellite 
programs initiated by other countries including France, India, Japan and Russia (Stoney, 2004). 
Successful launches of both commercial and government satellites programs over the past five 
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years (and those planned for the next five years) have resulted in a large increase in the number 
of available satellite based imaging sensors. In 2005, there were expected to be up to 30 satellites 
with spatial resolutions ranging from 0.3 m – 2.5 km (Stoney, 2004).  
 
As of the writing of this Chapter, Landsat-5 is experiencing some technical difficulties and 
Landsat-7 is not operating as envisioned, with a scan line corrector problem requiring the 
production of mosaicked image products. The status of the Landsat sensors, both operationally 
and politically, is changing rapidly. While continuity of the collection Landsat-like data is 
enshrined as public policy, the continuity of the actual Landsat sensor program is currently not 
clear. Efforts are underway to ensure some form of data collection of Landsat-like data. The 
actual sensor, timing, and mechanisms for this to happen are currently not known. Current 
information can be found at: http://landsat.usgs.gov/.  
 

Selection of Remotely Sensed Imagery  

As discussed by Linke et al. (Chapter 1, This volume), mapping and monitoring landscape 
disturbance is highly scale dependent - both spatially and temporally. As a result, the landscape 
patterns and processes that are discernable with any particular remotely sensed image source are 
dependant on the target of interest (e.g., single tree versus stand replacing disturbance) and the 
spatial, spectral, radiometric, and temporal characteristics of the image source (Turner, 1989; 
Perera and Euler, 2000). These image characteristics must be considered during the data 
selection process along with the methods and techniques that may be used to detect the change. 
In addition, the information requirements of the end user must also be considered. For example, 
an end user interested in the total area disturbed by fire in a single year may be satisfied with a 
simple binary classification indicating areas of fire and no fire. Conversely, an end user 
interested in forest succession following a fire event may require more detailed information on 
fire extent, as well as species composition and abundance, in order to monitor the pattern of 
forest succession over time. Image characteristics will dictate which image source is most 
appropriate for the given information need. 
 
The characteristics of a remotely sensed image are often collectively referred to as the image 
resolution and relate to the size of individual pixels or picture elements, the overall spatial extent 
of the image, the time interval of acquisition, the level of detail or discrimination the sensor is 
capable of providing, the region(s) of the electromagnetic spectrum in which the sensor collects 
data, and the bit depth of the sensor. Each of these image characteristics and the interactions 
between these image characteristics, are addressed in the following sections. In addition, the 
implications of these characteristics for data selection, in the context of forest disturbance, are 
discussed. 
 

Spatial Resolution 

The spatial resolution of a remotely sensed scene provides an indication of the size of the 
minimum area that can be resolved by a detector at an instant in time (Strahler et al., 1986; 
Woodcock and Strahler, 1987). In the case of aerial photography, the spatial resolution is based 
on the film speed or size of the silver halide crystal (Nelson et al., 2001). In the case of digital 
sensors, an instrument that has a spatial resolution of 30 m is technically able to resolve any 30 
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m by 30 m area on the landscape as one single reflectance response. The information content of a 
pixel is tied to the relationship between the spatial resolution and the size of the objects of 
interest on the Earth’s surface. If trees are the objects of interest and a sensor with a 30 m spatial 
resolution is used, many objects (trees) per pixel can be expected, which limits the utility of the 
data for characterizing the individual trees. However, if forest stands are the objects of interest, 
and an image source with a 30 m pixel is used, a number of pixels will represent each forest 
stand, resulting in an improved potential for characterization of stand level attributes. This 
relationship between pixels and objects is fully characterized by Woodcock and Strahler (1987). 
The area that is covered by a single remotely sensed image (spatial extent or image footprint) is 
principally a function of the sensor swath width or field of view (Lillesand and Kiefer, 2000; 
Richards and Jia, 1999). Instruments with a low spatial resolution typically have the capacity to 
capture larger areas. For example, Landsat Thematic Mapper (considered a medium spatial 
resolution sensor) images have a spatial extent of 185 by 185 km with a spatial resolution of 30 
m (for most of its spectral bands). Conversely, the NOAA AVHHR sensor has a much larger 
swath width and subsequently covers a greater area (2394 by 2394 km) with a spatial resolution 
of between 1.1 and 6 km (Richards and Jia, 1999), with the range in spatial resolution due to off-
nadir (i.e. not directly beneath the sensor, but at an angle) scanning during data capture.  
 
The generalized description of spatial resolution indicates an expectation of the nature of the 
information that is captured (Woodcock and Strahler, 1987). High spatial resolution data may 
provide detailed information on objects as finite as individual trees, streams or buildings; 
however, the image footprint or spatial extent is also typically limited (e.g., 10 by 10 km), often 
precluding use of this data for large area studies for both feasibility and cost reasons (Wulder et 
al., 2004a). Historically, medium spatial resolution sensors (such as Landsat TM and SPOT 
multi-spectral imagery) have provided the optimal resolution for characterizing large areas with 
comprehensive coverage while still maintaining an ability to describe landscape level 
phenomena, such as land cover change and regional disturbance (Woodcock et al., 2001; 
Franklin and Wulder, 2002). Further, the nature of the patterns identified from high spatial 
resolution data differ from those captured from lower spatial resolution data (e.g., trees versus 
stands). Gergel (Chapter 7, This volume) addresses issues related to the investigation of high 
spatial resolution data with landscape pattern metrics. Traditional trends in landscape pattern 
metrics found when analyzing Landsat or lower spatial resolution data will not necessarily be 
found when analyzing higher spatial resolution data, as the patterns present represent different 
surface or vegetation characteristics.  
 
Figure 2.1 provides an example of how the information content of a remotely sensed image can 
vary with spatial resolution. The first panel in this Figure (A) is a Landsat-7 ETM+ multispectral 
image representing an area of approximately eight square kilometres. With the 30 m spatial 
resolution of the ETM+ data, broad scale features such as forest stands, harvest blocks, and roads 
are discernable. A sub-area representing approximately 0.5 km2 is shown in the two panels below 
(B and C). Panel B is a portion of a multispectral QuickBird image with a spatial resolution of 
2.7 m. At this spatial resolution individual trees can be identified. In the final panel (C), a portion 
of a digital aerial photograph with a 0.30 m pixel is shown, where individual trees can be 
resolved with greater detail than in the QuickBird image, and furthermore, the attributes 
associated with these individual trees can be characterized. For example, trees damaged by 
mountain pine beetle appear red in the digital photo (note that the same area of red-attack 
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damage is also present in the QuickBird image). 
 
LIDAR (light detection and ranging) data represents the three-dimensional structure of the 
surface or vegetation canopy. LIDAR systems emit a pulse of laser infrared radiation and 
measure the time (and therefore distance) it takes for the pulse to reach, and then be reflected by 
the surface (Lefsky and Cohen, 2003). LIDAR data is typically collected as single points or 
profiles and therefore, the land surface is sampled rather than fully imaged, resulting in non-
contiguous data. Most airborne systems have a point spacing of between 1 to 5 m depending on 
the system configuration and flying altitude and speed, which may be customized to meet user 
needs (Lim et al., 2003). These points are, in turn, processed to represent ground and canopy 
elevation surfaces.  
 
When selecting a data source for forest disturbance mapping, spatial resolution will be a key 
decision point. Table 2.1 outlines the optimal applications associated with different spatial 
resolutions. Generally, broad scale phenomena (covering large areas, for which general trends 
are of interest) are best characterized by low spatial resolution imagery (e.g., for monitoring 
trends in vegetation cover across North America). Conversely, high spatial resolution data is 
more appropriate for investigating disturbances that require a greater level of spatial detail, such 
as tree level disturbances. For example, Figure 2.1 demonstrates that high spatial resolution data 
such as QuickBird or aerial photography would be required to capture tree-level damage caused 
by the mountain pine beetle.  
 
The spatial extent of data sources must also be considered in conjunction with data costs. Low 
spatial resolution data sources typically cover larger spatial extents and are less expensive; 
therefore, the per unit cost for these data sources is less than medium or high resolution data 
sources. Conversely, high spatial resolution data sources generally have smaller spatial extents 
and higher per unit costs. In addition, high spatial resolution data also present additional 
challenges for project logistics: image files tend to be large and cumbersome to store, 
manipulate, and process. Furthermore, the increased spectral variability of high spatial resolution 
imagery can confound many commonly used image classification methods (Wulder et al., 
2004a). Careful thought must therefore be given to the information need and the spatial 
resolution, as higher spatial resolution data will not necessarily provide better information.  
 

Temporal resolution 

The temporal resolution provides an indication of the time it takes for a sensor to return to the 
same location on the Earth's surface. The revisit time is a function of the satellite orbit, image 
footprint, and the capacity of the sensor to image off-nadir.  The timing of image acquisition 
should be linked to the target of interest. Some disturbance agents may have specific bio-
windows (e.g., fire, defoliating or phloem feeding insects) during which imagery must be 
collected in order to capture the required information (Wulder et al., 2004b), while other 
disturbances may be less specific (e.g., harvest). For ongoing programs designed to monitor 
forest change before and after a disturbance event, the acquisition of images should occur in the 
same season over a series of years (known as anniversary dates). Anniversary dates are critical to 
ensure the spectral responses of the vegetation remain relatively consistent over successive years 
(Lunetta et al., 2004). In addition, a reduction in image quality may also occur due to non-
optimal sun-angles and reduced illumination conditions  as a result, off-year imagery is typically 
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preferred over off-season imagery for remote sensing mapping applications (Wulder et al. 
2004c). For some applications, however, the capacity to incorporate temporal resolution can be 
advantageous. For example, analysis of vegetation at both leaf-on and leaf-off times can provide 
important information on the pattern of understorey vegetation and non-deciduous canopy 
condition (Dymond et al., 2002). Temporal resolution of airborne sensors is less critical as, in 
many cases, image collection is undertaken on demand, often coincident with insect outbreaks or 
fires (Stone et al., 2001).  
 
There are often trade-offs between image spatial and temporal resolution that have implications 
for data selection. Generally, high spatial resolution imagery, has smaller footprint (or image) 
size and it takes longer for the satellite to revisit a location on the Earth’s surface at nadir than 
broader scale imagery. However many high resolution sensors have the capacity to tilt or 
position the sensor at an angle thereby allowing locations on adjacent swaths to be acquired. This 
results in satellites such as IKONOS and QuickBird (whose revisit times to have short revisit 
times (varying from 1 to 3.5 days depending on latitude of target location) however images will 
be acquired be off-nadir  . Medium resolution satellites such as Landsat revisit the same location 
once every 16 days. The relationship between spatial resolution, footprint (or image) size, for 
other medium spatial resolution systems is presented in Figure 2.2.  
 

Spectral Resolution  

Spectral resolution provides an indication of the number and the width of the spectral 
wavelengths captured by a particular sensor The spectral resolution of standard black and white 
aerial photography is known as panchromatic, and spans the complete visible portion of the 
electromagnetic spectrum, along with some portion of the near infrared spectral wavelengths, 
with a single image band or channel. Sensors with more bands and narrower spectral widths are 
described as having an increased spectral resolution. Currently, most operational remote sensing 
systems have a small number of broad spectral channels: Landsat ETM+ data has seven spectral 
bands in the reflective portion of the electromagnetic spectrum and one band in the thermal-
infrared region. Hyperspectral data (e.g., instruments with more than 200 narrow spectral bands) 
are becoming more widely available (Vane and Goetz, 1993) both on space borne (such as the 
HYPERION sensor on the EO-1 platform) and airborne platforms such as HyMap (Cocks et al., 
1998), casi (Anger et al., 1994), and the NASA Advanced Airborne Visible/Infrared Imaging 
Spectrometer (AVIRIS) (Vane et al., 1993). The width and locations of these bands along the 
electromagnetic spectrum determine their suitability for forest disturbance applications. For 
example, a subtle spectral response, such as foliage discolouration, might manifest in a very 
specific region of the electromagnetic spectrum and may therefore be more effectively detected 
with a hyperspectral instrument, whereas a dramatic change, such clearcutting, is discernable in a 
wide range of spectral wavelengths. 
 
Remote sensing imagery is often categorised as either active or passive. Passive, or optical, 
remotely sensed data are collected by sensors sensitive to light in the 400 – 2500 nm region of 
the electromagnetic spectrum (encompassing the visible, near-infrared, shortwave, mid- and 
long- infrared regions of the spectrum), which includes detection of reflected light and 
temperature (such as weather or meteorological satellites). Passive remotely sensed data are the 
type most commonly used for vegetation studies and forest disturbance applications. Examples 
include aerial photography, Landsat, SPOT, IKONOS, and QuickBird.  
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Active remote sensing systems are characterized as those that emit energy, in one form or 
another, and then measure the return rate or amount of that energy, back to the instrument. These 
active sensors can therefore operate under expanded meteorological conditions, as the sun's 
illumination is not required. Microwave and LIDAR systems are examples of active sensors that 
provide the energy illuminating the surface, and record the backscattered radiation from the 
target (Lefsky and Cohen, 2003). The most common implementation for microwave sensors is 
synthetic aperture radar (or SAR), which utilises microwave wavelengths of 1 mm to 1 m, about 
two thousand to two million times the wavelength of green light (500 nm) (Lefsky and Cohen, 
2003). The choice of active versus passive systems for forest disturbance mapping will depend 
on the information need. Since active sensors can operate regardless of weather, they may be 
most effectively used in areas where there is perpetual cloud cover (e.g., tropical rainforests). 
Terrestrial LIDAR sensors typically capture a single spectral band, often between 900 and 1064 
nm (Lefsky and Cohen, 2003). New disturbance mapping opportunities are enabled through the 
repeated collection of LIDAR data representing differing time periods, such as monitoring of 
forest gap dynamics and growth (St-Onge and Vepakomma, 2004).  
 

Radiometric Resolution 

Radiometric resolution provides an indication of the actual information content of an image and 
is often interpreted as the number of intensity levels that a sensor can use to record a given signal 
(Lillesand and Kiefer, 2000). The finer the radiometric resolution of a sensor, the more sensitive 
it is to detecting small differences in reflected or emitted energy. Thus, if a sensor uses 8 bits to 
record data, there would be 28 = 256 digital values available, ranging from 0 to 255. However, if 
only 4 bits were used, then only 24 = 16 values ranging from 0 to 15 would be available, resulting 
in reduced radiometric resolution. Most low and medium resolution remotely sensed data 
commercially available are 8-bit. High resolution data such as QuickBird are 11-bit. In terms of 
data selection for forest disturbance, radiometric resolution is the least critical of all of the image 
characteristics considered in this Chapter, as the sensors available for mapping of land cover and 
dynamics typically have a minimum of 8 bits. Given the option, it is usually better to use data 
with a greater radiometric resolution; generally, users should receive data in the original bit 
format, and not data that have been resampled to a lower radiometric resolution. 
 

Resolution interactions and implications 

The variety of remote sensors onboard the array of satellites operated by public and private 
agencies that are currently orbiting the Earth and collecting data at various spatial, temporal, 
radiometric, and spectral resolutions, renders the compilation of an exhaustive list of remote 
sensing systems difficult. For a comprehensive listing of remote sensing instruments and 
missions, the reader is referred to Glackin and Peltzer (1999), as well as to sources on the 
internet, which provide additional details on existing and planned remote sensing systems (e.g., 
Stoney, 2004). Relevant attributes of the most common systems are summarized in Table 2.2, 
and an indication of commonly used sensors with a range of spatial and spectral characteristics is 
provided in Figure 2.3. When selecting an appropriate image source to capture forest disturbance 
information, the information need(s) of the end users must guide the selection of data with 
consideration of spatial, spectral, and temporal resolutions. Logistical issues, such as metadata, 
data storage, file manipulation, and data costs, must also factor into the decision. 
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<Figure 2.3, about here> 
<notations below, a and b, are for Figure 2.3> 

a CASI channels programmable in size; >2nm width depending on application (Anger et al., 1994)  
b Hyperion collects 220 bands of spectral data over the 400 to 2500 nm spectral range. 
 
 
 
Once the relative merits of spatial, temporal, spectral, and radiometric properties have been 
considered relative to the target and information need, an appropriate data source may be 
selected. Following data selection, a series of pre-processing steps are typically required to 
prepare the data for further analysis. The pre-processing requirements are particularly necessary 
when multiple dates of imagery are being used to characterize forest disturbance or change 
events in general. Radiometric and geometric processing methods are addressed in the following 
section. 
 

Radiometric and Geometric Processing 

Success in disturbance identification is dependent on robust radiometric and geometric pre-
processing (Lu et al., 2004; Trietz and Rogan, 2004). Once the most appropriate remotely sensed 
imagery has been selected to monitor the disturbance and its spatial pattern, detection of this 
variation either spatially or temporally is only possible if changes in the phenomena of interest 
result in detectable changes in radiance, emittance, or backscatter (Smits and Annoni, 2000). 
Thus, it is critical that the change in signal is attributable to a real change in the land surface, 
rather than a change in non-surface factors such as atmospheric conditions, imaging and viewing 
conditions, or sensor degradation (Hame, 1988); radiometric processing is applied to image data 
to minimize the impacts of these factors on subsequent image analysis procedures. Similarly, the 
geometric matching of two or more scenes must be accurate, as image misregistration can have a 
large influence on the change detection results (Smits and Annoni, 2000). The following sections 
detail those processing steps that are required to prepare the imagery for further analysis. 
 

Radiometric processing 

Data, as acquired by a remote sensing instrument, is affected by many sources of radiometric 
error, and therefore requires some form of radiometric processing prior to the application of 
image analysis techniques are used to extract disturbance information (Peddle et al., 2003). A 
critical requirement for successful detection of disturbance and time series analysis is the correct 
derivation of the true change in radiometric response over time. In many portions of the 
electromagnetic spectrum, the atmosphere has a significant impact on the signal sensed by 
satellite or airborne sensors due to scattering and absorption by gas and aerosols (Song et al., 
2001).  
 
Approaches to radiometric correction are typically described as absolute or relative (or a mixture 
of both). Absolute methods involve extracting the reflectance of a target at the Earth's surface 
and require detailed information regarding the actual atmospheric conditions at time of overpass, 
such as water vapour content and aerosol optical thickness, to adjust the imagery using radiative 
transfer theory (Peddle et al., 2003). A limitation to absolute atmospheric correction methods is 



9 

  

the requirement for detailed atmospheric data that are rarely routinely available at the location or 
time of satellite overpass, especially when the analysis is retrospective. Relative radiometric 
correction methods are designed to reduce atmospheric effects and variability between multiple 
images, by using common features in the two images that have invariant spectral properties 
(Chen et al., 2005). The choice of whether to use an absolute or relative radiometric correction 
method depends on many factors and the reader is referred to Chen et al. (2005) and Song et al. 
(2001) for a more detailed discussion on the relative merits of each approach. It should be noted 
that some analysis methods have been developed using specific data types (e.g., ground surface 
reflectance), and therefore, if the user intends to implement these methods, they must ensure that 
the data are corrected to the appropriate level. The topics included in this Chapter cover 
fundamental radiometric considerations: conversion of raw image values or digital numbers 
(DN) to radiance; conversion of radiance values to reflectance; and normalizing imagery to 
minimize the impact of different atmospheric or illumination conditions. A more thorough and 
detailed discussion of radiometric processing considerations is provided by Peddle et al. (2003). 
 
The methods described here, although generic in the sequence of steps that must be followed to 
complete the correction, are somewhat specific to Landsat products due to the long history of 
Landsat data usage. Research and methods for the radiometric processing of other sensors are 
becoming increasingly available (e.g., Pagnutti et al., 2003; Wu et al., 2005). Conversion of the 
sensor signal to surface reflectance requires that the raw digital numbers be first converted to 
radiance and then to reflectance. Conversion to at-satellite radiance (also know as Top of 
Atmosphere (TOA) is required if imagery from different sensors is to be compared (e.g., Landsat 
TM and ETM+) and is achieved using the following equation (Markham and Barker, 1986):  

iiii OffsetGainDNRad    (2.1) 

 where i : band number, for 7,5,4,3,2,1i ; 

 iRad : TOA radiance of band i; 

 iDN : DN of band i; 

 iGain : gain of band i; 

 iOffset : offset of band i. 

Gains and offsets are provided in the header file for the imagery, or standard parameters specific 
to the sensor of interest, are available from a variety of sources (e.g., Markham and Barker, 
1986; Ekstrand, 1996; Huang et al., 2002).  
 
These radiance values are then converted to reflectance using the following equation (Huang et 
al., 2002).  

))sin(/()(Re 2   iii ESUNdRadf  (2.2) 

 where i : band number, for 7,5,4,3,2,1i ; 

    ifRe : TOA reflectance of bandi; 

    iRad : TOA radiance of band i; 

    d : Earth-Sun distance in astronomical unit; 
    iESUN : mean solar exoatmospheric irradiance of band i; 

     : Sun elevation angle. 
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The Earth-Sun distance d  can be determined by a lookup table, based on the Julian day when 
the data was acquired (Irish, 2000). The mean solar exoatmospheric irradiances for Landsat-7 
ETM+ bands are provided in Irish (2000), with information for other sensors also available (e.g., 
Pagnutti et al. 2003; Tuominen and Pekkarinen, 2005). The Sun elevation angle  can be found 
either in the raw data header file, or calculated based on the time and date of data acquisition. 
This conversion to TOA reflectance is necessary to correct for variation caused by solar 
illumination differences, as well as cross-sensor differences in spectral bands.  
 
Where multiple images are used for change detection, disparities between the different image 
dates may persist (even after conversion to TOA reflectance) as a result of different atmospheric 
conditions and viewing and illumination geometries. To reduce these disparities, images undergo 
a normalization step (Heo and Fitzhugh, 2000; Yang and Lo, 2000; Du et al., 2002; McGovern et 
al. 2002). A number of variations on the normalization technique exist; however, most require 
use of a set of reference sites that appear over the entire image sequence. The sites, also known 
as pseudo invariant features or PIFs (Schott et al., 1988), are generally well-defined spatial 
objects in the scene that are interpreted as spectrally homogenous and stable over time (Furby 
and Campbell, 2001). Both light and dark features can be used and often include lakes, mature 
even age forest, dunes, and roads. Equations are then derived for all spectral channels to ensure 
these spectral features remain consistent over a temporal sequence of images (Yang and Lo, 
2000).  
 

Geometric Correction and Image Co-registration 

In its raw state, satellite imagery contains spatial distortions that are a function of the acquisition 
system (e.g., factors associated with the sensor platform such as viewing angle, orbit, altitude, 
and velocity), or a function of external factors (e.g., effects of the Earth's curvature, relief 
displacement, and deformations resulting from map projections). Some of these distortions are 
systematic and are routinely corrected by the data vendor before the data is distributed. Other 
distortions are more difficult to fix and require the use of models or mathematical functions 
(Toutin, 2003). The term geometric correction refers to the processes used to correct spatial 
distortions; geometric correction is required to align remotely sensed imagery with other data 
sources and to combine multiple images, either to mosaic multiple images over large areas, or 
co-register multiple images collected over the same location at different times. Geometric 
misregistration of images can be a significant source of error, and minimizing this error is a time 
consuming task when undertaking change detection or data fusion methods (Dai and Khorram, 
1998). Typically, a desirable target for geometric registration is an error less than half a pixel. 
This ensures that misregistration does not introduce error into change detection results (Dai and 
Khorram, 1998; Igbokwe, 1999). It has been noted however that a misregistration, often reported 
as a root mean square error (RMSE), of less than one pixel can be difficult to obtain (Gong and 
Xu, 2003).  
 
Generally, all geometric correction methods require the collection of ground control points 
(GCPs), which are points concurrently identified from a corrected source (e.g. basemap, 
corrected image) and an uncorrected image source. The differences in the X and Y positions of 
these points between these two sources are used to compensate for spatial distortions in the 
uncorrected image. In the case of orthorectification, the Z position (or elevation) is also used for 
the correction. A summary of geometric correction methods are provided in Table 2.3, while a 
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more detailed treatment of methods is provided by Toutin (2003; 2004). Geometric correction 
methods typically take one of two forms: parametric or non-parametric. Non-parametric methods 
are considered suitable for low resolution imagery, while parametric methods are necessary for 
high resolution imagery. In the context of mapping forest disturbance, geometric correction is 
critical if a change detection approach is used, and if the resulting disturbance information is to 
be integrated into other spatial databases.  
 
Methodologies for Disturbance Mapping: 
Once appropriate radiometric and geometric corrections have been applied, the image data is 
ready for analysis. The overriding objective when detecting landscape change and disturbances is 
to compare data from a series of points in time by (a) controlling all extrinsic factors caused by 
differences in variables that are not of interest and (b) assessing the real changes caused by the 
variable of interest (Lu et al., 2004). Therefore, as discussed in the previous section, minimising 
and removing factors such as atmospheric attenuation and scattering, illumination, viewing 
distortion, and poor co-registration is critical to ensure the observed change is real. A wide 
variety of detection algorithms and time series approaches have been developed to detect change 
and disturbances in imagery and selecting and implementing the most appropriate method is an 
important processes in change detection studies. A number of current reviews exist (Gong and 
Xu, 2003; Coppin et al., 2004; Lu et al., 2004). Singh (1989) defines 11 categories of change 
detection techniques that can broadly be grouped into five distinct approaches: (i) image algebra 
(differencing, subtraction or ratioing) of two or more images; (ii) regression or correlation where 
a model is developed that predicts or compares spectral responses of a series of images; (iii) 
statistical techniques such as the tasselled cap transformation (TCT) and principal component 
analysis (PCA) that computes statistical components that are then compared for temporal 
changes, (iv) classification comparisons where images are classified separately and the resulting 
classifications are compared; and (v) the increasing use of tools that analyse images and other 
datasets within a Geographic Information System (GIS). Each of these methods will be discussed 
in detail in the following sections. 
 

Image algebra 

The use of simple algebraic operations to assess levels of change and disturbance through a time 
series of images is a commonly applied, relatively easy, and straightforward technique. The 
approaches all have the common characteristic of selecting either constant or dynamic thresholds 
to determine through time, when and if a change has occurred. In this category of methods, two 
aspects are critical for the change detection results: selecting suitable image bands or vegetation 
indices, and selecting suitable thresholds to identify the changed areas (Lu et al., 2004). The 
most commonly applied index is the Normalized Difference Vegetation Index (NDVI), which is 
the normalized ratio of the near infrared and red region of the spectrum (Eq. 2.4).  

)(

)(

RNIR

RNIR
NDVI




  (2.4) 

 where  R: reflectance in the red and ;  
NIR: reflectance in the near infrared;  
 

In the near infrared region of the spectrum, within-leaf scattering is high and, as result, reflected 
radiation from the canopy is also high. Conversely, in the red component of the spectrum, high 
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absorption by pigments results in low radiation reflection. Consequently, changes in vegetation 
amount and cover, as well as the photosynthetic capacity of the vegetation, are typically 
positively related to an increase in the difference between near infrared and red radiation 
(Peterson and Running, 1989; Price and Bausch, 1995). 
 
A number of additional indices are based on theory similar to NDVI, such as the Enhanced 
Vegetation Index (EVI) (Eq. 2.5), and specialty indices that incorporate the shortwave and mid-
infrared spectral regions (such as the NDVIc (NDVI fire index) (Eq. 2.6) and the normalized 
burn ratio (NBR) (Key and Benson, 2005; Clark and Bobbe, Chapter 5, This volume; Hudak et 
al., Chapter 8, This volume) (Eq. 2.7)).  

LBCRCNIR

RNIR
GEVI





21

*   (2.5) 

)(

)(
1[*

)(

)(

minmax

min

SWIRSWIR

SWIRSWIR

RNIR

RNIR
NDVIc








   (2.6) 

)(

)(

SWIRNIR

SWIRNIR
NBR




  (2.7) 

 where B: reflectance in the blue;  
R: reflectance in the red;  
NIR: reflectance in the near infrared;  
SWIR: reflectance in the short wave or mid-infrared spectral channels and  
G, C1, C2, L are user specified constants.  

 
At the broad scale, Potter et al. (2003) utilised a sequence of long-term AVHRR monthly 
spectral vegetation indices from 1982 to 1999 to identify major global disturbance events. 
Monthly vegetation indices were compared to a derived 18-year long-term average. The majority 
of the disturbance events (predominantly fire related) occurred in tropical savannah, scrubland, 
or boreal forest ecosystems. The analysis concluded that nearly 9 Pg of carbon have been lost 
from the terrestrial ecosystem to the atmosphere as a result of large scale ecosystem 
disturbances. At the landscape scale, Nelson (1983) utilised the difference of the near infrared 
spectral channels from Landsat MSS to delineate areas of gypsy moth defoliation. Lyon et al. 
(1998) undertook a comparison of seven spectral indices from three different dates to detect land 
cover change and concluded that changes in NDVI provided the best detection of vegetation 
change. In addition to using Landsat data, imagery from other sensors can also be incorporated. 
For example Stow et al. (1990) found that ratioing red and near-infrared bands of a Landsat 
MSS–SPOT high resolution visible image (HRV) (XS) multi-temporal pairs produced 
substantially higher change detection accuracy (about 10% better) than ratioing similar bands of 
a Landsat MSS–Landsat TM multi-temporal pair (Lu et al., 2004).  
 

Image regression or correlation 

More advanced methods of change detection can include the use of geometric models, spectral 
mixture models, and biophysical parameter models. In these approaches, multi-date change is 
computed from physically based parameters such as leaf area index (LAI) or biomass values that 
are in turn, computed from reflectance values. These transformed variables are preferred over 
simple vegetation indices for facilitating the interpretation of change and the extraction of 



13 

  

vegetation information (Lu et al., 2004; Hall et al., Chapter 4, This volume). Adams et al. (1995) 
applied spectral linear unmixing approaches to extract spectral end-members including healthy 
vegetation, non-photosynthetic vegetation (NPV), exposed soil and shade, and then analyzed 
changes in these spectral members as surrogates for land-cover change. Rogan et al. (2002) 
applied a similar approach using Landsat imagery. Within a biophysical model framework, 
combinations of spectral bands, as well as other data such as climate can be used to assess 
disturbance and land cover change. For example, monitoring phenological patterns of vegetation 
and its subsequent change is possible using a range of techniques including measures of 
similarity (Coops and Walker, 1996), Fourier analysis (Andres et al., 1994), wavelet theory 
(Meyer, 1990) and harmonic analysis (Jakubauskas et al., 2001). Bennett (1979) provides a 
mathematical overview of spatial-time series analysis. With these techniques the emphasis is not 
only on temporal change but also on the shape characteristics of the temporal change. Lambin 
and Strahler (1994) used three indicators, vegetation indices, land surface temperature and spatial 
structure, derived from AVHRR, to detect land-cover change. Lawrence and Ripple (1999) 
utilized eight Landsat TM scenes to monitor changes in vegetation through time using fitted 
statistical models between each date to assess changes in overall vegetation cover. A key 
advantage of using these profile-based techniques that link with other datasets such as climate is 
that the full variation in the phenological cycle is resolved, as data are collected throughout the 
growing season. As a result, changes linked to seasonality can be separated from other land 
cover changes and disturbances. A disadvantage is that typically only coarse spatial resolution 
imagery has a high enough temporal frequency to develop the necessary temporal profiles. This 
limits the change categories that can be detected and monitored (Coppin et al., 2004), although 
some research has taken place using time series to monitor ecosystem disturbances at finer 
spatial resolutions (e.g. Coops et al., 1999; Rogan et al., 2002; Sawaya et al., 2003).  
 

Statistical techniques 

Rather than a simple ratio of spectral channels, more refined transformations of the input spectral 
bands have been promoted as a technique to extract information on vegetation disturbance. One 
advantage of statistical approaches is they reduce data redundancy between bands and emphasize 
different information in derived components (Lu et al., 2004). The most commonly applied 
techniques are based on principal component analysis (PCA) and the tasselled cap transformation 
(TCT) (Crist and Cicone, 1984). Whilst the use of principal components to derive multi-temporal 
change can be difficult to ascertain without a detailed understanding of the eigen structure of the 
data, the link between vegetative change and TCT has been shown to be generally more robust 
(Collins and Woodcock, 1996; Coppin et al., 2004). Simplistically, the TCT are guided and 
scaled PCA, which transform the Landsat bands into channels of known characteristics; soil 
brightness, vegetation greenness, and soil/vegetation wetness. Changes in these components over 
time can therefore reflect changes in the vegetation characteristics. Cohen et al. (1998) 
contrasted the brightness and greenness components of a TCT output to assess changes in forest 
biomass in the Pacific Northwest of the US from 1976-1991, and found harvest activity was 
detected in over 90 percent of the known clearcuts. As the wetness component contrasts the sum 
of the visible and near infrared bands with the longer infrared bands to estimate vegetation or soil 
moisture, it has been used with success to detect forest disturbances through time. The difference 
between wetness indices calculated for multiple dates (known as the enhanced wetness 
difference index or EWDI) has been used to discriminate partial harvesting with a per-pixel 
accuracy of approximately 71% (Franklin et al., 2000). This technique has also been applied by 
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Skakun et al. (2003) to detect red-attack damage caused by mountain pine beetle (Dentroctonus 
ponderosa Hopkins) in stands of lodgepole pine (Pinus contorta). Skakun et al. (2003) used 
multi-temporal Landsat ETM+ imagery that was corrected and processed using the TCT to 
obtain wetness components that were differenced to reveal spatial patterns of insect attack. 
Classification accuracy of red-attack damage based on this method ranged from 67% to 78%. In 
Figure 2.4, the use of TCT wetness to map mountain pine beetle red-attack damage is presented. 
Pixel based locations of insect attack are a single example of the types of information products 
that can be generated using this, or other, types of pixel based change detection approaches. The 
Landsat pixel based insect attack can be generalized to represent 1 ha grid cells or forest 
inventory polygons. These grid or polygon representations of red-attack damage enable the 
pixel-based information to be ingested by models or to be incorporated into forest inventory 
databases.  
 
Coppin and Bauer (1994) also examined changes in forest cover through use of the TCT 
components as well as simple vegetation indices (such as NDVI) and found that changes 
identified the most important forest canopy change features and that these can be adequately 
expressed as a normalized difference. One key advantage of the TCT method, over other 
statistical methods such as PCA, and as highlighted through these studies, is that the 
transformations are independent of the image scenes, while PCA is dependent on the image 
scenes (Lu et al., 2004).  
 
Image classification 
As an alternative to monitoring changes in the spectral response of vegetation before and after a 
disturbance event, another common technique of monitoring vegetation disturbance and pattern 
is to automatically categorize all pixels in an image into a series of land cover classes or themes 
and then compare the size and extent of the classes. This process of image classification can be 
either guided by human interpretation (known as supervised classification) or based principally 
on the statistical distribution of the spectral classes in the image (known as unsupervised 
classification). Image classification formed the basis of research investigating the differences in 
the structure and function of anthropogenic versus natural disturbance regimes (Tinker et al., 
1998). Although natural processes (such as fire and windthrow) alter forest pattern, the landscape 
patterns produced by these processes is generally different from disturbances due to forest 
harvesting and associated road building. A single Landsat scene was used to classify a number of 
vegetation land cover and disturbance types. Several landscape pattern metrics were derived for 
the landscape as a whole, and for the forest cover classes, and the relative effects of clearcutting 
and road building on the pattern of each watershed was examined. At both the landscape- and 
cover class-scales, clearcutting and road building resulted in increased fragmentation as 
represented by a distinct suite of landscape structural changes (Tinker et al., 1998; Mladenoff et 
al., 1993; White and Mladenoff, 1994). 
 
A similar approach was adopted by Bresee et al. (2004) who utilized six images acquired from 
1972 – 2001. A supervised classification was used to classify the six dominant land cover types 
in the area including two disturbance classes, non-forested bare ground and regenerating forest or 
shrub. Changes in the size, and degree of fragmentation, of each of the natural and disturbed land 
cover classes were then assessed over the 27-year period. Results indicated that changes in 
management objectives and natural disturbances have had a clear influence on landscape patterns 
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and composition in the region throughout the past 30 years. The presence and temporal 
variability of windthrow events, disease outbreaks, and changes in stumpage value all greatly 
influenced the composition and structure of the forest stands (Bresee et al., 2004).  
 
Cohen et al. (2002) compared over 50 Landsat scenes in the Pacific Northwest to monitor 
changes in disturbance patterns due to harvesting and fire over the past 30 years. An 
unsupervised classification approach was used to label pixels as disturbed, undisturbed, or 
confused. A trajectory for each pixel was then determined through time to provide overall maps 
of disturbance of the area. The historical imagery and mapping of spectral classes representing 
forest disturbance indicated that harvest rates were lowest in the early 1970s, peaked in the late 
1980s and then decreased again in the mid-1990s. By comparing managed and natural 
disturbance regimes through time, an understanding can be developed on the relative impact of 
management regimes on ecosystems (Cohen et al., 2002).  
 
The comparison of two image classifications representing different dates to find change does 
however need to be undertaken with care, as the accuracy of each of the individual classifications 
effectively limiting the accuracy of the final change layer (Fuller et al., 2003). For instance, if 
two classifications were to be used to find a 17 % change with 75 % reliability, both source 
classifications would require an accuracy of approximately 97 % (Fuller et al., 2003). .  
 

GIS approaches 

The significant development of GIS and its widespread adoption in natural resource 
management, coupled with developments in modelling of terrain and climate, have resulted in 
the development and implementation of models that integrate remote sensing observations with 
other spatial datasets (Rogan and Miller, Chapter 5, This volume). The advantage of using GIS 
within a change detection analysis is the capacity to incorporate a range of data sources into each 
change detection application. Lo and Shipman (1990) used overlay techniques to detect urban 
development using multi-temporal aerial photography and to map quantitatively changes in land 
use. With the availability of different types of satellite imagery and the capacity to digitize and 
analysis maps, these GIS functions offer convenient tools for land-use and land cover (LULC) 
change detection studies (Lu et al., 2004), especially when the change detection involves long 
period or multi-scale land-cover change analysis (Petit and Lambin, 2001). This type of change 
detection, with its ability to combine multi-source datasets, is the focus of ongoing research into 
the integration of GIS and remote sensing techniques to better implementation of change 
detection analyses.  
 

Operational Considerations  

While the capability to monitor both vegetation disturbance and vegetation succession has been 
demonstrated with satellite and airborne image datasets (Foody et al., 1996), it is critical to 
recognise that disturbances not resulting in complete stand replacement (such as selective 
thinning) and successional processes that involve a slow change in species composition, can be 
difficult to detect and classify (Table 2.4). Forest disturbance can be characterized by type (e.g., 
phenological, fire, disease, etcetera), duration (e.g., days, months, years), spatial extent (e.g., 
tree, stand, watershed), rate (e.g., slow, medium, fast), and magnitude (e.g., small, medium, 
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large) of the disturbance. The interactions of these elements for a given disturbance combine to 
suggest the type of imagery that should be selected, the date range over which the images should 
span, and the area of coverage required.  
 
The type of change (as identified in Table 2.4) has an influence on likelihood of detection using 
remote sensing image-based change detection procedures. Stand replacement disturbances (such 
as wildfire, clearcut logging) are more likely to be clearly detected due to both their large visible 
extents and large change in vegetation structure and function (Cohen et al., 2002). In Figure 2.5 a 
relationship between the severity (or magnitude) and the accuracy that may be expected is 
portrayed. The notion is that subtle changes are more difficult to detect and map than dramatic 
changes. For instance, the removal of 10% of the stand volume to a partial harvest is more 
difficult to detect and map than a 40 ha clearcut, resulting in lower mapped attribute accuracy, or 
a lower detection likelihood. As a result, the expected accuracy when mapping changes in forest 
structure through partial harvesting is lower than when mapping clearcutting. The theory is 
supported through selected references included with the Figure 2.5. The size (extent) of the 
disturbance also has an impact on the detectability, as a function of the relationship between the 
spatial resolution and the objects of interest.  
 
Following any classification, or feature identification, some form of accuracy assessment is 
recommended, and requisite statistics for accuracy estimates should be calculated (Stehman and 
Czaplewski, 1998). It is important that independent training and validation datasets are used for 
the assessment of accuracy (Stehman, 1997). The data-types that are commonly used are field 
and air photographs, other forms of purpose collected data, and questioning or participation of 
knowledgeable stakeholders. The types of errors that emerge are characterized as either 
commission (falsely mapped changes) or omission (missed changes). The use of non-
independent data will typically yield a biased accuracy assessment (Rochon et al., 2003). 
Alternatively, if there is a lack of other independent observations with which to assess the 
accuracy of the output, statistical methods such as bootstrapping can help ensure an unbiased 
estimate of the accuracy is developed. It is also acknowledged that the collection and use of 
training and validation data that reflect landscape changes can be problematic, due to logistical 
and cost reasons. When mapping a single attribute of landscape disturbance, the collection of 
training and validation data are simplified by the number of classes under consideration; in this 
case, categorical transitions are from non-disturbed forest to some pre-identified disturbance 
state, such as a harvest or insect attack. Analyses that are capturing a more broad range of 
changes require training and validation data that represent the full range of categorical transitions 
that are, or are expected, to occur.  
 
The accuracy assessment of the results of remote sensing change detection applications can be 
problematic due to the nature of the validation, as it can be based upon the process or the 
resultant products. The type, magnitude, and extent of the change (as presented in Table 2.4 and 
Figure 2.5) combine to influence the efficacy of the change detection approach. The nature of the 
change detection approach, and the types of data used, can also influence the ability of the 
analyst to capture the changes, and the portrayal of the accuracy results. Operational limitations 
to validation are acknowledged, leading to an understanding that there is not a single best 
practice for the training and accuracy assessment of change detection results (Stehman et al., 
2003).  
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< Figure 2.5, about here> 
Conclusions 

In summary, when developing and applying remotely sensed time series data to assess forest 
change and disturbance, users should consider a range of important issues:  

 Ensure the temporal and spatial scale of the disturbance phenomena being monitored is 
well matched to the spatial, temporal, radiometric, and spectral resolution of the chosen 
remotely sensed imagery. In addition, ensure the data source can provide the information 
that the end user requires (e.g. a simple binary map showing disturbance areas versus a 
more complex product).  

 Effective pre-processing is critical to effective forest disturbance detection and mapping. 
Once the imagery has been selected it is crucial that the imagery is (or has been) calibrated 
to ensure that an observed change in signal is attributable to ‘true’ change in the land 
surface, rather than a change due to non-surface factors such as different atmospheric 
conditions, imaging and viewing conditions, or sensor degradation. If multiple images are 
used (e.g., time series), the images must be spatially aligned precisely. High quality 
geometric matching of the images is important to ensure that spurious change detection 
results do not occur. 

 A variety of image processing techniques exists to analyse change and detect disturbance 
regimes in remotely sensed observations. The method should be considered at the data 
selection stage, as not all data support all methods and vice versa. Select the most 
appropriate method (e.g. established or new spectral indices, statistical based methods, 
image classification, or modelling) based on the desired outcome and level of complexity 
associated with the information needs of the end user.  

 The increased use of GIS, coupled with developments in modelling of terrain and climate, 
has resulted in increasing interest in integrating changes in the spectral response with other 
spatial datasets within process-based modelling approaches. These models are providing 
useful information at regional and continental scales on ecological, hydrological, and 
physiological processes. 

 Finally, some description or documentation of the accuracy of the disturbance or change 
mapping is required to provide users with an understanding of the reliability or limitations 
of the products produced. The description of the results of the change procedure can be 
heuristic or systematic and quantitative. The user can take the accuracy description and use 
this to guide the confidence placed upon the change product for a given application.  
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Figure 2.1. Illustration of differing information content for three images with differing spatial 
resolution located near Merritt, British Columbia, Canada. Panel A is an approximately 8 km2 
area of 30 m spatial resolution Landsat 7 ETM+ multispectral imagery (Path 46 / Row 25) 
collected on August 11, 2001. The 0.05 km2 focus area in Panel A is represented in Panel B and 
C. Panel B is 2.4 m spatial resolution QuickBird multispectral imagery collected on July 17, 
2004. Panel C is a digital ortho-image with a spatial resolution of 30 cm, collected on August 22, 
2003. 
 
Figure 2.2. Comparison of spatial footprint and revisit time of current medium spatial resolution 
satellites (Satellites and sensors listed in more detail in Table 2.2). 
 
Figure 2.3. Spatial resolution and approximate spectral resolution of multispectral sensors 
commonly used for vegetation mapping. Shaded blocks represent different spectral bands. 
Blocks of narrower width tend to indicate a sensor with greater spectral sensitivity. 
 
Figure 2.4. Illustration of TCT wetness difference image with pixel level insect infestation 
locations noted in yellow. Spatial information layers can be developed from the pixel based 
infestation locations, such as Panel B. showing the pixel-based disturbance information 
aggregated as a proportion on a per hectare basis, and Panel C, where the pixel-based disturbance 
is summed as an area estimate in hectares on a forest inventory polygon basis. 
 
Figure 2.5. A theoretical representation of the increase in accuracy and decrease in confidence 
intervals (assuming equal samples sizes) associated with forest disturbance detection, as 
disturbances on the forest landscape become more severe (e.g., increase in size) and/or more 
contiguous. Disturbances that are small and heterogeneous over the landscape, such as 
defoliation or partial harvesting, are generally more difficult to detect with remotely sensed data 
(depending on the spatial resolution of the data). Furthermore, the spectral variability associated 
with these disturbances is greater, making repeat detection of these non-stand replacing 
disturbances less probable (i.e., the precision of these estimates is low). Conversely, larger and 
more spatially contiguous disturbances are generally mapped with greater consistency and 
greater accuracy, hence the narrowing of the confidence intervals for these stand replacing 
disturbances. 
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Table 2.1. Relationship between scale and spatial resolution in satellite-based land cover 

mapping programs (adapted from Franklin and Wulder, 2002) 

SPATIAL 
RESOLUTION  

NATURE OF SUITABLE FOREST DISTURBANCE TARGETS 

Low  
Disturbances that occur over 100s or 1000s of metres (small scale); detectable with sensors 
such as GOES, NOAA AVHRR, EOS MODIS, SPOT VEGETATION. 

Medium  
Disturbances that occur over 10s or 100s of metres (medium scale); detectable with sensors 
such as Landsat, SPOT, IRS, JERS, ERS, Radarsat and Shuttle platforms. 

High  
Disturbances that occur over scales of centimetres to metres (large scale); detectable with 
aerial remote sensing platforms (e.g., photography), IKONOS, QuickBird. 

 

Table 2.2. Characteristics of low, medium, and high spatial resolution sensors. 

 

SENSOR 
FOOTPRINT 

(km2) 

SPATIAL 
RESOLUTION  

(m) (*) 

SPECTRAL 
RESOLUTION (nm) 

LOW RESOLUTION SENSORS 

NOAA 17 (AVHRR) 2940 1100 500-1250 
SPOT 4 (VGT) 2250 1000 430-1750 
Terra (MODIS) 2330 500 366-14385 

MEDIUM RESOLUTION SENSORS 
Landsat-5 (TM) 185 30 450-2350 

Landsat-7 (ETM+) 185 30 (MS / SWIR); 15 (pan) 450-2350 
SPOT 2 (HRV) 60 20 (MS); 10 (pan) 500-890 

SPOT 4 (HRVIR) 60 20 500-1750 
SPOT 5 (HRG) 60 10 (MS); 20 (SWIR) 500-1730 

IRS (RESOURCESAT-1) 141 23.5 520-1700 

Terra (ASTER) 60 15 530-1165 
EO-1 (HYPERION) 37 30 433-2350 

HIGH RESOLUTION SENSORS 

Orbview-3 8 4 (MS); 1 (pan) 450-900 

QuickBird-2 16.5 2.44 (MS); 0.8 (pan) 450-900 

IKONOS 13.8 4 (MS); 1 (pan) 450-850 
* MS = multispectral, SWIR = shortwave infrared, pan = panchromatic 
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Table 2.3. A summary of geometric correction methods (modified after Toutin, 2004). 

 
 

METHOD DESCRIPTION 
SUITABLE APPLICATIONS/ 

LIMITATIONS 

2D polynomial 
functions 

 Methods commonly applied when a 
classic geometric correction is done. 

 Do not require any a priori information 
about the sensor, and therefore, do not 
reflect the source of distortions in the 
image. 

 1st order polynomials correct for 
translation in both axes, a rotation, 
scaling in both axes and an obliquity.  

 2nd order polynomials additionally 
correct for torsion and convexity in both 
axes.  

 3rd order polynomial corrects for 
additional distortions, which do not 
necessarily correspond to any physical 
reality of the image acquisition system 
3rd

 order polynomial functions introduce 
errors in the relative pixel positioning in 
ortho-images.  

 

 Limited to images with few or small 
distortions.  

 Most suitable for nadir viewing 
imagery, covering small areas, over flat 
terrain. 

 Not recommended when precise 
geometric positioning is required. 

 Not suitable for multi-source/multi-
format data integration and in high 
relief areas. 

 Requires numerous, regularly 
distributed GCPs. 

 Sensitive to error, not robust or 
consistent. 

 Correct locally at GCP locations only. 
 
 

3D polynomial 
functions 

 An extension of 2D methods and is the 
method typically used when a traditional 
orthorectification is complete. 

 Used when the parameters of the 
acquisition system are unknown. 

 Limitations similar to 2D polynomials 
(above). 

 Most suitable for small images. 

N
O

N
-P

A
R

A
M

E
T

R
IC

 

3D rational 
functions 

 Used to approximate a model previously 
determined with a rigorous 3D 
parametric function; or, to determine 
(via least-squares adjustment), the 
coefficients of the polynomial function. 

 Have similar issues as 3D polynomial 
functions. 

 Should not be used with raw data or 
large size images. 

 Use with small, georeferenced or 
geocoded images. 

 Best choice amongst non-parametric 
methods. 

P
A

R
A

M
E

T
R

IC
 

3D parametric 
functions 

 Models the distortion of the platform, 
the Earth, and the cartographic 
projection. 

 Depends on sensor, platform. 
 Most suitable method for high 

resolution imagery. 
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Table 2.4. Major types of forest change, their duration, spatial extent, rate (on a daily basis), and 

magnitude (After Gong and Xu, 2003).  

 

TYPE OF CHANGE 
TIME LAPSE 
(DURATION) 

SPATIAL 
EXTENT 

DISTURBANCE 
SEVERITY  

RATE 

Phenological Days – months All levels Medium Medium 

Regeneration Days – decades Individual – stand Small Slow 

Climatic adaptation Years All levels Small Slow 

Wind throw / flooding 
Minutes – 

hours 
Individual – stand Large 

Medium – 
fast 

Fire Minutes – days All levels Large Fast 

Disease Days – years All levels Small – large 
Slow – 
medium 

Insect attack Days – years All levels Small – large Slow – fast 

Mortality Days – years All levels Large Slow – fast 

Pollution Years Stand – watershed Small – large Slow 

Silviculture  
(Thinning / pruning) 

Days Stand – watershed Large Fast 

Clearcutting Days Stand – watershed Large Fast 

Plantation Days – decades Stand – watershed Small Fast 
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Figure 2.2 
 

 

 WAVELENGTH (m) 
 

 B G R NIR  SWIR MIR  

Spatial 
Resolution 
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0.4- 
0.5 

0.5-
0.6 

0.6-
0.7 

0.7-
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1.0-
1.1 

 1.55-
1.65 
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1.75 

2.0-
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2.3-
2.4 Sensor 

< 1  
              

CASIa 

2.4 or 2.8   
               

QUICKBIRD 

4   
               

IKONOS 
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20  
              

SPOT HRVIR

23  
              

IRS 

30   
               

ETM+ 

30  
              

Hyperionb 

a CASI channels programmable in size; >2nm width depending on application (Anger et al., 1994)  
b Hyperion collects 220 bands of spectral data over the 400 to 2500 nm spectral range. 
 
Figure 2.3  
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Figure 2.4.  
 

 

0

0.1 - 1

1.1 - 2

2.1 - 3

3.1 - 4

4.1 - 5

5.1 - 6

0

0 - 5

5 - 10

10 - 15

15 - 20

20 - 25

25 - 30

30 - 35

35 - 40

40 - 45

45 - 50

50 - 55

C 

B 

A 



32 

  

 

 Description Accuracy Level Reference 
Defoliation 42 – 58% Heikkila et al., 2002 
Partial cut 55 – 80% Wilson and Sader, 2002 
Partial cut 55% - 70% Franklin et al., 2000 

Non-Stand 
Replacement 
Disturbance 

Partial Cut 55% - 80% Jin and Sader, 2005 

Wildfire 74 – 98% Wright Parmenter et al., 2003 
Clearcut, wildfire 88% Cohen et al., 2002 

Wildfire 76% Miller and Yool, 2002 
Clearcut 79 – 96% Wilson and Sader, 2002 

Stand Replacing 
Disturbance 

Clearcut > 90% Cohen et al., 1998 
 
Figure 2.5  
 


