ASSESSMENT OF U.S. FOREST SERVICE WATER YIELD INCREASE ANALYSIS PROCEDURE

by

E.D. Hetherington

Canadian Forestry Service
Pacific Forest Research Centre
506 West Burnside Road
Victoria, B.C.

Department of Fisheries and the Environment

May 1978

BC-P-27

PREFACE

Because of the technical nature of this report, the basic content will be of interest mainly to the technically-oriented reader. For those wishing to omit technical details, a review of the following sections will provide a useful summary:

Introduction (p. 1), Water yield increase analysis procedure (p. 1), Watershed response rating system (first paragraph p. 2), Conclusion (p. 9). In essence, there are three major points to recognize in relation to the water yield increase analysis procedure. Firstly, it is a valuable, practical tool for assessing the potential impact of logging on annual water yield and the ability of the stream system to tolerate changes in water yield. Forest hydrology research and experience are brought to bear on a management problem in an objective and straight-forward manner. Secondly, further research and field testing are required to develop appropriate input data for its proper application in British Columbia. Thirdly, the services of a forest hydrologist or team of hydrology and forestry related specialists are needed to ensure that the procedure is used and its results are interpreted correctly.

TABLE OF CONTENTS

	Page No.
INTRODUCTION	1
WATER YIELD INCREASE ANALYSIS PROCEDURE	1
Watershed response rating system	2
Water yield computer program	3
Input data requirements	5
Data development needs for British Columbia	5
Comparative test using Arrow Creek data	6
CONCLUSION	9
REFERENCES	10
APPENDIX 1 - Watershed Response rating system	
APPENDIX 2 - FORTRAN listing of the modified water yield computer program	
APPENDIX 3 - Selecting computer program options	
APPENDIX 4 - Example of computer program run	

ASSESSMENT OF U.S. FOREST SERVICE WATER YIELD INCREASE ANALYSIS PROCEDURE

INTRODUCTION

This report presents an assessment of the water yield increase analysis procedure developed by U.S. Forest Service hydrologists in Idaho and Montana, in relation to its application in British Columbia. The main concern here is with the computer program described by Isaacson (2) and input data required for its successful operation. A Fortran listing of the computer program was obtained from J.A. Isaacson, hydrologist with the Idaho Panhandle National Forests, adopted to run on the PDP-11 computer at the Pacific Forest Research Centre and implemented using U.S. test The program was then run using data for upper Arrow Creek watershed, located near Creston, for a comparison of results with those obtained by Hetherington (1) for the same watershed. The results of this analysis plus an assessment of program input data requirements, available data limitations and research and field evaluation needs follow. It should be stressed at the outset that successful application of this water yield increase analysis procedure and interpretation of its results, requires considerable input and direction from a forest hydrologist or a team of hydrology plus forestry-related specialists.

WATER YIELD INCREASE ANALYSIS PROCEDURE

The water yield increase analysis procedure is a fairly comprehensive method for evaluating watershed hydrologic response to man's activity on the land as illustrated by Figure 3, in Appendix 1. It has two basic components: namely, a watershed response rating system which determines an allowable or acceptable water yield increase limit, and a computer program which derives water yield increase amounts for specified treatments (eg. clearcutting) and utilizes the increase limit value to evaluate cutting rates.

This analysis procedure has been designed as a practical tool to assess past, present and future logging effects on annual and monthly water yields from watersheds having snow melt hydrographs. It was intended for application to third-fifth order drainages but there is some indication that it is also applicable to second and possibly first order drainages. It attempts to bridge the gap between forest hydrology research and applied forest management. Some aspects of the system are quite simple, even crude. Complex physical processes and analysis techniques have been condensed to indices or graphs to make the procedure practical and easy to use. Some of the assumptions used were based on the experience of the developers and may be questionnable to

those of us without similar experience. However, the real test lies in application and field verification of the method. The U.S. hydrologists who developed the water yield increase analysis procedure are confident that the results are reasonable approximations of reality. At the same time, they recognize that the procedure and its results are only quides which require appropriate and knowledgeable use and interpretation to avoid blind or unreasonable application.

Watershed response rating system

A detailed description of the watershed response rating system is given in Appendix 1. A prime objective of this rating is to develop timber harvesting guidelines related to acceptable water yield increases. The authors stress that guidelines for such increases must be set on an individual watershed basis as each drainage is unique. Ideally, a variety of specialists should generate input to the guidelines such as forest hydrologist, soil scientist, silviculturist, forester and ecologist. Careful field reconnaissance and evaluation should be undertaken for each watershed to be analyzed. Guides for three streamflow parameters are considered; namely, average annual yield, highest average monthly yield (peak flow), and maximum channel impact period. As the calculated volumes of the latter two parameters are dependent on the first, attention is focussed here on changes in annual water yield.

In Idaho, an average of 10% increase in average annual yield for 3rd to 5th order drainages has been used as the basic limiting factor (2, 6). The assumption is that when the average annual flow is exceeded by more than 10%, stream channel damage will begin to occur. This value was derived from on-site inspections for accelerated channel damage and analyses of streamflow records in terms of departures from the mean. In fact, the value of 10% is only an average and calculated increase limits ranging from 5 to 17% have been used depending mainly on stream channel condition and soil stability as described below (2). The watershed response rating system is the process followed to drive an appropriate water yield increase limit.

This process involves field and map inventories to evaluate six criteria which are first combined to give a potential watershed damage rating. This rating is then used to determine a water yield increase limit value. One of the main criteria is stream channel stability. The U.S. Forest Service has developed a Stream Reach Inventory and Channel Stability Evaluation procedure which is used to drive a channel stability rating (3). In British Columbia, the Resource Analysis Branch, Ministry of the Environment, has developed an Aquatic System Inventory procedure which incorporates some of the elements contained in the U.S. approach (5). It would seem logical that the B.C. system should be used to take advantage of data already collected, to permit filing of data in the Provincial data bank and to promote a consistent approach within the Province. To do this requires comparative field evaluations to assess the extent to which the Aquatic System Inventory procedure evaluates

channel stability and to modify or adapt it as necessary.

Two other important criteria are surface erosion hazard and mass wasting hazard. For some areas in British Columbia, soils maps with these hazard ratings have been prepared as is the case for the Arrow Creek watershed. If such hazard rating information is available it should be suitable for the analysis. From discussions with a soils specialist with the Resource Analysis Branch, it appears as if preliminary hazard interpretations have been completed for most of the West Kootenay area and a small portion of the East Kootenay area.

Two additional criteria are recovery potentials of land and streams, that is, the ability of site or stream to recover to an acceptable condition following treatment. The land recovery potential rating considers both habitat type, to which a risk rating is simply assigned, and microclimate change, the evaluation of which is not clearly described and needs to be clarified. The stream recovery potential rating is based on three criteria: stream channel stability, channel materials-gradient and depth of stream channel material to bedrock. This information would be derived from the field inventory and a risk rating assigned to each category.

The final criterion is a road impact index which is simply the road density (acres of road/watershed area) multiplied by the number of stream crossings. This index is also assigned a risk rating. While type of road is not specified, it would be logical to include all road types (main haul roads and skid roads) plus landings and fire guards in deriving this index.

The ratings for all criteria are combined to give a composite watershed damage rating. Both ON-SITE and OFF-SITE ratings are derived. However, only the OFF-SITE value is used to determine the water yield increase limit from the graph (Fig. 6) presented in Appendix 1. This graph also has provision for using only the stream channel stability rating to determine the water yield increase limit.

Water Yield Computer program

A FORTRAN listing of the water yield computer program as modified to run on the PDP-11 computer is given in Appendix 2. This program will require little further change to run on IBM or other large Provincial government computers. A description of the program and its use is provided by Isaacson (2). The objective here is to briefly describe what the program does, input data requirements and the results of a comparative test.

The program will determine the following information for previous logging activity or watershed disturbance (existing conditions) and/or proposed logging activity for a given watershed or by subdrainages within a watershed:

1. Existing equivalent clearcut acres (ECA) by habitat type.

2. Annual Water yield increase volume in acre-feet by habitat type plus the total increase.

Water yield increase as a percentage of total annual runoff.

Monthly distribution of water yield increases.

5. Hydrograph of mean monthly water yields (discharges) for Base, Past Treatment and Post Treatment conditions.

6. Increase in peak monthly flow in percent and acre-feet.

7. Probable allowable acres in equivalent clearcut condition under a certain percent allowable water yield increase (as determined from watershed response rating evaluation).

8. Sustained cutting rates by habitat type based on the given

percent allowable water yield increase.

9. For any specified cutting rate (acres/year), the year by habitat type in which the allowable water yield increase limit is met.

The program first accounts for past activities, if any, and then deals with proposed logging. A number of options are available. The simplest case is the computation of water yield increase resulting from logging one area in one year in a given watershed. The maximum impact plus recovery (return to pre-logging water yield) with time can be derived, although the validity of vegetative recovery curves used in the program may be questionnable as noted in the next section of this report. The program will also compute the accumulated water yield increase resulting from logging in a watershed over a number of years, incorporating the effects of vegetative recovery. Computations can be carried out for individual subdrainages and summed to obtain the combined effect on water yield increase from the total main watershed. The Idaho version of the program was modified slightly to allow assessment, without summing, of the maximum effect on water yield increase of a number of different cutting options on the same subdrainage without having to re-enter basic watershed characteristics for each option. This change is described in Appendix 3.

The program is interactive in that it poses questions to be answered by the operator. However, it is simple to use and the operating time is short. On the PDP-11 computer, actual computer operating time to obtain a complete analysis and printout for one set of cutting options on one subdrainage took between 1 - 2 minutes. Once the input parameters and data for the program have been developed by appropriate specialists, the program itself can be run by trained technical staff.

Input data requirements

- 1. Name and area of subdrainage and main watershed.
- 2. Weighted average subdrainage elevation obtained by planimetering from contour maps.
- 3. Areas covered by habitat types for which there are 9 classes obtained by planimetering from forest cover maps, forest ecosystem type maps or aerial photographs.
- 4. The following runoff data, key information which is sadly lacking for smaller and high elevation drainages and represents a major need for field measurements:
 - a. Total annual runoff for the subdrainage. The program description specifies mean annual runoff but a value for any given year could be used.
 - Data which will permit the program to derive a runoff value for any elevation within the subdrainage.
 Either of two options may be used:
 - i. The program contains a precipitation-runoff curve developed from data for a range of watershed sizes in the north western States. Annual precipitation totals at the lowest and highest elevations in the subdrainage must be supplied. If this option is employed, the total annual runoff value should be taken from the curve in Isaacson's report (2) using mean basin precipitation.
 - ii. A runoff-elevation curve having up to three straight segments and including lowest and highest elevations can be supplied.
 - c. Base hydrograph data or monthly distribution of subdrainage streamflow as a percentage of the annual total.
- 5. Information on past and/or proposed logging activity including type of treatment, mean elevation, aspect, area and habitat type of treated area, year of treatment and percent crown removal.
- 6. Percent increase limit for average water yield.
- 7. Year to which watershed status is to be projected and desired cutting rate if option 9 is wanted.

An example of a program run is given in Appendix 4, including input data forms and output results.

Data development needs for British Columbia

To apply the program in British Columbia, it is first necessary to relate forest cover types on provincial forest cover maps or more detailed forest ecosystem types, if available, to the habitat types given by Pfister et al. (4) and hence to hydrologic recovery classes (2, 6).

The next and more significant problem is to derive appropriate precipitation or runoff data for the watershed in question. Option I requires actual precipitation (and snow course) measurements at appropriate points within or adjacent to the watershed, or a precipitation-elevation relationship developed from regional data. The Resource Analysis Branch has developed such a relationship based on data from many areas in the province. More local precipitation measurements, particularly at higher elevations, and development of precipitation-elevation curves based on local or regional data are required.

Such curves are only the first step however, as derivation of runoff values is the ultimate objective. A precipitation-runoff curve devloped in the United States in incorporated in the computer program. As noted below, runoff values derived from this curve for Arrow Creek appear to be far too low. Concurrent measurements of runoff from high elevation drainages and precipitation are needed to develop precipitation-runoff and runoff-elevation relationships for British Columbia watersheds. With adequate runoff-elevation data, the use of precipitation data could be bypassed using option 2. In the United States, the Soil Conservation Service produces maps showing isolines of runoff at various elevations, which facilitates extraction of runoff values for use in this computer program.

Measurements of streamflow from higher elevation areas are also needed to obtain representative hydrograph distribution of flow at higher elevations for adequate assessment of logging impact on peak monthly flow.

If the effects of past activity are to be assessed, then some historical file research plus on-site field inspection will be required to determine what took place, when it took place and the actual extent of vegetative recovery.

Finally, the sustained and desired cutting rate program options are based on vegetative or hydrologic recovery curves for each habitat type contained in the program. The option also exists of superimposing a fixed recovery value in terms of percent reduction of original water yield increase. Some research will be required to determine the appropriateness of the recovery curves for British Columbia conditions and to identify or establish hydrologic recovery relationships for the various habitat or ecosystem types in British Columbia.

Comparative test using Arrow Creek data

In a previous report, Hetherington (1) evaluated the effects of harvesting in upper Arrow Creek watershed, a second order drainage near Creston, on water yield using a detailed water balance approach. The harvesting options considered were clearcutting 7.7%, 15% and 25% of the drainage area, 30% and 50% partial cutting of the same percentage areas,

....7

plus 30% and 50% partial cutting to obtain the same volume of timber as for the clearcutting option. The approach taken was to estimate snow-pack redistribution based on research results reported in the literature, apply temperature-index snow melt equations, estimate soil water-holding capacity, evapotranspiration and precipitation, and to do a monthly water balance analysis. The U.S. Forest Service ECA curve was used in the partial cutting calculations (6). For clearcutting, the analysis indicated an on-site increase in water yield of approximately 40%.

In the U.S. Forest Service water yield program, on-site water yield increase calculations for clearcut areas are based mainly on the assumption that the increase varies between 35% and 45% depending on elevation. These percentages, based on research data, were obtained by summing estimated increases due to reduction of transpiration losses redistribution of snow and reduction of interception losses. This approach is much simpler than the detailed water balance analysis, but for Arrow Creek data the resulting on-site water yield increase factors turned out to be very similar in magnitude for both approaches.

Table 1 presents the results of the comparative analysis in terms of computed increased water yield as a percentage of total annual yield for the different harvesting options. Column 2 gives values derived from the arrow Creek water balance analysis (1). Column 3 gives values computed by the water yield program using runoff-elevation data estimated for upper Arrow Creek and supplied to the program. Column 4 gives values computed by the water yield program based on Arrow Creek precipitation-elevation data and the precipitation-runoff curve contained in the program. An example of the computer printout of results for the clearcut 7.7% area cutover using runoff-elevation data for Arrow Creek (Table 1, line 1, column 3) is given in Appendix 4.

For clearcutting, the percentage yield increases derived by the computer program using supplied runoff-elevation data are very close to those determined by the water balance analysis. The percentages obtained using precipitation data (column 3) are a little higher but still similar in magnitude. The precipitation-runoff curve in the program gives a considerably lower absolute value for annual runoff (5156 acre-feet versus the actual estimate of 9675 acre-feet). Hence, this curve would not be suitable for providing absolute values of water yield increases for Arrow Creek and possibly for the general surrounding region. However, if the objective is only to obtain a relative estimate of the effects of different harvesting options on water yield, then the percentage values obtained using the precipitation-runoff curve in the program would appear to be suitable for this purpose.

The comparative results for the partial cutting options are a little more variable than for clearcutting, but the percentage values are still close in magnitude. Given the crudeness or uncertainty in the assumptions and in the runoff or precipitation data estimates, the results from both approaches are sufficiently close to consider either equally applicable or representative for both partial and clearcut harvesting.

A TO SECTION OF THE SAME SAME ASSESSMENT OF THE PROPERTY OF THE PARTY OF THE PARTY

TABLE 1 Comparison of water balance and water yield computer program water yield increase percentage values for Upper Arrow Creek Watershed

Harvesting Option (% area cut)	water balance	water yield comp Runoff	outer program Precip.
Clearcut			
7.7%	2.23	2.27	2.31
15% 25%	4.36 7.41	4.63 7.57	4.96 7.94
30% selection cut - sam	ne area as clearcut		
7.7%	0.54	0.51	0.53
15% 25%	0.79 1.93	0.86 1.25	0.92 1.29
50% selection cut - sa	me area as clearcu	t	
7.7%	0.85	1.05	1.11
15% 25%	1.58 3.20	1.99 3.14	2.12 3.28
30% selection cut - sar	me amount of timbe	er as clearcut	
7.7%	0.93	1.33	1.39
15% 25%	2.01 3.16	2.43 4.19	2.55 4.22
50% selection cut - sai	me amount of timbe	er as clearcut	
7.7%	1.70	2.04	2.12
15% 25%	3.47 6.02	3.89 6.43	4.07 6.74

¹ results using supplied runoff-elevation data
2 results using precipitation-runoff curve

....9

CONCLUSION

The U.S. Forest Service water yield computer program has been successfully tested and adapted to run on the PDP-11 computer. A comparative test has shown that computer program results for upper Arrow Creek are very close to those obtained using a more detailed and time-consuming water balance analysis. With adequate input data and proper interpretation of results, this computer program or, rather, the complete water yield increase analysis procedure constitutes a valuable, practical tool for assessing the potential effects of harvesting an annual runoff or water yield. The next steps will include development of an adequate data base as noted below, and field checks of results of application of the analysis procedure for specific watersheds which have been logged. One should keep in mind, also, that any procedure such as this one should be under continued development to incorporate new research findings and take advantage of experience gained in its use.

In this report several data, research, field evaluation and data development and interpretation needs for proper use of the water yield analysis procedure in British Columbia have been pointed out. In summary these are:

- 1. The services of a forest hydrologist or team of hydrology and forestry-related specialists are essential. It is important that field evaluations be carried out for each watershed to be assessed.
- 2. Comparative field evaluation of B.C. Aquatic System Inventory and U.S. Forest Service Stream Reach Inventory and Channel Stability procedures.
- 3. Development of regionalized runoff-elevation, precipitationelevation and precipitation-runoff relationships. For this purpose more measurements of precipitation and streamflow at higher elevations are required.
- 4. Assignment of forest cover types or forest ecosystem types to hydrologic recovery classes comparable to those used in the water yield program.
- 5. Research to establish hydrologic-vegetative recovery relationships appropriate for British Columbia forest cover, habitat or ecosystem types.

REFERENCES

- Hetherington, E.D. 1977. Assessment of the possible hydrologic effects of harvesting in Arrow and Duck Creek watersheds. Report submitted to the B.C. Forest Service, Nelson District. Canadian Forestry Service, Pacific Forest Research Centre, Victoria, B.C.
- 2. Isaacson, J.A. 1977. A computer model for determining water yield from forest activities IPNF*LIB.H2OY 1977 version. USDA Forest Service, Idaho Panhandle National Forests, Coeur D'Alene, Idaho.
- 3. Pfankuch, D.J. 1975. Stream reach inventory and channel stability evaluation. USDA Forest Service, Northern Region.
- 4. Pfister, R.D., B.L. Kovalchuk, S.F. Arno and R.C. Presby. 1977. Forest Habitat Types of Montana. USDA Forest Service. Gen. Tech. Rpt. INT-34, Intermountain Forest and Range Experiment Station. 174pp.
- 5. Resource Analysis Branch. 1977. Aquatic system inventory and analysis. Ministry of the Environment, Victoria, B.C.
- 6. U.S. Forest Service. Forest Hydrology Part II. Region One.

Note: Information on references 2, 3 and 6 may be obtained by writing to J.A. Isaacson, Forest Hydrologist, USDA Forest Service, Idaho Panhandle National Forests, Coeur D'Alene, Idaho, U.S.A. 83814.

APPENDIX 1

WATERSHED RESPONSE RATING SYSTEM 1/

INTRODUCTION

The quantity, quality and timing of flow in a watershed is largely dependent upon the summation of the climate, various landforms, stream systems, soils, geology, vegetation patterns and past resource management activity. An analysis of the "hydrologic response" of certain watersheds to climatic events and man's activities on the land can help determine the magnitude of potential changes in the quality and quantity of water produced from these watersheds.

There are numerous factors to be considered in predicting the watershed changes due to timber harvest, road construction, or other related developmental resource management activity. The main objective of this watershed response rating system is to:

- 1. Determine the risk and magnitude of damage potential for both onsite and off-site watershed conditions.
- 2. Adjust the allowable water yield increases of various watersheds on the basis of existing watershed conditions, past activity and inherent stability or instability of these drainages.
- 3. Develop a technique which will provide a systematic, consistant comparison between various land and stream units into an overall "condition" or "response" for first to fourth order drainages.
- 4. Provide a method to integrate existing resource data such as surface erosion hazard, mass wasting hazard, vegetative recovery potential, stream channel stability, road density, etc., into a risk and potential damage rating.

The principles of the system rely primarily on slope hydrology or the water handling characteristics of a particular landform.

The analysis considers not only the potentials of erosion, mass wasting, etc., but assesses current conditions such as road density, number of stream crossings, and stream channel stability, etc. The evaluation of both the seriousness and magnitude of potential watershed damage on-site and off-site considers resource activities that could affect watershed condition not only from a stream sediment and channel impacts standpoint, but also conditions for on-site changes which could affect long-term productivity of the site.

Equilibrium, or disequilibrium conditions of stream channels are indicative of the downwasting rates of the slopes they incise. However, a systems approach is needed in a watershed evaluation to study the "parts" in order to determine the overall condition.

1/ U.S. Forest Service. Forest Hydrology Part II. Region One (material in this Appendix has been taken directly from this report).

The watershed response rating system was developed to help land managers ascertain the risks involved and the seriousness and magnitude of potential watershed damage both on-site and off-site in relation to proposed resource management activity.

PROCEDURE

The flow diagram in Figure 3 indicates the stepwise progression and the interrelationships of the various field inventories to the analysis procedure.

The subdrainage is first broken into fairly large, homogeneous watershed response units (WRU's). They are stratified by landtypes, vegetation and slope hydrology characteristics. A watershed response rating form is completed for each WRU. (Fig. 4). The form is broken into two main parts - the risk of potential watershed damage and the seriousness or consequence of on-site and off-site damage potential. The six criteria selected for evaluation of risk on the rating form are:

- Surface erosion hazard
- 2. Mass wasting hazard
- 3. Stream channel stability
- 4. Recovery potential land
- 5. Recovery potential streams
- 6. Road impact index (road density x number of stream crossings)

The criteria for evaluating the risk ratings are shown in Table 1.

Upon completion of the risk rating, categories are selected for either high, medium or low seriousness or magnitude of potential watershed damage, both on-site and off-site. The criteria used for this evaluation for each risk criterion (such as erosion hazard, road impact index, etc.) is shown in Table 2. The different weighting values in each column are multiplied by the risk rating factor and each column is summarized for on-site and off-site totals.

Once the on-site and off-site summaries are made, the off-site values are used in conjunction with water quality data and the Regional water yield procedure to determine allowable water yield increase by subdrainage. The general procedure is:

- 1. Complete the WRRS form for each WRU in the subdrainage.
- Calculate acreage in each WRU and in subdrainage.
- Determine weighted-average off-site damage potential by subdrainage.
- 4. Plot sediment/discharge relationship of subdrainages as in Figure 5 and convert to a 1 10 scale. If sediment production data is not available, substitute for the stream channel stability ratings converted to the same 1 10 scale as in Table 1, Part III.*
- * In analyzing over 32 streams, there appears to be consistent close correlation between sediment production rates and stream channel stability ratings.

....3

- 5. Determine allowable water yield increase on the basis of weighted average off-site damage potential and sediment/discharge relationship (or stream channel stability) using Figure 6.
- 6. Compare existing water yield increase in relation to allowable increase and projected timber sale planning. Quantify potential impacts in water quality by plotting water yield increases back on the sediment/discharge curve in Figure 5. Analyze this in relation to the uses of the water, values, etc. (See Flow chart Fig. 3).
- 7. Selected various alternatives for desynchronization of flows, silvicultural variations, cutting patterns, etc., to modify effects of water yield increases, road construction, etc.

DISCUSSION

The information afforded through the watershed response rating system has many interpretations beyond what initially meets the eye. For example, a high surface erosion hazard on a shallow, droughtly soil could produce on-site changes in long-term productivity or microclimate if erosion was to occur. Thus, the rating would be placed in the "high" on-site category. If the slopes were gentle, with little or no dissection, and on an upper slope position, the chance for this soil material to become steam sediment would be very low. Thus, the low, off-site category would be chosen. In other words, the off-site category indicates sediment production potential and on-site indicates changes in productivity, microclimate, etc.

The factors used for placing the risk into appropriate columns utilizes the key factors in physical features and conditions that appear most responsive to changes through management activities. For example, the effect of roads on water quality is well documented in research. However, the effect of a particular road density on water quality is dependent upon the types of soils, slopes, etc. the road incises. Where the risks are minimal, higher road densities are not a limiting factor for off-site damage potential. The system, hopefully, will enable an overall evaluation to pinpoint areas where maximization of timber harvest, etc., can be made in contrast to areas where very specific, limited activity should be planned.

The weighted values for off-site damage are considerably higher than those for on-site. This is due to the large number of resources being affected "downstream". Thus, the seriousness or magnitude of damage should reflect these conditions.

The system also detects at a quick glance where the "weak links" are that affect either the on-site or off-site values. For example, a particular unit might be put into a "high" potential damage class due to a high road density or numerous drainageway crossings. In order to lessen the impact of a proposed use, the roads could be closed and drainageways restored, thus lowering the magnitude of potential damage from increased water yield, etc.

This system can be used to further refine the regional cutting guide

procedure - especially in watersheds which have had considerable past disturbance and are in a "tilt" condition.

The system can be used for timber sale planning or other vegetation manipulation activities in order to assist in the evaluation of potential environmental impacts and to depart from treating a variety of landforms with similar types and intensity of development. It can also be used to assist in determining resource allocation through unit area planning, especially in relation to water resource values.

The system lends itself well to computerization to speed up the analysis procedures. It can link with other computer applications for additional analysis breadth. The most important uses it can provide are:

- (1). To provide the resource manager with adequate tools to determine watershed change due to the various resource activities and,
- (2). To prescribe essential protection prescriptions only where they are needed and to consider alternatives to minimize potential watershed damage both on-site and off-site.

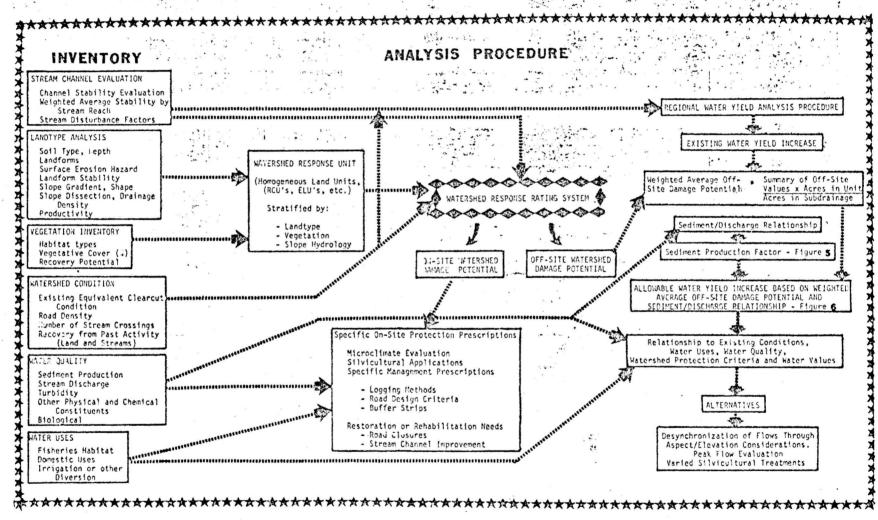
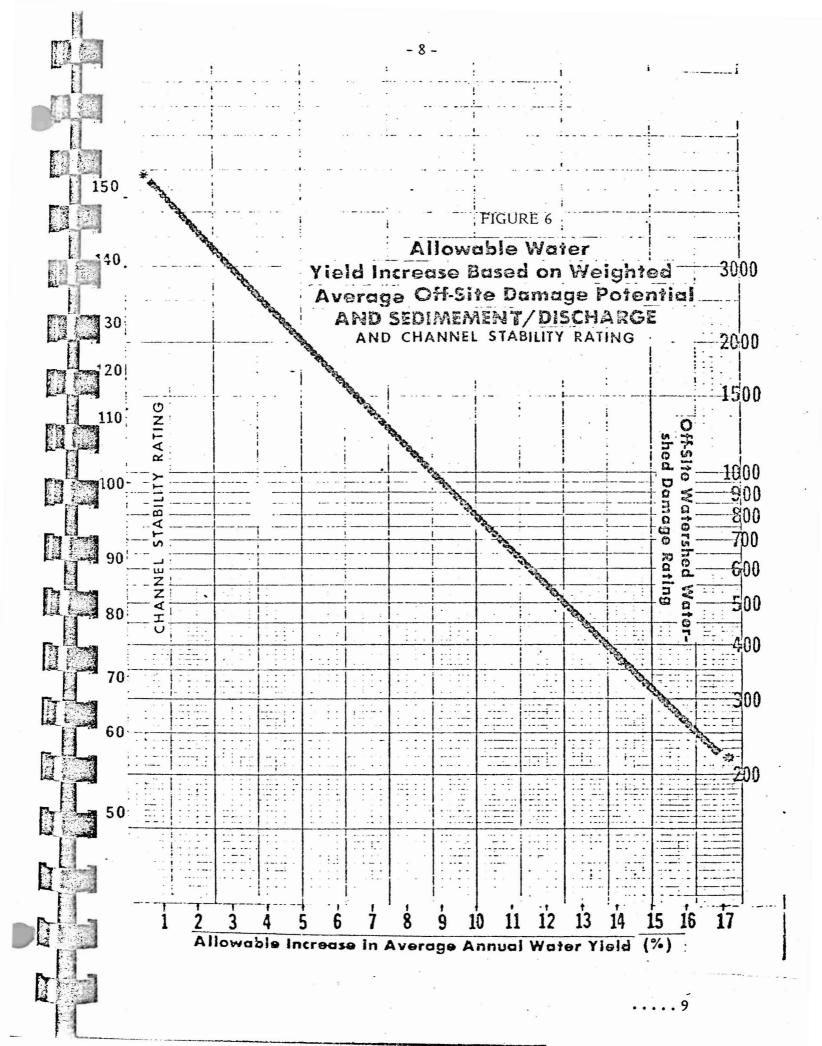


Figure 3. Flow Chart for Watershed Response Evaluation.



. WATERSHED RESPONSE RATING SYSTEM FORM

Magnitude or Seriousness of Potential Damage

	Criteria Rating	Risk Rating		On-Site		Off-	Site
Criteria	(Actual)	(Converted to 1-10 scale)	High 30	Med 15	Low 2	High N 70	1ed · Low 30 8
Surface Erosion Hazard							
Mass Failure Potential		and the second second second	**********			***************************************	*
Stream Channel Stability				****			
Recovery Potential Stream		<u> </u>					-
Road Impact Index (#Crossings x Road Density	-						
Instructions: Multiply ri the weighted values under	appropriate	S	On-sit Sub-to		***************************************	Off-site Sub-total	
column for on-site and off potential - subtotals are these products.			,	# # # # # # # # # # # # # # # # # # #	Total		

Risk and	Potential W	Vatershed Damage Summary	,	. W	atershed	Resp	onse: On-S		Off-Site	Composite
On-Site	Very Low Low	10-100 101-300			2.0	VI (3)			60-6000)	•
	Moderate High	301-500 (Range 12-1800) 501-1000			a s	;	Low Moderate	1301-2		
, V	Very High	+1000			o*_ o* * **	i_q .	High Very High	2001-3 3001-4	4000	
Off-Site	Very Low Low	48-500 501-1000	· ·		X E ² a a		Severe	+400) (, /	
	Moderate High	1001-1500 (Range 48-4200) 1501-2000	4						<	
16	Very High	+2000				•			•	

EVALUATION FOR RISK RATING

I. CRITERIA RATING

Surface Erosion Hazard (SEH)

From soil mapping, landtype descriptions, etc., or

Use criteria developed by research, various Regional Guides, SCS or other agencies. Adapt to a 1-10 rating scale. Include factors such as:

- a. Slope gradient
- b. Slope length
- c. Soil texture, structure, rock, etc.
- d. Storm and snowmelt runoff patterns
- e. Plant cover density
- f. Water holding characteristics

II. MASS WASTING POTENTIAL

Same as SEH above; include factors such as:

- a. Landform
- b. Slope position, gradient, length, etc.
- c. Soil characteristics
- d. Ground water, concentrated sub-surface flow
- e. Bedrock Character

III. STREAM CHANNEL STABILITY

Use the revised Regional Procedure (Pfankuch, 1974)

Rating

Reach Rating		Risk
481		1
49 - 60		ż
61 - 72	ee ne ⁸ ne	3
73 - 85		4
86 - 96		5
97 - 107	(#	6
108 - 120	** X,	. 7
121 - 134	*	. 8
135 - 142	¥	9
143 - 152		10

IV & V. RECOVERY POTENTIAL - LAND AND STREAMS

Ability of the site or stream to recover to pre-treatment condition or to an acceptable condition following treatment.

LAND RECOVERY CRITERIA

Control Control

Two-phase recovery potential using habitat types and microclimate change potential. (Developed 1974 by North Zone Planning, Idaho Panhandle N.F.). An average of the two values will be used to ascertain recovery potential of the land portion.

A. HABITAT TYPE		Risk Rating
Western redcedar/pachistima Western hemlock/pachistima Western redcedar/devilsclub.		. , 1
Alpine fir/pachistima		. 2
Grand fir/pachistima	<i></i>	. 3
Douglas fir/ninebark Douglas fir/twinflower		. 4
Douglas fir/snowberry Grand fir/beargrass		. 5
Alpine fir/menziesia		. 6
Douglas fir/pinegrass Douglas fir/pinegrass/kinnikin	nick phase	. 7
Alpine fir/grouse whortleberry Alpine fir/beargrass		. 8
Mountain hemlock/menziesia .		. 9
Mountain hemlock/beargrass Whitebark pine/subalpine fir Alpine fir/alpine larch Douglas fir/bluebunch wheatgra Ponderosa pine/bitterbrush	ss	
Ponderosa pine/bluebunch wheat	grass	. 10

B. Microclimate Change Potential

Score		Risk Rating
Low	10 15 20 25	1 2 3 4
Moderate	30 35 40	 5 6 7
High	45 50 55+	8 9 10

				D . 1	T
С.	Calculating	the	Composite	Kisk	Kating

- 1. Habitat Type
- 2. Microclimate change potential

Total -

Average ____

V. STREAM RECOVERY CRITERIA

Three categories for recovery potential are presented. A total value for each class will be used to determine final risk rating.

1. Stream channel stability

Excellent	1
Good	. 2
Fair	3
Poor	. 4

2. Channel materials - Gradient

Bedrock - Steep or flat	al * g*
or coarse texture - less than 5%	1
Coarse textured - more than 5% difficult to detach	2
Fine textured - less than 5% moderately detached	3
Fine textured - more than 5% easily detached	· 4

3. Depth of stream channel material to bedrock

Bedrock	1
<pre></pre> < 1 foot	2
1-3'	3
3'+	4

Total Count		Risk Rating
3		1 .
4		2
5		3
6		4
7		5
8	e n	6
9		7
10		8
11		9
12		10

VI. ROAD IMPACT INDEX

acres of road watershed area X drainageway crossings

Road Impact Index	Risk Rating
0.6 or less	1
1.0	2
1.4	3
2.5	4
3.5	5
5.6	6
7.0	7
10.0	8
15.0	9
25 0 or more	10

TABLE 2

FACTORS FOR DETERMINING APPROPRIATE CATEGORY FOR HIGH, MODERATE OR LOW ON-SITE AND OFF-SITE WATERSHED DAMAGE POTENTIAL

Α.

Seriousness or Magnitude of Potential Damage

ON-SITE

Criteria	High (30)	Medium (15)	Low (2)
Soil Depth	Shallow soils <20 inches	20 - 140 inches	Deep >140 inches
Top soil	Lack of productive topsoil	Thin topsoil <3 inches	Deep > 3 inches
Slope gradient	Steep slopes 45%+	Slopes 25 - 45%	Slopes <25%
Moisture retention	Poor retention, sandy and coarse loamy soils - droughty - moisture stress limiting.	Moderate retention Coarse silty, fine loamy soils, moisture stress for short durations.	Good soil moisture retention. Fine silty and clay, infrequent soil moisture stress.
Internal drainage	Excessively drained	Moderate to well- drained	Poorly drained
Vegetation Density (%ground cover)	Low plant density <50%	50 - 70%	>70%

Seriousness or magnitude of potential damage

Off-Site

Criteria	High (70) (30)		Low (8)	
Slope Dissection	Strongly dissected High drainage density	Moderately dissected Moderate drainage density	Weakly dissected Low drainage density	
% of area in low order streams and lateral spacing of drainageways	40%+ <800 feet	20 - 40% 800 - 1600 feet	<20% 1600 feet +	
Slope position	Lower slope to middle	Middle to upper 1/3	Upper 1/3	
Slope shape	Generally concave	Concave to convex	Generally convex	
Water handling Rapid response to snowmelt or stormflow runoff. Short time of concentration.		Moderate response, related more to high intense events. Moderate time of concentration.	Slow response to runoff producing events. Long time of concentration	
Slope gradient	Steep slopes 45%+	Slopes 25 - 45%	Slopes <25%	
Vegetation Density	Low plant density <50%	50 - 70%	>70%	
Location and other Physical characteristics Very close proximity to perennial streams. Deeply entrenched drainageways Sediment/discharge factor 7-10		Associated with inter- mittent streams (moderate drainage density) Shallow entrenchment Sediment/discharge factor	Bedrock occupies over 70% of unit. Ridges, terraces benches "rolling" terrain Discontinuous drainageway Sediment discharge factor	
Vistor usos	High value fisheries	3-6 Fisheries seasonal	0-3 Little or no fisheries	
Water uses High value fisheries Municipal or domestic water use Heavy water-based recreational Use		Very minor irrigation use Very few domestic users Moderate recreational use	value. Little consumptive uses of domestic or irrigation	

APPENDIX 2

FORTRAN listing of the modified water yield computer program.

IF (X .GT. 100.) x=100.

IF (X .LT. 0.) x=0.

PROGRAM SECTIONS

NAME

0011

5100

0013 0014

SIZE

ATTRIBUTES

SCODET 000500 160 SPDATA 000100

32

RETURN

END

RW, I, CON, LCL RW, D, CON, LCL

TOTAL SPACE ALLUCATED = 000600 192

PAGE 1

```
INPF.FTN
                  /TR:BLOCKS/WR
0001
                SUBROUTINE FEG (ELEV. AX)
200
                AX=0.
2003
                IF (ELEV .LT, 1500.) GO TO 8
0004
                AZ=(ELEV/3500.)-1
                IF (ELEV .GE. 3500.)GO TO 6
0005
0006
                AZ=AZ**3
2007
                AZ=AZ-(2.*AZ)
0008
                AP=SURT(AZ)/.125
                (9A+.5) =9A=9A
0009
                AZ=EXP(AP)
0010
                \Delta x = -0.98 + (46.5 \pm AZ)
0011
5100
                RETURN
                AP= (AZ/,4) **2
0013
                AP=AP=(2.*AP)
0014
                AX=41.=(.001*ELEV)+(7.5*EXP(AP))
0015
              8 RETURN
0016
                END
0017
```

13:49:06

02-MAR-78

PAGE 2

PROGRAM SECTIONS

FORTRAN IV-PLUS VØ2-518

NAME	\$17E		ATTRIBUTES
\$CODE1	000300	96	RW, I, CON, LCL
SPDATA	000024	10	RW, D, CON, LCL
SVARS	000010	4	RW, D, CON, LCL

TOTAL SPACE ALLOCATED = 000334 110

```
FORTRAN IV-PLUS V02-518
                                                                   PAGE 3
                                 13:49:11
                                              02-MAR-78
INPF.FIN
                /TR:BLOCKS/WR
0001
              SUBROUTINE REQ(ELEY, ROF)
 506
              BYTE ITABLE
703
              CUMMON ISW1,SWIT1,FH20(16,2),ANAME(20),BNAME(20),BT(9),IHTA(9),IHT
             1AT(9),SUM3(10),SUM6,Ex,NY,SUM1(10),SUM4,TSUM2,TSUM3(10),AII,RUNOF(
             24,2),TSUM4(10),AEP,BEP,IRC,UNIT(50),BV(4,6,8),SUM5(6),ITABLE(51,12
             3),5(6),HGBP(12,3),THGBP(12,3),ICD
0004
              IF (IRC . EQ. 0) GO TO 1
0005
              I=1
0006
              IF (ELEV .LT. RUNOF(1,1)) GO TO 3
0007
              I=IRC
0008
              IF (ELEV. GT. RUNOF (IRC+1,1)) GO TO 3
0009
              DO 2 I=1.14C
0010
              IF (RUNOF(I,1) .LE.ELEV .AND. ELEV .LE. RUNOF(I+1,1)) GO TO 3
0011
        3
9012
              ROF=((ELEV-RUNOF(I,1))*((RUNOF(I+1,2)-RUNOF(I,2))/(RUNOF(I+1,1)-RU
             INOF (I,1))) +RUNOF (I,2))/12.
0013
              GU TO 4
0014
        1
              Y= (AEP *ELEV) +BEP
              IF (Y .LT. 12.) ROF=0.
0015
0016
              IF (12.LE, Y ,AND, Y ,LT, 30,) ROF=(.556*Y-6,7)/12,
              IF (30. LE. Y .AND. Y .LT. 40.)ROF=(.74xY-12.2)/12.
0017
              IF (40. .LE. Y .AND. Y .LT. 60.) ROF=(.81*Y-15.)/12.
0018
              IF (60, .LE. Y) ROF=(.868*Y-18.5)/12.
0019
            4 RETURN
0050
0021
              END
```

PROGRAM SECTIONS

0176

ALAME

NAME	217	C	ATTRIBUTES
SCODE1	000536	175	RW, I, CON, LCL
SPDATA	000030	12	RW, D, CON, LCL
SVARS	0000006	3	RW, D, CON, LCL
. \$555.	004714	1254	RW, D, OVR, GBL

TOTAL SPACE ALLOCATED = 005510 1444

0001

208 03 SUBROUTINE MOBY

BYTE ITABLE

COMMON ISW1, SWIT1, FH20(16, 2), ANAME(20), BNAME(20), BT(9), IHTA(9), IHT 1AT(9), SUM3(10), SUM6, Ex, NY, SUM1(10), SUM4, TSUM2, TSUM3(10), AII, RUNOF(24.2). TSUM4(10). AEP, BEP, 1RC, UNIT(50), BV(4,6,8), SUM5(6), ITABLE(51,12

3), \$(6), HG3P(12,3), THG8P(12,3), ICD

0004

DATA BV/10.,5.,2*N.,30.,20.,2*5.,2*40.,35.,25.,20.,30.,45.,50.,0., 15,,10,,15,,2*0,,2*5,,10,,2,,2*0,,32,5,22,5,7,5,5,,42,5,40,,37,5,30 2.,15.,27.5,40.,47.5,0.,5.,10.,12.5,2*0.,2*5.,10.,5.,2*0.,35.,25.,1 30.,5.,45.,2*40.,35.,10.,25.,35.,45.,0.,5.,2*10.,2*0.,2*5.,20.,12.5 4,5.,0.,37.5,27.5,15.,7.5,35.,40.,2*42.5,7.5,17.5,27.5,35.,0.,2.5,7 5.5,10.,2*0.,2.5,5.,30.,20.,10.,0.,40.,30.,20.,10.,25.,40.,45.,50., 65,,10,,20,,25,,2*0.,5,,10.,3*0.,5.,27.5,17.5,7.5,0.,37.5,27,5,17.5 7,7,5,30,,40,,45,,47,5,5,,12,5,22,5,32,5,0,,2,5,5,,7,5,2*0,,2.5,5,, 825.,15.,5.,0.,35.,25.,15.,5.,35.,40.,2*45.,5.,15.,25.,40.,0.,3*5., 92*0.,2*5.,17.5,10.,2.5,0.,32.5,22.5,10.,5.,37.5,2*40.,35.,12.5,22. A5,35.,45.,0.,5.,7.5,10.,2*0.,2*5./

0005 0006 KETURN FND

PROGRAM SECTIONS

NAME

SIZE

ATTRIBUTES

SCODE1 000016

RW, I, CON, LCL

004714 1254 . 5555.

RW.D.OVR.GBL

TOTAL SPACE ALLOCATED = 004732 1261

NO FPP INSTRUCTIONS GENERATED

```
FORTRAN IV-PLUS V02-518
                                                                       PAGE 5
                                   13:49:23
                                                 02-MAR-18
INPF.FTN
                 /TR:BLOCKS/WR
0001
               SUBROUTINE HYURO
5000
               COMMON ISW1, SWIT1, FH20(16, 2), ANAME(20), BNAME(20), BT(9), IHTA(9), IHT
              1AT(9),SUM3(10),SUM6,EX,NY,SUM1(10),SUM4,TSUM2,TSUM3(10),AII,RUNOF(
              24,2),TSUM4(10),AEP,8EP,IRC,UNIT(50),BY(4,6,8),SUM5(6),ITABLE(51,12
              3), $(6), HGBP(12,3), THGBP(12,3), 100, J1
        C
             NEW CODING. 29 DEC/77 . HUNT
               BYTE J1 (9)
0003
0004
               BYTE ITABLE
        C
0005
               1 = 3
               IF(HGBP(5,3),EQ,HGBP(5,1)) J=2
0006
0007
               IF (HGBP(5,2), EQ, HGBP(5,1)) J=1
8000
               AMAX=HGBP(1.J)
               AMIN=HGBP(1,1)
0009
               BMAX = HGBP (1.1)
0010
               DO 1 1=2.12
0011
0012
               IF (HGBP(I,J) .GT. AMAX) AMAX=HGBP(I,J)
               IF (HGBP(1,1) .LT. AMIN) AMIN=HGBP(1,1)
0013
0014
               IF (HGBP(I,1) .GT. BMAX) BMAX=HGBP(I,1)
               CONTINUE
0015
        1
               IF (ICU.EQ.60) AMAX=AMAX-PKF
0016
0017
               DO 13 K=1,51
               00 13 I=1,12
0018
               ITABLE (K, I) = " "
0019
        13
               UNAT= (AMAX=AMIN) /50.
0020
               UNIT(1) = AMAX
0021
2500
               UNIT (51) = AMIN
               00 2 1=2.49
0023
8024
        5
               UNIT(I) = UNIT(I=1) = UNAT
0025
               IF (J.EQ.1) GD TO 6
               IF (J.EQ.2) GO TO 3
0056
7500
               DO 4 I=3.8
               K = ((HGBP(1,3) - AMIN)/UNAT) + .5
8500
        4
0029
               ITABLE (51-K, I) = ---
0030
        3
               DO 5 1=3,8
               K=((HGBP(I,2)-AMIN)/UNAT)+.5
0031
        5
               ITABLE (51-K, I) = "+"
0032
        6
               DO 7 I=1.12
0033
               K = ((HGBP(I,1)-AMIN)/UNAT)+.5
0034
        7
0035
               ITABLE (51-K, I) = "X"
0036
               IF (ICD.EQ.90) GO TO 11
0037
               WRITE (6,9) NY, (ANAME (1), I=1,20), J1
        9
0038
               FORMAT(1H1//* HYDROGRAPH YEAR*, 15, 2X, 20A4, * DATE: *9A1//)
               GO TO 23
2039
               WRITE(6,9) NY, (BNAME(I), I=1,20), J1
2040
        11
        23
               DO 15 I=1,51,2
0041
3042
               WRITE(6,17) UNIT(1), (ITABLE(1, J), J=1,12)
        17
3043
               FORMAT (1x,F11.2,4x,11(A1,9x),A1)
3044
               IF (I .EQ. 51) GO TO 20
               WRITE (6,18) (ITABLE(I+1,J),J=1,12)
        15
3045
3046
        18
               FORMAT (16x, 11 (A1, 9x), A1)
3047
        50
               WRITE (6,21) (HGBP(J,1),J=1,12)
1048
        21
               FORMAT (/5x, 'AC-FT', 5x, 'JAN', 7x, 'FEB', 7x, 'MAR', 6x, 'APRIL', 6x, 'MAY'
              1,6x, JUNE 1,6x, JULY 1,7x, AUG 1,7x, SEPT 1,6x, OCT 1,7x, NOV 1,7x, OEC
              2//4x, "x HASE", 12F10, 2/4x, "+ PAST"/4x, "- PAST & PROPOSED"/)
3049
               PKF=AMAX-BMAX
```

FORTRAN IV-PLUS V02-518 13:49:23 02-MAR-78 PAGE 6

INPF.FTN /TR:8LOCKS/WR

0051 WRITE (6,25) PKF, PPKF 0052 25 FURMAT (3x, 'PEAK FLOW VOLUMES INCREASED BY ',F8.2, 'AC-FT OR ',F6.

12, "%"//)

0053 600 RETURN 0054 END

PROGRAM SECTIONS

0050

NAME	\$17	E	ATTRIBUTES
\$CODE1	002010	516	RW, I, CON, LCL
SIDATA	000450	148	RW, D, CON, LCL
SVARS	000036	15	RW, D, CON, LCL
\$555.	004726	1259	RW, D, OVR, GBL

PPKF=PKF + 100./EMAX

TOTAL SPACE ALLOCATED = 007444 1938

```
FORTRAN IV-PLUS VØ2-518
                                  13:49:42
                                               02-MAR-78
                                                                    PAGE 7
INPF.FTN
                 /TR:BLOCKS/WR
0001
               SUBROUTINE WROUTA (DA, PECA, A)
2000
              BYTE ITABLE
              COMMON 15W1, SWIT1, FH20(16, 2), ANAME (20), BNAME (20), BT(9), IHTA(9), IHT
 73
              1AT(9), SUM3(10), SUM6, Ex, NY, SUM1(10), SUM4, TSUM2, TSUM3(10), AII, RUNOF(
              24,2),TSUM4(10),AEP,8EP,IRC,UNIT(50),BV(4,6,8),SUM5(6),ITABLE(51,12
              3), S(6), HGBP(12,3), THGBP(12,3), ICD
0004
              DIMENSION IA(9)
0005
               SUM4=0.
              00 206 J≈1,10
0006
        506
0007
               SUM4=SUM4+SUM1(J)
0008
               YAI=SUM4 * 100./A
0009
              WRITE(6,207) (J,J≈1,9),(SUM1(J),J≈1,10),SUM4,YAI,PECA
0010
        2017
              FORMAT (/27x, WATER YIELD INCREASE VOLUME BY HABITAT TYPE 1/7x, 918,
                           TOTAL'/7x,10F8.2,F10.2, ACRE-FEET'//2x, PER CENT OF D
                   RUAUS
              IRIGINAL WATER YIELD INCREASE"/7x,F7.2," PER CENT"/2x, PROBABLE EQU
              11VALENT CLEARCUT AREA ALLOWABLE 1/7x, F9.2, 1 ACRES1/)
0011
        270
              WRITE (5,260)
5100
        560
              FORMAT (* DO YOU WISH TO HAVE THE SUSTAINED CUTTING RATE CALCULATE
              10? (YES=1. OR NO=-1.)')
0013
              PEAU (5,265) ANS
              FORMAT (F3.0)
0014
        265
0015
               IF (ANS .LE. 0.) GO TO 98
0016
              WRITE (6,80) (J,J=1,9)
0017
        80
              FORMAT (///5x, 'SUSTAINED CUTTING RATE IN ACRES/YEAR INCLUDING RECO
              IVERY TO EQUIVALENT'/5x,'CLEARCUT AREA BY YEARS AND FOREST HABITAT
              1TYPES ON AN UNDEVELOPED 1/5x, TAREA. 1/30x, THABITAT TYPES 1/5x, TYEARS
              11,918/)
              J=100
0018
0019
              CALL CRCALC(J, PECA, DA)
        98
0050
              WRITE (5,212)
1500
        515
              FORMAT ( * ENTER CUTTING RATE (NONE=0.) *)
              READ (5,213) CR
8855
        213
              FORMAT (F8.0)
0023
               IF (CR .LT. 0.) GO TO 98
0024
               IF (CR .GT. 0.) GU TO 130
0055
              CALL HYDRO
0026
0027
              RETURN
8500
        130
              DO 120 I=1.9
0029
               AX=IHTA(I)
0030
               IF (IHTA(I) .EQ. 0) GO TO 79
0031
               AT=CR
               AT1=CR
0035
               AJ=1.
0033
0034
               CX=0.
               DO 77 K=1,99
2035
DØ36
               IF (PECA LE. AT+DA/AX) GO TO 120
0037
               AJ=AJ+1.
0038
              CALL EQ(I,AJ,X)
              X=100.-X-CX
3039
0040
               AT2=AT1-X*AT1/100.
3241
              STA+TA=TA
3042
              Cx = x
1043
        77
               STA=1TA
        79
               AJ=U.
  44
1045
        120
              BT(I)=AJ
```

WRITE (6,125) PECA, CR

1046

147	125	FURMAT (5x, THE ALLOWABLE ROUIVALENT CLEARCUT AREA ',F7.2, 'ACRES we will be '/5x, 'Reached at a cutting rate of ',F7.0,' acres/year'/)	i
() () () () () () () () () ()		1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4	
140		DU 126 J=1,9	
149		AX=IHTA(J)	
150	156	[A(J)=CR*AX/OA	
151		WRITE (6,127) (J,J=1,9),(IA(J),J=1,9),(BT(J),J=1,9)	
152	127	FORMAT (//25x, " HABITAT TYPES"//9x, 917/2x, "ACRES", 3x, 917/2x, "YEAR	
		1',4x,9F7.0/)	
153		GO TO 98	
154		END	

ROGRAM SECTIONS

NAME SIZE ATT	KIRALEZ
DODE1 001504 418 RW.	I, CON, LCL
IDATA 001330 364 RW,	D, CON, LCL
VARS 000100 32 RW,	D, CON, LCL
5555. 004714 1254 RW,	D, OVR, GBL

DTAL SPACE ALLOCATED = \$10050 2068

PROGRAM SECTIONS

0034

0035

NAME	\$17	E	ATTRIBUTES
SCODE1	001276	351	RW, I, CON, LCL
SIDATA	000260	88	RW, D, CON, LCL
SVARS	000055	9	RW, D, CON, LCL
. 5555.	004714	1254	RW.D.OVR.GBI

TAL SPACE ALLOCATED = 006514 1702

600 RETURN

END

```
FORTRAN IV-PLUS V22-51B
                                                                       PAGE 10
                                   13:50:19
                                                 02-MAR-78
INPF.FTN
                 /TR: BLOCKS/WR
0001
               SUBROUTINE CRCALC(J, PECA, DA)
2000
               BYTE ITABLE
               COMMON ISW1, SWIT1, FH20(16, 2), ANAME (20), BNAME (20), BT (9), IHTA (9), IHT
              1A1(9),SUM3(10),SUM6,EX,NY,SUM1(10),SUM4,T5UM2,TSUM3(10),AII,RUNOF(
              24,2), TSUM4(10), AEP, BEP, IRC, UNIT(50), BV(4,6,8), SUM5(6), ITABLE(51,12
              3), s(6), HGBP(12,3), THGBP(12,3), ICD
0004
               DIMENSION CX(9), AT(9), ATI(9)
0005
               JC1=PECA
               DO 260 1=1,9
0006
               AT(1)=1.
0007
0008
               CX(1)=0.
0009
         260
               AT1 (1)=1.
0010
               J=J-1
               DO 77 Ka1, J
0011
5100
               AJ=K+1
               00 76 I=1,9
0013
               AX=IHTA(I)
0014
0015
               CALL EQ(I, AJ, X)
0010
               x = 100 - x - CX(I)
               A12=AT1(I)-X*AT1(I)/100.
0017
0018
               AT(1) = AT(1) + AT2
0019
               STAF (1) 1TA
               BT(I) = PECA * AX/(AT(I) * DA)
0020
1500
               CX(I)=X
         76
               CONTINUE
2500
0023
               IC=BT(1)+BT(2)+BT(3)+BT(4)+BT(5)+BT(6)+BT(7)+BT(8)+BT(9)
               IF (IC .LT. IC1) GO TO 97
4500
0025
               WRITE (6,210)
               FORMAT (5x, MAXIMUM SUSTAINED CUTTING RATE REACHED!/)
         210
6036
               GO TO 250
7500
         97
               WRITE (6.95) K, (BT(J), J=1.9)
8500
         95
               FORMAT (5x,13,2x,9F8.2)
0029
               IC1=IC
0030
         77
0031
               CONTINUE
               RETURN
0032
         250
0033
               END
```

PROGRAM SECTIONS

NAME	SIZ	E	ATTRIBUTES
\$CODE1	000642	209	RW, I, CON, LCL
SIDATA	000100	32	RW, D, CON, LCL
SVARS	000204	66	RW, D, CON, LCL
STEMPS	500000	1	RW, D, CON, LCL
, \$\$\$\$.	004714	1254	RW, D, DVR, GBL

TOTAL SPACE ALLOCATED = 006064 1562

W15

19

10CEEDING")

13:50:39 02-MAR-78 PAGE 11 INPF.FTN /TR:BLOCKS/WR 0001 CÚMMON 15W1,5WIT1,FH20(16,2),ANAME(20),BNAME(20),BT(9),IHTA(9),IHT 1AT(9), SUM3(10), SUM6, EX, NY, SUM1(10), SUM4, TSUM2, TSUM3(10), AII, RUNOF(24,2), TSUM4(10), AEP, BEP, IRC, UNIT(50), BV(4,6,8), SUM5(6), ITABLE(51,12 3), S(6), HGBP(12, 3), THGBP(12, 3), ICD, J1 0000 LOGICAL*1 FILNAM(15) 0003 BYTE ITABLE 0004 BYTE J1 (9) 0005 REAL *6 IST1, Ja C ANAME = SUBDRAINAGE NAME C BNAME = DRAINAGE NAME C DA = SUBDRAINAGE ACRES C A = SUBDRAINAGE RUNOFF C EX = SUBDRAINAGE WEIGHTED AVERAGE ELEVATION C INTA = SUBDRAINAGE ACRES BY HABITAT TYPE C NY = YEAR PROJECTING WATERSHED STATUS TO C AII = % INCREASE LIMIT C RUNOF = PRECIPITATION OR RUNOFF DATA BY ELEV C HGBP = HYUROGRAPH DATA C IST1 = STAND DESCRIPTION C ICD = ACTIVITY CODE C ELEV = STAND ELEVATION C TASP = STAND ASPECT C IYR = YEAR CUT OR BURNED C PER # % CROWN REMOVAL C ACRE = STAND ACRES C IHT . # HABITAT TYFE C S = SUBDRAINAGE TOTAL OF MONTHLY DISTRIBUTION OF WATER YIELD INC. VOL. C SUMS # ORAINAGE TOTAL OF VARIABLE S C SUM1 = SUBDRAINAGE TOTAL OF WATER YIELD INC. VOLUME C SUM4 = ORAINAGE TOTAL OF VARIABLE SUMI C SUM3 = SUBDRAINAGE TOTAL OF EXISTING EQUIVALENT CLEARCUT ACRES C SUM6 = TOTAL EECA C FH20 = ON-SITE WATER YIELD INC. FACTOR IN % C BT = USED IN SUSTAINED CUTTING RATE CALCULATION C INTAT = DRAINAGE ACRES BY HABITAT TYPE C AEP = SLOPE OF PRECIPITATION CURVE C BEP = Y INTERCEPT OF PRECIPITATION CURVE C IRC = CODE FOR PRECIP. OR RUNOFF DATA C UNIT = SCALE OF HYDROGRAPH C BV = "B" VALUE FOR MONTHLY DISTRIBUTION OF WATER YIELD C = ITABLE = HYDROGRAPH 0006 15W1=0 C CALL ERTRAN (9, J1, J2) ERTRAN IS REPLACED BY CALL DATE AND ASSIGN 0007 CALL DATE (J1) 0008 CALL TIME (J2) 0009 WRITE (5, 1717) 1717 FORMAT(" ENTER FILENAME> (, S) 0010 READ (5, 1818) FILNAM 0011 2100 1818 FORMAT (15A1) 0013 CALL ASSIGN(10, FILNAM, 15) 0014 WRITE (6,19) WRITE (5,19)

> FORMAT (/30x, WATER YIELD MODEL - 1977 VERSION (DAVE THORSON MODIF 1ICATIONS) 1/30x, BE SURE YOUR DATA FOLLOWS THE NEW FORMAT BEFORE PR

```
INPF.FTN
                 /TR:BLOCKS/WR
2017
               WRITE (5, 1919)
         1919 FORMAT(" DO YOU WANT THE WATER YIELD INCREASE VOLUME BY STAND?
8
                                                                                    (Y
              1ES=1. OR NO=-1.) (5)
0019
               READ (5,26) SWIT1
0050
        26
               FORMAT (F3.0)
0021
        212
               TSUM2=0.
5500
               TUA=U.
0023
               TAFO.
2004
               CALL MOBV
               00 12 1=1.9
0025
               TSUM4 (1) =0.
9050
0027
               TSUM3(1)=0.
               IHTAT(I)=0
8500
        12
6500
               00 53 J=1,12
               DO 53 K=1,3
0030
        53
               THGBP (J.K) = 0.
0031
0032
               TSUM4(10) = 0.
0033
               TSUM3 (10) = 0.
0034
               WRITE (5,4)
0035
               FORMAT (* ENTER CURRENT YEAR OR YEAR TO WHICH WATERSHED STATUS IS
              1TO BE PROJECTED, EQ. 1980, NONE=0')
0036
               READ (5,6) NY
0037
        6
               FORMAT (14)
0038
               IF (NY .EG. 0) GO TO 500
0039
               ISW1 = ISW1 + 1
0040
               REWIND 10
0041
        100
               DO 43 1=1,6
0042
        43
               SUMS (1) = 0.
0043
               READ(10,11,END=300) (ANAME(I),1=1,20)
0044
        11
               FORMAT (20A4)
0045
        16
               READ (10,401,END=300) (8NAME(I),I=1,20),DA,A,EX,(IHTA(J),J=1,9)
0046
        401
               FORMAT (20A4/F9.0/F9.0/F9.0/917)
0047
               WRITE (5.5)
        5
               FORMAT (1H1// % INC LIMIT FOR AVERAGE WATER YIELD, EG. 8.0 ? 1)
0048
0049
               READ (5,150) AII
               FORMAT (F4.0)
0050
        150
               JPP=2
0051
               IFU
2052
2053
               DO 505 J=1.9
0054
        505
               I=I+IHTA(J)
0055
               IDA=DA
3056
               IF (I .EQ. IDA) GO TO 506
               WRITE (6,507)
2057
0058
               WRITE (5,507)
2059
        507
               FORMAT (// ERROR IN HABITAT TYPE ACRES!")
0060
               GO TO 500
0061
        506
               WRITE (6,18) J1,J2,(ANAME(I),I=1,20),NY,(BNAME(J),J=1,20),DA,A
           18 FORMAT (/' DATE: ',9A1,' TIME: ',A8//15x,'SUBDRAINAGE ',20A4/27x,14
2065
              1//15x, DRAINAGE 1,20A4/15x, HAVING TOTAL ACRES OF 1,F9.0/15x, AND
              ITOTAL RUNOFF OF ",F9.0,"ACRE-FEET."//72x,"MARCH",5x,"APRIL",6x;"MA
              2Y',7X, 'JUNE', 6X, 'JULY', 5X, 'AUGUST')
2063
               DO 15 I=1,2
64
        15
               READ (10,10,END=300) (RUNOF(I,J),J=1,2),IRC
765
        10
               FORMAT (F5.0,1X,F6.3,11)
3066
               IF (RUNOF(2,1) .NE. RUNOF(1,1) .AND. IRC .EQ. Ø) GO TO 69
2267
               IF (RUNOF(2,1) .EQ. RUNOF(1,1) .OR. IRC .GT. 3) GO TO 500
```

```
FORTRAN IV-PLUS V02-518
INPF.FTN
                /TR:BLOCKS/WR
0068
              IF (IRC .EQ. 1) GO TO 21
0469
              IRC=IRC+1
0
              DO 57 I=3, IRC
        57
0071
              READ (10,14,END=300) (RUNOF(I,J),J=1,2)
9072
        14
              FORMAT (F5.0,1x, F6.3)
0073
              IKC=IRC-1
0074
              GO TO 21
              AEP=(RUNOF(2,2) - RUNOF(1,2))/(RUNOF(2,1) - RUNOF(1,1))
0075
        69
              BEP=RUNOF(1,2) - (AEP*RUNOF(1,1))
0076
0077
        21
              DO 3 I=1.10
              SUM1(1)=0.
0078
              SUM3(1)=0.
0079
              READ (10,17,END=300) (HGBP(J,1),J=1,12)
0080
0081
        17
              FORMAT (12F5.2)
              00 37 I=1,12
2800
              HGBP (I,1) = HGBP (I,1) * A/100.
0083
0084
              HGBP(1,2)=HGBP(1,1)
              HGBP(1,3) = HGBP(1,1)
0085
        37
0086
           22 lf(ICO,NE,60) GO TO 2628
              DO 2727 J=1.6
0087
0088
         2727 SUM5(J)=0.
              DO 2929 I=1,10
0089
0090
              SUM3(1)=0.
0091
         2929 SUM1(I)=0.
         2828 READ (10,23,END=9) IST1,ICD, ELEV, IASP, IYR, PER, ACRE, IHT
5600
0093
        23
              FURMAT (A6,12,F5.0,12,14,F3.0,F4.0,12)
0094
              AJ=NY-IYR
              IF (AJ .LT. 0) GO TO 22
0095
               ICDS=0
0096
0097
              IF (ICD .EQ. 90 .OR. ICD .EQ. 80 .OR. ICD .EQ. 70 .OR. ICD
             1 .EQ. 60) GO TO 9
0048
              CALL FEG(ELEV, AX)
0099
              CALL REQ(ELEV, ROF)
2100
              EH20Y1=AX*ROF
0101
              ICD1=ICO/10
2016
              1002=100-(1001*10)
2103
              CD=ICD1
              IF (ICD2 .EQ. 1 .OR. ICD2 .EQ. 5 .OR. ICD2 .EQ. 6) GO TO 24
0104
2105
              EECA=ACRE
              IF (ICD1 .EW. Ø .AND. ICD2 .EQ. 2 .OR. ICD1 .EQ. Ø .AND. ICD2 .EQ.
3106
             1 3 .OR. JCD1 .EQ. 0 .AND. ICD2 .EQ. 4) GO TO 56
1107
              EECA=CD*ACPE/10.
              IF (ICD2 .EQ. 2 .OR. ICD2 .EQ. 3 .OR. ICD2 .EQ. 4 .OR. ICD2 .EQ. 7
3108
             1.OR. ICD2 .ED. 8 .OK. ICD2 .EQ. 9) GO TO 60
1109
              WRITE (6,8) 1ST1, ICO
1110
              WRITE (5,8) IST1, ICD
              FORMAT (" ERROR IN STAND ", A6, " CODE ", 12)
3111
        8
1112
              GO TO 500
        9
1113
              CALL WROUTS (DA, A, JPP)
1114
              .IF (ICD .EQ. 70 .UR. ICD .EQ. 60) GO TO 22
1115
               TDA=TDA+DA
1116
              TA=TA+A
 7
               IF (ICD .EQ. 80) GO TO 100
118
               IF (ICD .EQ. 90) GO TO 500
1119
               GO TO 16
        C
```

13:50:39

02-MAR-78

PAGE 13

13:50:39

```
INPF.FIN
                /TR:BLOCKS/WR
```

```
C
               **START PARTIAL CUT CALCULATION
         C
151
         24
               Y=0.
               1F (17, .LT. PER ,AND, PER .LT. 55.) GO TO 25
0122
               IF (55. LE, PER , AND, PER , LE, 100,) GO TO 27
0123
               IF (PER .LT. 17.) GO TO 28
0124
               Y=100.
0125
               60 10 58
               Y=(0.01*PER+0.5)*PER-11.
0125
        25
0127
               85 OLOS
8510
            27 Y=(-0.02*PER+4.21)*PER-121
        58
               EECA=Y+ACHE/100.
0129
         56
               IF (ICD .NE. 3) GO TO 59
0130
               IHT=10
0131
0132
               GO 10 60
               IF (0 ,LT, IHT ,AND, IHT ,LT, 10) GO TO 35
         59
0133
0134
               WRITE (6,13) IST1, ICD, IHT
0135
               WRITE (5,13) IST1, ICD, IHT
0136
               FORMAT ( ERROR IN STAND ', A6, ', CODE ', 12, ', HABITAT TYPE', 12)
         13
0137
               GO TO 500
        35
               IF (AJ .GT. 0) GO TO 36
0138
0139
               60 10 60
0140
        36
               CALL EQ(IHT, AJ, X)
0141
               EECA=X*EECA/100.
               SUM1 (IHT) = SUM1 (IHT) + (EECA * EH20YI) /100.
0142
        60
0143
               SUM3(IHT)=SUM3(IHT)+EECA
0144
               ABC=EECA*EH20YI/100.
0145
               IF (1 .LE. IASP .AND. JASP .LE. 8) GO TO 315
               WRITE (6,413) IST1, ICD, IASP
0146
0147
               WRITE (5,413) IST1, ICD, IASP
0148
        413
               FOPMAT (" ERRUR IN STAND ", A6,", CODE ", 12,", ASPECT", 12)
@149
               GO TO 500
0150
        315
               1 = 1
               IF (ELEV .LT. 3500.) GO TO 45
0151
0152
               1=2
0153
               IF (ELEV .GT. 3499. .AND, ELEV .LT. 4500.) GO TO 45
0154
               IF (ELEV .GT. 4499. AND. ELEV .LT. 6000.) GO TO 45
0155
0156
               1 = 4
2157
        45
               DO 47 J=1,6
2158
               S(J) = ABC + BV(I, J, IASP)/100.
3159
        47
               SUM5(J) = SUM5(J) + S(J)
               IF (SWIT1 .LT, 0.) GO TO 22
3160
               WRITE (6,400) IST1, ABC, (S(J),J=1,6)
1161
        400
               FORMAT (* STAND: 1, A6, " WATER YIELD INCREASE VOLUME IS ", F7.2, " ACR
1162
              1E-FEET. ", 4X, 6F10.2)
1163
               GO TO 22
1164
        300
               WRITE (6,318) (BNAME(I), I=1,20), NY, TDA, TA
               FORMAT (///15x, DRAINAGE 1, 20A4/27x, 14/15x, HAVING TOTAL ACRES OF
1165
        318
              1',F9.0/15x,'AND TOTAL RUNOFF ',F9.0,' ACRE-FEET'//72X,'MARCH',5X,
              2'APRIL', 6x, 'MAY', 7x, 'JUNE', 6x, 'JULY', 5x, 'AUGUST')
1166
               PECA=TSUM2
1167
               AFTA
  38
               DATIDA
169
               UO 320 I=1,9
1170
               SUM1(I)=TSUM4(I)
```

```
FORTRAN IV-PLUS VOZ-518
                                  13:50:39
                                                02-MAR-78
                                                                     PAGE 15
INPF.FIN
                 /TR:BLOCKS/WR
0171
               IHTA(I)=IHTAT(I)
        350
               SUM3(I)=TSUM3(I)
13/3
               SUM3(10) = TSUM3(10)
0174
               SUM1 (10) = TSUM4 (10)
0175
               00 51 1=1,12
0176
               00 51 J=1,3
               HGBP(I,J) = THGBP(I,J)
0177
        51
0178
               00 63 I=1,20
0179
        63
               ANAME(I) = BNAME(I)
0180
               r = 5
               IF (HGBP(5,3) .GT. HGBP(5,2)) L=3
0181
               DU 67 J=1,6
0182
               SUM5(J) = HGBP(J+2,L) - HGBP(J+2,1)
0183
        61
0184
               WRITE (6,415) (SUM5(J),J=1,6)
               FORMAT (/ TOTAL MONTHLY DISTRIBUTION OF THE WATER YIELD INCREASE
        415
0185
              1 VULUME , 5x, 6F10.2)
               SUMB=0.
0186
0187
               DO 417 J=1,10
0188
        417
               SUM6=SUM6+SUM3(J)
0189
               WRITE (6,419) (J,J=1,9), (SUM3(J),J=1,10), SUM6
0190
        419
               FORMAT (//30X, EXISTING ECA IN ACRES BY HABITAT TYPE 1/7X, 918,
                      TOTAL "/7X, 10F8, 2, F10, 2, " ACRES")
              1 ROADS
2191
               CALL WROUTA (DA, PECA, A)
3192
               IF (ISW1 .EQ. 6) GO TO 500
               GO TO 212
2193
3194
        500
               STOP
1195
                 END
```

PROGRAM SECTIONS

NAME	· SIZ	E	ATTRIBUTES
SCODE 1	006342	1649	RW, I, CON, LCL
PDATA	000050	80	RW, D, CON, LCL
SIDATA	002340	624	RW, D, CON, LCL
SVARS	000172	61	RW, D, CON, LCL
. \$\$\$\$.	004726	1259	RW, D, OVR, GBL

OTAL SPACE ALLOCATED = 016072

LP: = INPF

APPENDIX 3

Selecting computer program options

The instructions for operating the program are given in the report by Isaacson (2). The specific reference here is to the use of data card type 10 for selecting the way in which the program will provide water yield increase values. For a given subdrainage, watershed characteristics are initially entered (card types 1 - 8) and then water yield increases are computed for a series of "treatment" data cards (type 9). Each series of treatment cards (type 9) represents either past or proposed logging activity and is followed by a type 10 data card. This card gives a single code number which determines how the results are processed.

Card type 10A with code 70 is intended to signal the end of a series of past data cards (type 9) and is to be followed by a series of proposed treatment type 9 cards. The effects of past and proposed treatments are accumulated and the sums of changes in water yield and equivalent clearcut area are produced. The first set of type 9 cards could be for future rather than past logging activity. Whatever data are entered, the program will sum the results for the 2 series of type 9 cards or for as many series as desired if code 70 is placed after each series. However, it does not make sense to sum more than post plus one proposed future set of treatments.

Card type 10B with code 80 signals the end of data for a given subdrainage. If calculations for additional subdrainages within the main watershed are desired, then data card types 1 - 8 are repeated for the new subdrainage plus appropriate card types 9 and 10. Once the data for all subdrainages have been entered, the last card type 10B with code 80 is followed by an end of file card. This latter card results in the program computing and printing out combined effects of logging in all subdrainages to give cumulative totals for the entire main watershed. Data for additional watersheds may now be entered or calculations terminated.

Card type 10C with code 90 is used if there is only one subdrainage to be analyzed. Results are computed for a set of past and proposed logging activity or for a single series of treatment type 9 cards and the program is terminated directly without seeking further data.

One minor change was made in the Idaho version of the program. Card type 10D with code 60 has been added to permit assessment of the effects of a number of alternative logging options on the same subdrainage without having to re-enter watershed characteristic data cards 1 - 8 for each option and without having the program sum or accumulate the results for each successive option. Hence, any number of proposed treatments can be easily evaluated by following each series of type 9 cards with a type 10D card. The last treatment option type 9 cards should be followed by a type 10C card with code 90.

APPENDIX 4

Example of computer program run including input data and printout of results.

WATER YIELD DATA FORM I

Subdrainage Name Upper Arrow Creek	k Tributary to <u>Arrow Creek</u>
Subdrainage Acres 4084	Total Runoff 9675 Acre-feet
Weighted Average Elevation 6000 ft.	Subdrainage Acres by Habitat Type:
122	3
5 694	6
725908	9 800
Subdrainage Precipitation Data: Eleva	tion (Ft.) Precipitation (In.)
Minimum	
Maximum	
OR Runoff Data: Elevation	(Ft.) Runoff (In.) Code
First point <u>5000</u>	21.1 3
Second point <u>5750</u>	24.5 3
Third point 6250	32.6 3
Fourth point 7000	35.9 3
Base Hydrograph Data:	
2.3 1.4 2.2 4.2 40.9 32.5 Jan Feb March April May June	4./ 2.0 1.6 1.6 3.3 3.9 July Aug Sept Oct Nov Dec
Do you want the water yield increase	volume by stand? Yes.
Year to which watershed status is to 1	be projected? 1979.
Percent increase limit for average wa	ter yield? 7%.
Do you want the sustained cutting rate	e calculated? Yes.
Cutting rates? 50 acrestyear	

ACTIVITY INPUT SHEET PROPOSED PAST SUBDRAINAGE NO. | SUBDRAINAGE RAME Upper Andw Creek DATE MARCH 2, 1978 ACT ELEVATION ASP ACTIVITY % CROWN ACRES HAB STAND TYPE CODE YEAR REMOVAL NUMBER CODE 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 1 8 2 3 4 5 6 19 9 50 R 0 90

SUBDRAINAGE UPPER ARROW CREEK 1979

DRAINAGE ARROW CREEK HAVING TOTAL ACRES OF 4084.

ANDTOTAL RUNOFF OF 9675.ACRE-FEET.

	•	MARCH	APRIL	MAY	JUNE	JULY	AUGUST
STANDICERCTI WATER FIELD INCREASE VOLUME IS	33.19 ACRE-FEET.	0.00	1.66	11.62	14.94	3,32	1.65
STANDICLECTI WATER FIELD INCREASE VOLUME IS	9.58 ACRE-FEET.	0.97	1.94	4.36	1.94	0,48	0.00
STANDICLRETS WATER YIELD INCREASE VOLUME IS	27.66 ACRE-FEET.	1.38	4.15	12.45	6,91	1.38	1.38
STAND: CLRCTI WATER VIELD INCREASE VOLUME IS	51.19 ACRE-FEET,	0.00	3.84	19,20	20.48	5.12	2,56
STANDICERCTI HATER YIELD INCREASE VOLUME IS	31.12 ACRE-FEET.	0.00	3.11	12.45	10,89	3.11	1.56
STANDICLECTS WATER YIELD INCREASE VOLUME IS	32.50 ACRE-FEET.	3.25	6.50	14.63	6.50	1.63	0.00
STANDICERCTI WATER YIELD INCREASE VOLUME IS	34.57 ACRE-FEET.	1.73	5,19	15.56	8.64	1.73	1.73
TOTAL MONTHLY DISTRIBUTION OF THE WATER YIELD	INCREASEVOLUME	7.33	25,33	90.25	70.30	16.77	8.89

219.91 ACRE-FEET

0.00

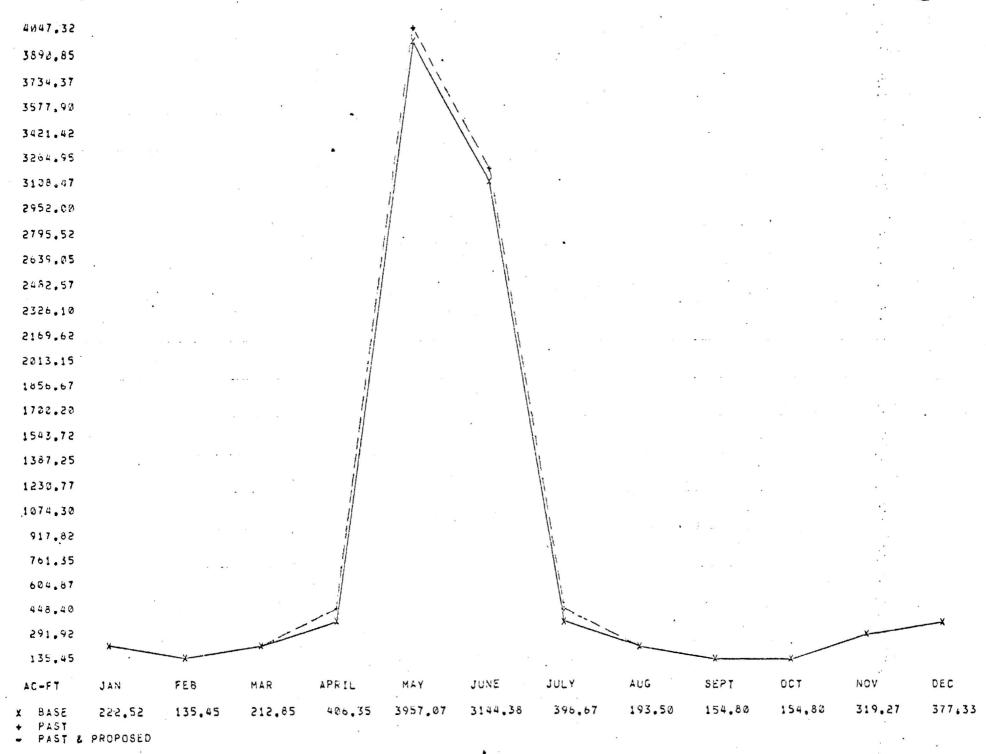
0.00 149.38

PER CENT OF ORIGINAL WATER YIELD INCREASE 2.27 PER CENT PROBABLE EQUIVALENT CLEARCUT AREA ALLOWABLE 500.19 ACRES

0.00

SUSTAINED CUTTING RATE IN ACRES/YEAR INCLUDING RECOVERY TO EQUIVALENT CLEARCUT AREA BY YEARS AND FOREST HABITATTYPES ON AN UNDEVELOPED AREA.

0.00 70.53


			HABITA	T TYPES					
YEARS	1	2	3	4	5	6	7	8	9
1	0.03	0.00	0.00	0.00	68.50	୭.୪୩	255.64	0.00	78.96
5	0.00	0.20	0.03	0.00	45.67	0.00	170.43	0.00	52.64
3	0.00	0.20	0.00	2.00	34.65	0.00	130.44	ଓ . ଟେଡ	39.46
4	80.68	6.03	0.33	0.00	58.56	0.00	106.92	0.00	31.77
5	8.00	0.00	0.00	0.00	24.22	D. 33	92.44	0.00	26.31
6	2.00	0.00	0.00	6.00	21.48	0.00	82.45	0.00	23.42
7	60.00	0.00	0.00	0.00	14.56	0.00	75.00	0.00	21.00
8	0.00	0.30	w.00	0.00	18.17	0.00	70.64	0,00	19.23
9	0.00	8.00	0.00	0.00	17.15	0.00	67.08	0.00	17.90
13	2.63	6.23	0.00	0.08	16.38	0.00	64.36	0.00	16.89
11	3.00	0,00	0.00	0.00	15.00	4.00	62.40	60.0	16.11
15	0.00	0.00	0.22	Ø.90	15.37	0.00	60.89	0.40	15.50
13	0.70	6.83	0.00	2.00	15.04	0.00	59.80	0.00	15.03
14	8.63	0.30	0.00	0.00	14.76	0.00	56.96	0.00	14.67
15	8.80	0.00	0.00	0.02	14.03	0.0n	56.35	0.00	14.38
10	0.00	0.00	0.00	0.00	14.45	0.30	57.89	0.00	14,16
1 7	0.00	2,03	0.00	0.03	14.35	6.60	57.56	0.00	13,49
MAXIMUM	SUSTAIN	ED CUTTI	S RATE	HEACHED	-	-	-		

THE ALLOWABLE EQUIVALENT CLEARCUT AREA 806.19ACRES WILL BE REACHED AT A CUTTING RATE OF 50. ACRES/YEAR

HABITAT TYPES

ACRES 0 0 0 0 0 31 0

