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Abstract: Forest structural parameters such as quadratic mean diameter, basal area, and 

number of trees per unit area are important for the assessment of wood volume and biomass 

and represent key forest inventory attributes. Forest inventory information is required to 

support sustainable management, carbon accounting, and policy development activities. 

Digital image processing of remotely sensed imagery is increasingly utilized to assist 

traditional, more manual, methods in the estimation of forest structural attributes over 

extensive areas, also enabling evaluation of change over time. Empirical attribute estimation 

with remotely sensed data is frequently employed, yet with known limitations, especially 

over complex environments such as Mediterranean forests. In this study, the capacity of high 

spatial resolution (HSR) imagery and related techniques to model structural parameters at the 

stand level (n = 490) in Mediterranean pines in Central Spain is tested using data from the 

commercial satellite QuickBird-2. Spectral and spatial information derived from 

multispectral and panchromatic imagery (2.4 m and 0.68 m sided pixels, respectively) 

served to model structural parameters. Classification and Regression Tree Analysis 

(CART) was selected for the modeling of attributes. Accurate models were produced of 

quadratic mean diameter (QMD) (R2 = 0.8; RMSE = 0.13 m) with an average error of 17% 

while basal area (BA) models produced an average error of 22% (RMSE = 5.79 m2/ha). 
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When the measured number of trees per unit area (N) was categorized, as per frequent 

forest management practices, CART models correctly classified 70% of the stands, with all 

other stands classified in an adjacent class. The accuracy of the attributes estimated here is 

expected to be better when canopy cover is more open and attribute values are at the lower 

end of the range present, as related in the pattern of the residuals found in this study. Our 

findings indicate that attributes derived from HSR imagery captured from space-borne 

platforms have capacity to inform on local structural parameters of Mediterranean pines. 

The nascent program for annual national coverages of HSR imagery over Spain offers 

unique opportunities for forest structural attribute estimation; whereby, depletions can be 

readily captured and successive annual collections of data can support or enable refinement 

of attributes. Further, HSR imagery and associated attribute estimation techniques can be 

used in conjunction, not necessarily in competition to, more traditional forest inventory 

with synergies available through provision of data within an inventory cycle and the 

capture of forest disturbance or depletions.  

Keywords: forest structure; high spatial resolution; image segmentation; CART; 

monitoring 

 

1. Introduction 

Sustainable management of Mediterranean pine forests requires detailed and up-to-date information 

regarding structural parameters [1]. Wood volume and biomass content in forest stands, calculated 

with structural indicators such as mean height and quadratic mean diameter, are basic data for 

administration of resources. Moreover, increasingly important and emerging environmental concerns 

related to habitat protection, carbon accounting, and biodiversity, make reliable knowledge of forest 

resources a requirement for national and international reporting [2]. 

In Spain, as in many other countries, accurate information of structural parameters is usually 

obtained via direct measurements by crews on the ground of systematically sampled field inventories, 

based upon a network of plots located on a regular grid [3] that is also subject to prior stratification. 

Field surveys are often costly and typically not spatially exhaustive. Field surveys are also often 

collected over a given re-measurement period, which can preclude adequate updating of information 

for periodic reports, and are of questionable validity over dynamic or non-merchantable forests. 

Despite these concerns, ground based inventories provide reliable and detailed information for 

development of models such as yield tables per species and given location. It is the difficulties in 

portraying these plot based measures spatially that for many applications limit the utility of this 

information to address more broad forest monitoring and reporting objectives [4], especially in 

heterogeneous forests. 

Satellite imagery has been shown to support forest inventories of extensive areas by providing 

timely observation, increasing the accuracy of area estimates, producing wall-to-wall thematic maps, 

and providing inventory estimates with acceptable bias and precision [5]. The spatially detailed 

information provided by high spatial resolution (HSR) imagery makes it an appropriate data source to 
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aid in accurate estimation of structural parameters, and following suitable methods facilitates the 

characterization of subtle changes in forest structure through time [6]. 

The goal of this research is to explore the potential of HSR imagery to characterize forest structure 

in Mediterranean pines in the Central Range of Spain. Motivated by this purpose we examine the 

capacity of QuickBird-2 imagery to model the quadratic mean diameter, basal area, and number of 

trees per unit area at the stand level (as direct estimators of volume and biomass). Our specific 

objectives are: 

 To model the relation between structural parameters (quadratic mean diameter, basal area, and 

number of stems per hectare) measured via field sampling and a set of spectral and spatial 

variables derived from HSR multispectral and panchromatic imagery. 

 To test and verify the ability of Classification and Regression Trees (CART) as the statistical 

technique for modeling structural parameters. 

 To identify the image derived variables with the greatest informative capacity in the modeling 

of structural parameters, assessing in particular the inclusion of image textural metrics in 

the models. 

2. Background 

Space-borne optical remote sensing is a reliable source of information for assessment of forest 

characteristics over wide areas [7]. The synoptic view and the regular acquisition cycle of image data, 

combined with the burgeoning selection of techniques available for attribute estimation, make 

remotely sensed data an appropriate and valuable source of data for assessment of forest condition and 

detection of change—offering information to augment costly and time consuming field campaigns for 

inventory update and re-measurement [8]. 

2.1. High Spatial Resolution (HSR) Imagery 

Spatial resolution is an important consideration when using remote sensing for forest 

characterization [9]. Currently the spatial resolution of systems frequently used for vegetation 

characterization range from coarse (e.g., 1 km of the Advanced Very High Resolution Radiometer) to 

very high (e.g., 0.4 m of the GeoEye-1 sensor). The adequacy of remotely sensed data for a specific 

purpose (e.g., attribute level: tree, stand, landscape, region) is conditioned by its spatial resolution, 

which is also inversely related to the extent covered by the image [10], also known as the 

image footprint. 

Medium spatial resolution data with pixels sized 10–100 m (e.g., Landsat Thematic Mapper (30 m), 

ASTER (15 m)) are appropriate for characterization of forest condition [11] and monitoring of 

conditions and change at the forest stand level [12]. Certainly a key to the applications and monitoring 

success of Landsat is the ability to capture conditions and dynamics that relate human interaction with 

terrestrial ecosystems. However, more detailed spatial data available since the launch of various 

commercial satellites (e.g., IKONOS in 1999, Orbview-3 in 2003) provide the opportunity for more 

precise depiction of forest parameters and are poised to reduce estimation errors of forest attributes to 

an acceptable level for operational applications [13]. HSR imagery facilitates, for instance, the 

detection of individual tree characteristics [14], providing improved estimates of forest structural 
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attributes [7]. Panchromatic imagery, with fine spatial resolution (< 1 m) is particularly well suited for 

analysis of spatial relations through image texture measures [15,16]. Texture measures enable the 

combination of spatial detail of panchromatic imagery with unique spectral information conferred by 

multispectral imagery serving to leverage complementary information [17] that can be employed 

separately or with a pan-sharpening approach [18,19]. Spectral measures may be understood to inform 

on vegetation status, type, and condition with textural measures informing on vegetation structure. 

Still, the dearth of established methods for image processing and the complex interactions between 

sun-sensor-surface geometry and forest structural characteristics [20], particularly in complex 

topographies, persist in making the use of HSR data challenging [6]. HSR imagery acquired using 

space-borne platforms allows for data collection over remote areas, with predictable georadiometic 

qualities, and information content analogous to mid-scale aerial photography—commonly used for 

forest inventory purposes. Lidar (Light detection and ranging) technology has a demonstrated capacity 

to characterize forest structure [21–24] albeit with high costs persisting to limit operational, wide-area 

applications [25]. Although lidar, with a capacity to collect highly detailed information regarding 

forest attributes, shows promise as a means to collect plot-like data for training attribute estimation 

algorithms applied to HSR imagery. 

2.2. HSR Related to Forest Structure 

The research literature is replete with studies relating forest structural parameters estimated from 

HSR satellite data (Table 1). Frequent techniques to obtain information from HSR images include 

crown isolation [26,27], shadow analysis [18,28], texture analysis [13,29,30], and geostatistical 

approaches [31–33]. The capacity to characterize forest structural attributes typically decreases as 

crown closure increases [6], with an asymptotic relationship predictably emerging for vertically 

distributed attributes of forest structure [34]. 

Table 1. Studies employing satellite HSR imagery for estimation of forest structural parameters. 

Study Attribute 
Environment Sensor Statistical Analysis 

Best Result 
Location Data (spa. res., m) Parameter 

[29] Age class 

Sooke River watershed IKONOS ANOVA Homogeneity in 

large window 

sizes performs 

better than 

variance 

British Columbia 

(Canada) 
Pan (0.82) Texture measures 

[26] Stem density 
Conifer plantation IKONOS Delineation 

83% accuracy 
Ontario (Canada) Pan (0.87) Tree crown delineation 

[35] 

Diameter 

Crown area 

Stem density 

Lake Tanoe Basin IKONOS Linear regression R = 0.67 

R = 0.77 

R = 0.87 
California (USA) Pan-sharpened (1) Crown shadow 

[13] 

Circumference 

Height 

Stand density 

Age 

Basal area 

Even aged Norway 

spruce forest 
IKONOS-2 Linear regression 

R2 = 0.82 

R2 = 0.76 

R2 = 0.82 

R2 = 0.81 

R2 = 0.35 

Hautes-Fagnes 

(Belgium) 
Pan (0.87) GLCM textural metrics 
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Table 1. Cont. 

[36] Maximum height 

Conifers QuickBird Linear regression 

R2=0.66 
Sierra Nevada 

mountains California 

(USA) 

MS (2) Reflectance 

[37] 

Height 

Age 

Crown closure 

Mature forest in the 

foothills of the Rocky 

Mountains 

IKONOS Decision tree 
Accuracy 49% 

Accuracy 57% 

Accuracy 85% 
Alberta (Canada) MS (4) and Pan (1) Reflectance and texture 

[28] Biomass 
Boreal spruce forest QuickBird Linear regression 

R2 = 0.87 
Canada Pansharpened (0.6) Shadow fraction 

[31] Mean crown size 

Conifer and hardwood  IKONOS Linear regression 
R2 = 0.73 

RMSE = 0.10 North Carolina (USA) Pan (not reported) 
Variogram 

Image variance ratio 

[38] Biomass 

Mangrove IKONOS Linear regression 

R2 = 0.92 
French Guiana NIR (4) Pan (1) 

Fourier textural 

ordination indices 

[27] 
Stand density 

Stand volume 

Coniferous plantations 

in slopes  
QuickBird Modeling-allometry 

R = 0.82 density 

R = 0.78 volume Shikoku Iskland 

(Japan) 
Pan (0.61) Reflectance 

[39] 

Crown width 

Tree diameter 

Stem frequency 

Tropical forest IKONOS Allometric equations 
Crown within 3% 

of field measures Brazil Pan (1.00) Local extreme filter 

[18] Volume 

Open Juniperus forest QuickBird Linear regression 
R2 = 0.67 

R2 = 0.51 Turkey Pansharpened (0.61) 
Shadow area 

Crown area 

[32] Mean crown size 

Pine and poplar plant.  QuickBird Variogram 

Error: 2.52-42% Beijing and Shanxi, 

(China) 
Pan (0.61-0.67) Reflectance 

[16] Mean crown size 

Hardwoods  
IKONOS and 

QuickBird 
Linear regression 

R2 = 0.60 

regression 

CD~variance ratio 

(RMSE = 0.82) 

R2 = 0.74 across 

site comparison 

R2 = 0.52 across 

sensors 

Ohio and North 

Carolina (USA) 
Pan (1) Pan (0.73) Image variance ratio 

[40] Mean stand height 
Boreal forest  QuickBird Regression tree R2 = 0.53 

RMSE=2.84 m Yukon, Canada Pan (0.68) Reflectance 

2.3. Status in the Use of Remote Sensing for Estimation of Forest Structure in Spain 

The Spanish Plan Nacional de Teledetección (PNT) is committed to acquiring complete national 

coverages of HSR satellite imagery annually [41] and to make data available for research at no cost. 

The acquisition phase started in 2008 [42], capitalizing upon archival data to backdate the database to 
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2005 coverage. Initial coverage consist of SPOT5-HRG XS+P (2.5 m) data, with other sensors being 

considered for future acquisitions [43]. Access to this data represents a unique opportunity to 

incorporate HSR into Spanish forest inventories as an operational and low cost data source to meet a 

range of information needs. The data is to be collected with a primary focus on land-use land-cover 

change assessment [42], but capacity to generate information for forest monitoring and reporting can 

also be generated. 

Encouraged by a readily available source of data there has recently been an increased interest by the 

Spanish research community in relation to remote sensing technologies and the potential application to 

forest environments, in particular the characterization of forest structure. Vázquez de la Cueva [44] 

explored relationships between forest structural attributes at the plot level (e.g., height, basal area, and 

crown canopy closure) and spectral information derived from Landsat Enhanced Thematic Mapper 

Plus (ETM+; 30 m pixel size) imagery combined with topographic data. The study considered three 

types of forest in Central Spain and applied a multivariate canonical ordination method. The author 

found a strong influence of vegetation type on the results, with a low percentage of variance explained 

precluding development of robust empirical models. Pascual et al. [45] used lidar data and a two stage 

object based methodology to characterize the structure of Pinus sylvestris L. stands in forests of 

Central Spain. Five structure types were defined based on height and density parameters. The median 

and standard deviation of height were found to be the most valuable for definition of structure types, 

with the approach developed being proposed for operational application suitable for inclusion in forest 

inventory procedures in support of forest management plans. Merino de Miguel et al. [33] investigated 

the strength of relations between dasometric parameters and textural variables in Pinus pinaster Ait. 

stands in Central Spain. The authors used geostatistical tools (i.e., variograms), calculated with 

orthophotography and IKONOS-2 imagery with original and degraded spatial resolutions. The authors 

found the strongest correlations when the variogram was calculated for spatial resolutions of 1 m and 

2 m. As such, opportunities to further explore the capacity of HSR imagery to estimate a range of 

forest structural parameters remain. 

3. Methods 

Below, and in Figure 1, we summarize the approach implemented and the data utilized in this 

research. Forest structural attributes (QMD, BA, and N) are derived from data measured on the field 

through a process of geostatistical interpolation. Spectral and spatial variables from HSR imagery 

direct the delineation of stand-like areas for summarizing data. Statistical models linking forest 

parameters and imagery data are built with CART and validated with numerical and graphical tools. 

3.1. Study Area and Field Data 

The study focuses on pines in the Central Range of Spain (Figure 2), an area mainly dominated by 

P. sylvestris L., P. pinaster Ait., and P. nigra Arn. species. Two sites representing different forest 

conditions were chosen for availability of field data. Pinar de Valsaín (hereafter Valsaín) is a 7,627 ha 

forest of Pinus sylvestris L. on the North facing slopes of Sierra de Guadarrama (Segovia). It is a 

multifunctional forest (timber production, recreation, and protection) with an established management 

plan since 1889 that has evolved from a rigid to a more flexible scheme over the subsequent decades. 
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Management actions and recreational activities have had an impact on the forest structure [46]. Valle de 

Iruelas (hereafter Iruelas) is a 5,483 ha forest of P. pinaster Ait., P. sylvestris L., and P. nigra Arn. in 

Sierra de Gredos (Ávila). It is also a multifunctional forest (wood, resin, and pasture production, 

recreation, and wildlife habitat). Although the first management plan was approved in 1886, historical 

circumstances prevented its implementation. The production of resin during the twentieth century 

favoured old growth development and a complex history of fires has also conditioned the forest structure. 

Figure 1. Schematic methodology followed in the study. 

 

Systematic surveys based on ground sample plots are conducted periodically over the study sites 

measuring attributes including density, diameter at breast height (dbh), and height. For this study, data 

is from 2005 for Iruelas and 1999 for Valsaín, with the latter updated to 2004 conditions using a 

locally appropriate growth model following procedures recommended by the Spanish National Forest 

Inventory. The quadratic mean diameter (QMD) and basal area (BA) were calculated at each inventory 

plot (Equations (1–2)) where the total number of trees per unit area (N) was also available; expansion 

factors were used to scale values to a given area [47]. BA and QMD are adequate attributes for volume 

modeling at the stand level. QMD was preferred over the arithmetic mean diameter as it has a stronger 

correlation to stand volume [48]. 
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Figure 2. Location of the study sites. Insets show QMD values as kriged from inventory 

plots in the treed areas of Valle de Iruelas and Pinar de Valsaín. Subset areas covered by 

834 plots in Valsaín and 661 plots in Iruelas were investigated in the study. 

 

Geostatistics provides a means for extrapolation of measured values to unmeasured points and 

areas, and facilitates the derivation of thematic layers for integration with other data [49]. Kriging is a 

spatial interpolation method that yields the best possible estimation of the spatial variable of interest at 

every unmeasured point [50] and the error committed in the estimation is minimized and known at 

each point [51]. In this study we mapped the forest variables of interest (QMD, BA, and N) measured 

in ground plots located over grids sided 150 m in Iruelas and 200 m in Valsaín into raster layers 

through a process of ordinary kriging. The relative standard error (i.e., the standard error of the kriged 

surface relative to the mean attribute value at the polygon level) was on average 15% for the QMD 

kriged layer and 25% for the BA and N layers, similar to the variability found for multiple plots found 

within the same polygon. More accurate averaging is facilitated, as sampling is complete and spatial 

correlation of plot values is accounted for. 

3.2. HSR Imagery 

QuickBird-2 is an Earth Observation satellite launched by Digital Globe in 2001, providing data in 

five spectral bands (Table 2). It has the capacity to be oriented and to capture images off nadir enabling 
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a temporal revisit of 2–6 days depending on latitude [52]. The pixel size of QuickBird-2 images is 

2.4 m for the multispectral bands and 0.68 m for the panchromatic band (Table 2). 

Two QuickBird-2 images, supplied in a georeferenced form by the data provider were used in this 

study, each covering one of the study sites (Figure 2, Table 2). Images were orthorectified with a 

Digital Elevation Model (DEM) derived from a contour vector map 1:10,000 (www.sitcyl.jcyl.es) and 

registered to aerial photography with 0.25 m pixels (www.sitcyl.jcyl.es). The multispectral and 

panchromatic bands were orthorectified separately with root mean square errors (RMSE) of 0.69–0.72 m 

(multispectral bands) and 0.66–0.81 m (panchromatic band). Images were resampled with cubic 

convolution to 2.0 m (multispectral bands) and 0.6 m (panchromatic band) for alignment with the 

regionally appropriate coordinate grid (UTM 30N) and to facilitate integration with rasterized attributes. 

Atmospheric correction of the multispectral images was performed with the COST model [53] using 

water bodies as dark objects and the atmosphere-scattered path radiance L
p estimated with a relative 

spectral scattering DOS model (−4) under very clear atmospheric conditions [54]. 

Table 2. Characteristics of the satellite imagery used in the study. 

QuickBird-2 Imagery 

Spatial resolution 
Multispectral 2.4 m 

Panchromatic 0.68 m 

Bands 

Blue 0.45–0.52 μm 
Green 0.52–0.60 μm 
Red 0.63–0.69 μm 
NIR 0.76–0.90 μm 
Pan 0.45–0.90 μm 

 Valsaín Iruelas 

Date (dd/mm/yyyy) 19/05/2004 05/08/2005 

Sun elevation (°) 58.4 72.0 

3.3. Image Segmentation 

Image segmentation is the partitioning of images into uniform continuous spatial units [55]. 

Through the application of automated algorithms the criteria for homogeneity can be defined by the 

user, based on parameters such as tone or spatial pattern. Image objects or segments composed of 

various pixels provide supplementary features for image analysis, not available in pixel based analysis, 

such as local statistical relations of digital numbers [37], shape, size or context. That is, once segments 

are produced, objects (i.e., trees or groups of trees) or spatially constrained summaries of the digital 

numbers within the segment may be used to provide representative segment-level information [39]. In 

forest environments, the segments can often be considered as analogous to the manually delineated 

stands found in forest inventories [56]. 

Segmentation routines were applied to the QuickBird-2 images using Definiens Cognition Network 

Technology® [57,58]. In the process of image segmentation the size of resulting objects is determined 

by the scale parameter and by the landscape characteristics; for instance a given scale value would 
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produce larger objects in a homogeneous landscape and smaller objects in irregular areas. The scale 

parameter was 50 in Iruelas and 100 in Valsaín. Other settings guiding the segmentation routine 

include color-shape 0.8-0.2 and smoothness-compactness 0.5-0.5. The homogeneity criteria included 

the visible and NIR bands with similar weight, and an aspect layer derived from the DEM to incorporate 

topographic information as one of the possible structural driving factors [59] was weighted 0.1. 

3.4. Image Texture Metrics 

Image texture, defined by Haralick and Bryant [60] as “the pattern of spatial distributions of  

grey-tone”, describes the relationship between elements of surface cover [61] and is one of the 

most valuable criteria in visual interpretation. The estimation of forest stand parameters is 

sometimes improved with a combination of spectral and spatial information [62] such as texture. 

Consequently a host of texture measures have been utilized to predict structural parameters in various 

environments [13,29,55,63,64] and has shown particular utility in complex structures such as tropical 

forests for above ground biomass estimation [17,65]. 

Table 3. Attributes used for modeling. The mean and standard deviation of each of these 

attributes was de facto used in the decision trees. 

Predictor Variable Description 

Reflectance  

   B1 (Blue) Reflectance band 1 

   B2 (Green) Reflectance band 2 

   B3 (Red) Reflectance band 3 

   B4 (NIR) Reflectance band 4 

Textural  

   H_S Homogeneity Small window 

   Con_S Contrast Small window 

   E_S Entropy Small window 

   H_M Homogeneity Medium window 

   Con_M Contrast Medium window  

   E_M Entropy Medium window  

   H_L Homogeneity Large window 

   Con_L Contrast Large window  

   E_L Entropy Large window  

Topographic   

   Aspect Orientation 

We applied an approach for texture analysis based on measures derived from the Grey Level 

Coocurrence Matrix (GLCM) [66,67]. The GLCM is a tabulation of how often different combinations 

of pixel grey levels occur in an image [68] at a specific distance and orientation (within a particular 

processing kernel, or analysis window). Texture analysis is a multiscale phenomenon [69] and 

choosing the right window size to capture meaningful local variance without generalizing unrelated 
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features [13] is one of its key challenges [70]. For selection of window sizes to calculate the GLCM 

texture measures we used the semivariogram approach [71,72]. Semivariograms were calculated for 

image subsets over five experimental structural plots in Valsaín [73] and ten structurally different areas 

in Iruelas, identified with a combined approach based on inventory data and visual interpretation to 

cover all distinctive structural conditions. The range in the variogram indicates the distance beyond 

which pixel values are no longer correlated [71] and is an indication of the elements forming the 

texture present within the scene. The range is frequently associated with the most dominant elements 

in the scene, be it single tree crowns in open forests, or the canopy of groups of trees in close 

environments. Once the variograms were calculated, the range values were manually identified at the lag 

distance, where the variograms first flattened, corresponding with window sizes on the QuickBird-2 

panchromatic band of 7 × 7, 9 × 9, and 13 × 13 pixels in Valsaín and 7 × 7, 13 × 13, and 23 × 23 pixels 

in Iruelas. We considered three GLCM texture variables, that is, Homogeneity, Contrast, and Entropy 

for each size of window (Small, Medium, and Large) (Table 3) based on their high values of 

correlation with structural parameters observed and pre-analysis investigations (results not shown). 

3.5. Decision Tree 

One option to identify relations between variables in multivariate data sets resulting from object 

analysis is the use of decision tree data analysis [37] also known as Classification and Regression 

Trees (CART). Regression trees identify relationships between a single continuous response 

(dependent variable) and multiple, continuous and/or discrete, explanatory (independent) variables, 

through a binary recursive partitioning process, where the data are split repeatedly into increasingly 

homogeneous groups (nodes), using combinations of variables (rules) that best distinguish the 

variation of the response variable. Tree models do not make assumptions regarding the distribution of 

the input data [74,75]; plus, they are able to capture non linear relationships between variables and are 

robust to errors in the input and results. Tree modeling is a nonparametric method which basic theory 

is reported in Breiman et al. [76]. 

CART approaches have frequently been used in the environmental remote sensing community for 

classification and mapping [77–79] for modeling [80–82] and for forest characterization [83]. In the 

estimation of forest structural parameters with HSR satellite imagery, decision trees have been applied in 

diverse environments: Chubey et al. [37] used CART for analysis of percent species composition, crown 

closure, stand height, and age with IKONOS imagery based on analysis of objects in Alberta, Canada, 

obtaining the best estimations for species composition and crown closure. Goetz et al. [84] used 

IKONOS and shadow analysis to model and derive classified maps of canopy cover, with 97.3% overall 

accuracy, in Maryland, USA. Mora et al. [40] estimated mean height of forest stands in boreal coniferous 

forests in Yukon, Canada, obtaining a prediction accuracy of 53% and an RMSE of 2.84 m on stand 

height. All of the abovementioned approaches suggest local models for estimation of forest structural 

parameters as an alternative tool for alleviation of often costly and time consuming field inventories. 

3.6. Applied Decision Tree 

For development of decision tree models each segment was characterized with the mean and 

standard deviation of the reflectance and texture variables described above (Table 3), and the mean 
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values of the kriged forest structural parameters (QMD, BA, N) and topographic orientation. These 

sets of data were input for the CART analysis in Matlab®. 

Samples were randomly split into calibration (two thirds) and validation (one third) sets. The 

representativeness of the subsamples was tested with a Multi Response Permutation Procedure 

(MRPP) [85,86]. This non-parametric method tests the hypothesis of no difference between two or 

more data sets for a range of parameters (i.e., the metrics used as inputs to the regression tree). To fit 

the model a cross validation process with ten iterations was performed; to avoid over-fitting we 

considered the establishment of a minimum number of cases in terminal nodes and pruning with the 1 

SE rule [76]. 

4. Results  

4.1. Stand-Like Areas Produced by Segmentation of the QuickBird-2 Imagery 

Objects smaller than 0.5 ha produced in the process of segmentation were eliminated. Furthermore, 

screening outliers of reflectance and texture variables (i.e., segments which values were three or more 

standard deviations from the mean) enabled identification of objects that did not appear representative 

of known local forest conditions, typically corresponding with shepherding areas with buildings 

present in Valsaín and objects dominated by bare soil in Iruelas. Thirty nine such unusual objects were 

removed as outliers for subsequent analysis. Finally the number of objects preserved for modeling was 

490, with an average area of 5.3 ha. Table 4 lists the statistical descriptors of the structural attributes 

(QMD, BA, N) and topographic parameter (aspect) at the stand-like level. Figure 3 illustrates the 

distribution of the structural parameters. 

Table 4. Statistical descriptors of structural (QMD, BA, N) and topographic (aspect) 

parameters of the stand-like objects obtained with the segmentation process and after 

removal of outliers. To fully capture the ecological meaning of the stand orientation and to 

avoid operational ambiguities we computed aspect values to be expressed as a non-polar 

complex number using the notation of Euler: Aspect = exp(−i × (θ − П/2)). 

 QMD(m) BA(m2/ha) N(n/ha) Aspect (θ°)

Mean 0.5715 26.5344 323.2064 168.5636

Standard Error 0.0138 0.5044 6.4277 4.3050

Median 0.3918 26.5148 306.461 155.2855

Standard Deviation 0.3062 11.1671 142.2839 95.2968

Kurtosis −0.7460 −0.6941 0.1987 −1.2352

Skewness 0.7943 0.2266 0.6035 0.1926

Range 1.2407 53.8552 805.0587 337.2344

Minimum 0.2148 5.8128 39.1273 10.1746

Maximum 1.4555 59.6681 844.186 347.4090
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Figure 3. Distribution of the structural parameters (QMD, BA, N) in the stand-like 

polygons produced with the segmentation of the satellite images. Note that QMD graph 

bins are not all equal. 

 

 
4.2. Regression Trees 

Information regarding the calibration and validation subsamples is presented in Table 5. The MRPP 

test, performed including all stand level predictors, confirmed there were no significant differences 

between the calibration and validation datasets (p-value 0.77). 

Table 5. Number of samples used for calibration and validation of the CART models. 

Samples Stand-Like Segments 

Total 490 
Calibration 327 
Validation 163 

Fitting all regression tree models was statistically significant (p-value < 0.001) and with high values 

of correlation (Table 6) between structural parameters and image predictors. To assess the performance 

of the models we applied them to the independent set of validation data, analyzing values of the Root 

Mean Square Error (RMSE) and correlation coefficient (R2) (Table 6) and evaluating discrepancies 

between values measured on the field and values predicted by the regression tree models with the help 

of graphic tools (Figures 4 and 5). 

Applied to the validation sample the models show varying strength of the relation between the 

structural parameters and the image variables used as predictors. The QMD model correlation value is 

the highest, followed by the BA model and with the N model ranking last (Table 6). The RMSE 



Remote Sens. 2012, 4                            

 

148

values, a means to measure the precision of the models, are moderate for QMD and BA, and relatively 

higher for N when a prediction of the exact number of trees is expected (Table 6). As practical 

decisions in forest management are often based on classes of attributes rather than exact values of 

structural parameters, we evaluated the performance of the CART model to classify values of N. The 

measured number of trees per unit area (N) was classified into density categories ranging from open 

(N < 150) to closed (N > 500) categories. The CART model classified 70% of the stand-like segments 

in the correct group, with all other segments classified in an adjacent class. The average relative error 

of the models was also evaluated as the percentage of RMSE respect to the average measured 

parameter (Table 6). 

Table 6. Fitting and performance results of the regression tree models for QMD, BA, and N. 

Structural 
Parameter 

Validation Fitting 

RMSE % Average Error R2 Rho p-value 

QMD 0.13 17 0.80 0.89 1.81 e-59 

BA 5.79 22 0.70 0.85 7.08 e-47 

N 98.86 31 0.46 0.71 1.80 e-26 

Scatter plots in Figure 4 illustrate the relation of observed values of QMD (a), BA (b) and N (c) 

versus the corresponding estimated values of the validation subsample (n = 163). The QMD model 

performs with very good accuracy for the smaller diameters, with points close to the 1:1 line, and more 

randomly spread to both sides for larger diameters. The BA model depicts a similar but less accurate 

pattern, while the N model shows increasing disagreement of observed to modeled values at the more 

dense stands. Noteworthy is a tendency of underestimation for parameters at high values (QMD ≥ 1.2, 

BA ≥ 50, and N ≥ 600), likely as an expression of the well known saturation of optical sensors at 

increasingly high biophysical parameter values [34,87]. This kind of error is important to note with 

reference to volume and biomass estimation, since larger trees contribute more to these estimates [88], 

but it is of minor importance in this particular area where few stands are over the thresholds mentioned 

above (Figure 3; Table 4). 

Figure 4. Plot of the observed structural parameters QMD (a), BA (b), and N (c), versus 

estimated values for the validation subsample (n = 163). 

 

(a) (b)
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Figure 4. Cont. 

 
A closer look at the residuals confirms the relative precision of the QMD model (Figure 5(a)); an 

assessment of relative errors revealed that the relative error committed is below 20% in 76% of the 

validation sample (n = 123). A comparison of 5 cm diametric classes between the estimated and 

observed data indicated an agreement in 53% of the stand-like segments, with 19% falling in the adjacent 

class. Furthermore, the random distribution of residuals in the most frequent classes (0.30–0.40) leads 

to an almost complete compensation of the average error. This optimistic result should be carefully 

considered, as averaged values over areas of different sizes could lead to miscalculations. The 

residuals in the BA model look randomly distributed (Figure 5(b)), but there is a higher number of 

underestimates (57% of the validation sample) and in these cases the absolute value of residuals is 

higher. In the N model 55% of the validation segments are underestimated; a tendency to underestimate 

lower values and overestimate higher densities is observed. 

Figure 5. Plot of the observed QMD, BA, and N versus the residuals of the models. 

(a): QMD, (b): BA, (c): N. 

 

(c)

(a) 
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Figure 5. Cont. 

 

To reduce over-fitting and to make the models practical and operationally viable we established a 

minimum number of cases in terminal nodes (n = 80). Furthermore, examining the terminal nodes 

average values and the improvement of intra-group variance they represent from father nodes (i.e., 

decreased variance) appropriate pruning levels were determined. With these premises the number of 

terminal nodes obtained was between seven (for the QMD and BA models) and eight (for the N model) 

(Figure 6; Table 7). 

The most relevant predicting variables determining decisions in the regression tree models are 

shown in Table 7. Noteworthy is the primacy of stdev B1 (standard deviation of blue reflectance) 

which enters all models in first place. All other reflectance bands (green, red and near-infrared) did 

also determine some branch rules (Figure 6). Among textural variables, contrast and entropy of various 

window sizes were the more relevant; homogeneity was not included in decision rules. A total of five 

or six variables were included in each of the models. 

(c) 

(b) 
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Figure 6. Example of a regression tree model of QMD. Hollow boxes represent branch 

rules; elements fulfilling the rule go to the left, the rest go to the right. Values of terminal 

nodes average QMD of elements in the group. 

 

Table 7. Relevant predictors in regression trees of QMD, BA and N and number of terminal nodes. 

Structural Parameter Relevant Predictors  Terminal Nodes 

QMD 

Stdev B1 
Mean B3 
Mean Contrast Larger window 
Mean B4 
Standard deviation B4 

7 

BA 

Stdev B1 
Mean B3 
Mean B1 
Standard deviation B2 
Mean Entropy Small window 

7 

N 

Stdev B1 
Mean B1 
Standard deviation B4 
Mean Entropy Medium window 
Mean B2 
Mean B3 

8 

5. Discussion 

Structural parameters such as quadratic mean diameter, basal area, and number of trees per unit area 

of Mediterranean pines in Central Spain have been modeled with regression trees and with HSR 

reflectance and texture metrics from QuickBird-2 imagery as model inputs. Results, although limited 

by uncertainties in the reference data and processing techniques, show reasonable accuracy (R2 = 0.8) 

and precision (estimation relative error ~17%) for the QMD model and robust models (R > 0.7) for BA 

and N but with higher estimation relative error (22–31%). 
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Management plans were initiated in Spanish forests more than a hundred years ago [89]. Albeit the 

early start, only 19% of the treed forest area in Spain is currently governed by a management plan 

under formal implementation [90]. Often noted as a primary reason for this unfavorable proportion, is 

the high cost of field inventories, limiting surveys to forests with potential to produce economic 

revenue. However, with the increasing concern over environmental issues, current forest inventories 

are aimed at informing a variety of long-term objectives including biodiversity, carbon accounting, 

habitat protection and sustainable timber production [91]. Remote sensing can contribute to the ability 

to produce timely, cost efficient inventory estimates via image segmentation for stand delineation [45] 

and statistical modeling for assessment of attributes with acceptable precision [5]. HSR satellite 

sensors emerged a few years ago as promising data sources for forest inventory [6,92] providing 

consistent and frequent imagery. Our study demonstrates that in Mediterranean pines of Spain 

QuickBird-2 imagery and CART modeling would be useful and affordable for assisting in the 

assessment of forest areas with a variety of objectives (e.g., recreation, carbon storage), though caution 

is required to deal with inherent modeling uncertainties. Although remote sensing is not expected to 

replace completely field measurement any time in the near future [5] it would facilitate planning and 

management with realistic goals. 

Among the strengths of HSR imagery is the high geometric fidelity [93] and the possibility of 

identification of individual elements such as trees or groups of trees. The unique capabilities of the 

QuickBird-2 instrument are exploited here by including texture metrics in the modeling, as image 

texture is influenced by biophysical parameters like crown diameter, distance between trees, tree 

positioning, LAI, and tree height. The historic limited use of texture parameters is often indicated as 

related to a paucity of appropriate software tools [94] and is being progressively overcome. 

Alternately, for monitoring programs with various dates of imagery and more than one scene, off-nadir 

view angles and differing solar and atmospheric conditions should be considered [20] as they may pose 

analysis difficulties. 

Heterogeneous environments typically require a dense network of sample plots for an adequate 

assessment of varying conditions [95]; likewise, the capacity of a grid of inventory plots to capture the 

diversity of Mediterranean forests could be argued. With the complete coverage offered by remotely 

sensed data, selective sampling may become unnecessary, for instance if imputation techniques are 

applied. Furthermore, in applications where sampling is needed, segmentation of HSR images helps 

the design of sampling units by automatically and consistently defining homogeneous areas [96], 

otherwise delineated with human expert and costly effort. If adequately trained, segmentation algorithms 

have the ability to semi-automatically divide images into structurally homogeneous areas only 

requiring human revision [25], that can be used as strata to optimize the field sampling design [97] and 

also allowing the reduction of sample collection needs. 

Tree models are easily interpreted and applied, with few statistical requirements imposed that make 

it an appropriate method of estimation in forest environments. Employing data from managed stands’ 

field inventories in the support of modeling efforts has an intrinsic limitation related to the dearth of 

measurements of small trees; this circumstance is possibly related to a bias of the data considered as 

truth, and could partly excuse the underestimating trend of our models. All sources of uncertainty 

should be thoroughly considered for aiding the interpretation of modeling results. Our calibration 

dataset consisting of 327 stands is relatively large (66% of the sample) as the accuracy of decision tree 
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models tends to increase with increasing calibration sample size [70]. Mora et al. [40] in Yukon 

(Canada) demonstrated that a smaller calibration dataset (30% of the sample) could perform 

adequately if there were difficulties to obtain reference information, making this method an even more 

appealing tool for inventory. With a simple structure, that is, low number of rules and final nodes, 

CART constitute a practical and parsimonious tool for classification of stands for management or 

planning. The acquisition of periodic HSR coverage of the whole territory by the PNT poses an 

unprecedented opportunity to use remote sensing for assessment of the structure of Spanish forests that 

managers should strongly consider. 

6. Conclusions 

High spatial resolution (HSR) satellite imagery, such as QuickBird-2, has information content 

enabling the modeling of structural parameters for the pine forests of Central Spain. In this research the 

quadratic mean diameter (QMD), basal area (BA), and number of trees per hectare (N) of pines in the 

Central Range of Spain were modeled at the stand level with classification and regression trees 

(CART). Models were produced with average estimation errors suitable for planning purposes: 

predictions of QMD had an average error of 17% and BA an average error of 22%, while N was 

correctly classified in 70% of the cases. Although some refinement of the techniques applied here is 

possible to support operational activities, this study has demonstrated that following the selection of 

appropriate statistical tools combined with the periodic acquisition of HSR imagery by the Spanish 

Plan Nacional de Teledetección (PNT) could be of great value to the forest community as a low cost 

option to support planning activities. Additional stakeholders could also be accommodated and 

supplied with wide-area estimates of forest structural attributes following the methods suggested in this 

research. The capacity to revise the estimates with new plot data in subsequent years and to incorporate 

depletions using change detection procedures also points to additional utility and value that can be 

created from the national PNT image collections. 
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