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Abstract 20 
The subalpine zone is the transition between forest and alpine vegetation communities. In 21 
Norway, as in many other nations, low productivity or non-merchantable forests, like the 22 
subalpine zone, are not routinely subject to inventory programs. Awareness of expected changes 23 
in the sub-alpine zone as a result of a warmer climate, and the interest in full carbon accounting 24 
at the national level, has dictated a need for data capture in these mountainous areas. We propose 25 
an approach for integrating strip samples of Light Detection and Ranging (LiDAR) data with 26 
Landsat imagery to delineate the subalpine zone. In the current study the subalpine zone was 27 
defined according to international definitions based on tree heights and canopy cover. The three-28 
dimensional measurements of forest structure obtained from LiDAR enable a delineation of the 29 
subalpine zone. The approach was implemented using 53 LiDAR sample strips in Hedmark 30 
County, Norway, and validated with field measurements at 26 locations. The subalpine zone 31 
boundaries were found to be within one Landsat pixel, on average, when validated using an 32 
image gradient technique. Furthermore, binomial logistic regression was used to upscale the 33 
LiDAR classes to the entire county (27 400 km2) using satellite images and information derived 34 
from a digital terrain model. The result from the binomial logistic regression was a probability 35 
map suitable for monitoring changes in the extent and location of the subalpine zone. The 36 
probability surface was separated into hard classes by calibrated alpha-cuts derived using density 37 
estimation to support the information needs of inventory stratification and area estimation. 38 

 39 
Keywords: Subalpine zone; Forest-tundra ecotone; LiDAR; Airborne laser scanning; Satellite 40 
data; Landsat; Canopy coverage; Logistic regression; National forest inventory. 41 
 42 
1. Introduction 43 
The subalpine zone is defined as the transition between the forest and alpine vegetation 44 
communities (Kimmins, 1997). Transitions between two different vegetation communities are 45 
referred to as ecotones (Clements, 1905). The forest-tundra ecotone is also often understood as 46 
analogous to the subalpine zone, with various definitions and terms for this ecotone in usage (c.f. 47 
Callaghan et al., 2002; Löve, 1970). However, there is agreement that the subalpine zone is 48 
limited downwards by the forest line and upwards by the tree line (Kimmins, 1997). Forest and 49 
tree lines are often defined according to tree height (h), tree density (N) and/or canopy coverage 50 
(C). The definitions applied in the current study were selected to provide results consistent with 51 
those applied in international reporting. The definition of “other wooded land” by the United 52 
Nations Food and Agricultural Organization (FAO) was applied for the subalpine zone. Hence, 53 
in the current study the subalpine zone is defined as the area where the crown coverage of trees, 54 
higher than 5 m, is between 5 and 10 %, or where the joint crown coverage of trees and shrubs, 55 
higher than 0.5 m, are larger than 10 % (FAO, 2006).  56 

In a recent meta-analysis it was shown that half of the alpine tree lines included in a 57 
global study had advanced during the last century, while only 1% of the studies indicated 58 
recession (Harsch et al., 2009). Alpine forest and tree lines are expected to advance as a result of 59 
a warmer climate (Dalen & Hofgaard, 2005; Harsch et al., 2009), with changes in human use and 60 
activities in mountain areas also expected to affect the subalpine zone e.g. diminished grazing of 61 
domestic animals (Cairns & Moen, 2004; Hofgaard, 1997). The ongoing and expected changes in 62 
the subalpine zone have increased the demand for information about this ecotone. Changes in the 63 
subalpine zone will have an influence on biodiversity, landscape characteristics, biomass, and 64 
carbon pools in the zone itself as well as in the adjacent forested and alpine areas. Countries that 65 
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have ratified the Kyoto protocol are also committed to report land use change attributable to 66 
deforestation, aforestation and reforestation (UNFCCC, 2008). Consequently, there is an urgent 67 
need for an updated complete national mapping of the subalpine zone and a capacity to alter the 68 
zone boundaries based upon future developments. For instance, there is a burgeoning interest in 69 
full carbon accounting requiring inventories and monitoring of low biomass areas such as the 70 
subalpine zone. National inventories and monitoring systems have until now typically not 71 
included the subalpine zone, as the focus has traditionally been on productive forests with 72 
resource management aims. Furthermore, the expenses related to establishing and measuring 73 
field plots in remote mountainous areas have further limited the focus on such areas in national 74 
inventories. The lack of information on the area and the extent of the subalpine zone results in an 75 
inability to report the current state and related monitoring of changes in this ecotone. Hence, 76 
National Forest Inventories (NFI) are under pressure to develop protocols to incorporate the need 77 
for inventory and monitoring of the subalpine zone. 78 

Remote sensing offers possibilities for mapping and monitoring of large areas. Medium 79 
spatial resolution optical satellite images (often defined as a ground sample distance of 10 – 100 80 
meters) have been especially important, providing data with sufficient spatial detail over large 81 
areas at sufficiently low costs to meet a range of information needs (Cohen & Goward, 2004; 82 
Falkowski et al., 2009). The opening of the United States Geological Survey (USGS) Landsat 83 
archive to provide all new and archival data for free (Woodcock et al., 2008) has further 84 
accentuated the utility of this data. Landsat data was used to characterize the subalpine zone in 85 
Central Siberia (Ranson et al., 2004). Hill et al. (2007) used images from another medium 86 
resolution satellite sensor (SPOT 5 HRG) to represent the subalpine zone. Limitations in 87 
accuracy obtain with satellite imagery alone have motivated the combination of spectral data 88 
from satellite imagery and other spatial data sources (e.g. elevation, climate, soil) (Franklin, 89 
1995; Rogan & Miller, 2007; Wulder et al., 2006). Thematic maps, such as those indicated 90 
above, can have limitations in coverage particularly in remote mountainous areas. However, 91 
elevation data are often available in these remote areas. Variables derived from elevation may 92 
relate to the presence of the subalpine zone (Bader & Ruijten, 2008) and are use to improve maps 93 
based upon satellite data (e.g. Wulder et al., 2006). Hence, the combination of medium resolution 94 
optical satellite imagery and elevation data (and related derivatives) offers refined potential to 95 
map the area and extent of the subalpine zone. 96 

A drawback of medium resolution satellite images is that the spatial resolution often 97 
results in a mixture of within pixel vegetation conditions, reducing the capacity to classify 98 
beyond broad vegetation types over heterogeneous areas (Wulder, 1998). High spatial resolution 99 
remote sensing techniques, including imagery from satellite and airborne platforms and Light 100 
Detection and Ranging (LiDAR), provide detailed information about forests and individual trees. 101 
However, high acquisition costs make such data unsuitable for large area wall-to-wall inventory 102 
and monitoring. To overcome this, high-resolution remotely sensed data may be collected to 103 
sample remote areas with either imagery (Falkowski et al., 2009) or LiDAR (Næsset et al., 104 
2009). Comparisons of high spatial resolution imagery and LiDAR remote sensing have shown 105 
that LiDAR is among the most promising remote sensing techniques in terms of accuracy of 106 
height, volume, and biomass of forested areas (e.g. Hyde et al., 2006; Hyyppä & Hyyppä, 1999; 107 
Lefsky et al., 2001). Furthermore, parameters used to define the forest and tree lines, such as tree 108 
height, tree density, and canopy cover, are accurately estimated from LiDAR data (e.g. 109 
Hopkinson & Chasmer, 2009; Næsset, 2002, 2009). LiDAR has shown potential for detecting 110 
small trees in the subalpine zone (Næsset & Nelson, 2007; Næsset, 2009) and to identify the 111 
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forest line (Rees, 2007). Næsset & Nelson (2007) found that 91 % of trees taller than 1 m had 112 
positive height measurements by LiDAR, aiding detection of small trees in the subalpine zone. 113 
Rees (2007) identified the forest area by extracting LiDAR echoes representing 2 m tall trees 114 
with a spacing lower than 10 m between trees. Hence, LiDAR is an attractive data source for 115 
identifying the subalpine zone with direct measures, rather than solely empirical, relationships. 116 
Hence, delineation of the subalpine zone using LiDAR and without model calibration based on 117 
field measurements seems possible and was tested in the current study.  118 

The use of profiling LiDAR as a sampling tool in large area biomass inventories has been 119 
proven in many studies (Boudreau et al., 2008; Nelson et al., 2004). Likewise, sampling-based 120 
applications utilizing data from airborne scanning LiDAR have recently been demonstrated 121 
along with the development of statistical estimators required to yield statistically sound estimates 122 
for the area in question (Andersen et al., 2009; Gregoire et al., 2011; Ståhl et al., 2011). The 123 
flight lines acquired in such inventories will be continuous and cover forest and bare land as well 124 
as the transition zones. Field surveys in such LiDAR based sampling strategies are often mainly 125 
based on NFI plots located in the forest area. Hence, by using only the LiDAR measurements to 126 
characterize the subalpine zone additional information may be derived without increasing the 127 
field survey effort. Furthermore, by combining data from medium resolution satellite images and 128 
samples of high spatial resolution LiDAR data the strengths of both sources can be integrated. 129 
LiDAR data acquired in a sampling mode provide detailed information on specific locations 130 
suitable for extrapolation or model calibration. Furthermore, satellite imagery in combination 131 
with elevation data can be deployed to provide full coverage of the region of interest, to provide 132 
modeling and extrapolation options, and to support stratification.  133 

The basis for the current study is a framework where a large area inventory is conducted 134 
using airborne scanning LiDAR deployed in a strip sampling mode (Næsset et al., 2009). The 135 
main objective of the current research was to develop a method combining strip samples of 136 
LiDAR with full coverage optical satellite imagery and elevation data to identify the subalpine 137 
zone over a large region. The results are intended to increase information regarding the area and 138 
location of the subalpine zone without additional field data collection. The specific objectives 139 
were to: 140 

1) Identify the subalpine zone for specific regions using only LiDAR measurements. 141 
2) Model and map the subalpine zone through integration of LiDAR, satellite imagery and 142 

elevation data to represent the entire study area of interest.  143 
 144 
2. Materials and methods 145 
2.1. Study area  146 
The study area, Hedmark County, is located in southeast Norway (Fig. 1). The total land area of 147 
Hedmark is approximately 27 400 km2. The county is covered by boreal and alpine vegetation 148 
zones with a slightly continental climate (Moen, 1999) . Elevations range from 120 to 2180 m 149 
above sea level. 150 
 151 
[FIGURE 1] 152 
 153 
2.2. Field data  154 
During the summer of 2008 forest and tree lines were mapped in the field at 26 locations in 155 
Hedmark County (Fig. 1). Locations were selected subjectively based on the following criteria: 156 
co-located with the LiDAR sample transects, availability of orthophotos, accessible for field 157 
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work, and spatially distributed over the county. The criteria for selection of field locations were 158 
developed in this manner to minimize statistical bias. The subalpine zone was manually 159 
delineated by applying common practices following the forest and tree lines in the field. 160 
Digitizing was conducted with a commercially available Bluetooth GPS receiver (Holux M-161 
1000) connected to a Personal Data Assistant running Geographical Information System 162 
software. Tests of the GPS equipment indicated a positional error of less than 13 m. As shown in 163 
Fig. 2, the forest structure and type of forest varies between the field locations. The total length 164 
of forest lines digitized in the field was 38.6 km and the length of the tree lines was 42.3 km.  165 
 166 
[FIGURE 2] 167 
 168 
2.3. LiDAR data 169 
LiDAR data were acquired during the summer of 2006 with the Optech ALTM 3100 laser 170 
scanner. Detailed parameters and settings for the acquisitions and sensors are listed in Table 1. 171 
Parallel flight lines were flown in an east-west direction with a distance between adjacent flight 172 
lines of 6 km. The total length of all flight lines was more than 4500 km and the LiDAR dataset 173 
sampled 8.4 % of the study area. The initial processing of the data was accomplished by the 174 
contractor (Blom Geomatics, Norway). Planimetric coordinates (in the Universal Transverse 175 
Mercator coordinate system (UTM) zone 32 north) and ellipsoidal height values were computed 176 
for all echoes. For each acquisition, ground returns were determined using the Terrascan 177 
software (Terrasolid Ltd., 2004) and a triangulated irregular network (TIN) was created from the 178 
echoes classified as ground returns. Heights above the ground surface were calculated for all 179 
echoes by subtracting the respective TIN heights from the height values of all echoes recorded.  180 
 181 
[TABLE 1] 182 
 183 
2.4. Landsat data  184 
Four different Landsat-5 Thematic Mapper (TM) images were obtained from the USGS to cover 185 
the study area. The scenes used were path 197 rows 16 and 18 acquired on 3 June 2007 and path 186 
198 rows 17 and 18 acquired on 10 June 2007. The images were georeferenced using 1:5000 187 
maps and orthorectified using a Digital Terrain Model (DTM) with 25 m pixel size. The images 188 
were resampled to the pixel size of the DTM during orthorectification. The error from 189 
orthorectification of all four images was less than 1/3 pixel. The orthorectified images were 190 
converted to top of atmospheric reflectance (TOA) by the procedure communicated by Han et al. 191 
(2007). The TOA corrections account for differences in viewing geometry and sensor 192 
configuration. However, variations in absolute atmospheric conditions between images were not 193 
corrected. The TOA corrected images were mosaiced together. From the TOA corrected Landsat 194 
mosaic the normalized difference vegetation index (NDVI) and the brightness, greenness and 195 
wetness from the tassel cap transformation were derived and used (Crist & Kauth, 1986; Huang 196 
et al., 2002; Kauth & Thomas, 1976).  197 
 198 
2.5. Elevation data 199 
Elevation data were supplied by the Norwegian Mapping Authority as a DTM with 25m pixel 200 
size. From the DTM, elevation, slope, solar radiation and curvature were derived and utilized. 201 
Slope was computed for each raster cell in the DTM using the average maximum technique on a 202 
fitted plane to a 3 × 3 cell neighborhood (Burrough & McDonell, 1998). Global solar radiation in 203 
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watt hours per square meter (WH m-2) was computed using the DTM in accordance with Fu and 204 
Rich (1999). Curvature describes the shape of the terrain and was computed in a 3 × 3 cell 205 
neighborhood (Moore et al., 1991; Zeverbergen & Thorne, 1987). In addition, the location 206 
(latitude and longitude) of the pixels was used in the modeling.  207 
 208 
2.6. Procedure for delineating the subalpine zone 209 
Fig. 3 outlines the implemented procedure for obtaining the full coverage map of the subalpine 210 
zone. The flow chart introduces the input data described above, two processing steps and the 211 
accuracy assessment in separate light grey boxes. During Step 1, the procedure identifies cover 212 
types, forest, alpine and subalpine areas in the LiDAR data, using a rule-based classification. 213 
Step 2 describes the integration of LiDAR, satellite imagery and elevation data to define the 214 
probability of forest and identification of alpha-cuts to produce a map with hard classes i.e. the 215 
cover types; forest, alpine and subalpine. Lastly, the accuracy of both the LiDAR derived classes 216 
in step 1 and the full coverage map produced in step 2 was assessed. The two processing steps 217 
and the accuracy assessment are described in further detail below.  218 
 219 
[FIGURE 3] 220 
 221 
2.6.1. Identify the subalpine zone using LiDAR data (Step 1) 222 
A classification procedure for automatically assigning cover type based on the LiDAR data was 223 
developed. The point cloud obtained from LiDAR sensors can be viewed as a sample of the 224 
forest canopy where each echo (x, y, z – point) is a sample point. Classifying each point 225 
according to presence or absence of canopy makes the point cloud a point sample, from which 226 
the canopy cover can be estimated as the number of echoes in the canopy over the total number 227 
of echoes: 228 
 229 

           (1) 230 
 231 
where C is canopy cover, Nc is number of first returns in canopy, and Nt is total number of first 232 
returns. Similar approaches have frequently been used (c.f. Hopkinson & Chasmer, 2009). 233 
Canopy hits were defined based on a height threshold on the LiDAR measured surface height 234 
(height above ground). One height threshold was used for defining tree canopy (HTtrees) and one 235 
threshold was used for defining shrubs and trees (HTshrub+trees). The height thresholds were used 236 
to classify canopy returns (Nc) in Eq. 1. The canopy thresholds were set in accordance with the 237 
heights in the FAO definitions (HTtrees = 5 m and HTshrub+trees = 0.5 m). Hence, canopy cover for 238 
trees (Ctrees) was computed as the number of first returns above 5 m divided by the total number 239 
of first returns. Canopy cover for trees and shrubs (Cshrub+trees) was computed as the number of 240 
first returns above 0.5 m divided by the total number of first returns. Then the classes, recall as 241 
forest, alpine or subalpine zone, were assigned according to this pseudo code:  242 
 243 
if(Ctrees > CT1)  244 

class = forest 245 
else  246 

if(Ctrees > CT2 or Cshrub+trees > CT1)  247 
class = subalpine zone 248 
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else 249 
class = alpine 250 

 251 
where CT1 and CT2 represent the two different canopy cover thresholds. The canopy cover 252 
thresholds used to assign classes were CT1 = 0.10 and CT2= 0.05 which correspond to the canopy 253 
coverage values in the FAO definitions of forest and other wooded land.  254 
 255 
2.6.2. Model and map the subalpine zone using full coverage data (Step 2) 256 
Ecotones, like the subalpine zone, are by definition a mixture of two classes, in this case forest 257 
and alpine. Soft classifiers are shown to provide a better representation of the vegetation class 258 
composition in ecotones than hard classes (Foody, 1996). Binomial logistic regression is widely 259 
used in the remote sensing community as a soft classifier because it does not assume a specific 260 
distribution regarding the input variables (e.g. Wulder et al., 2006). To predict the appearance of 261 
the subalpine zone based on the satellite imagery and elevation data, a binomial logistic 262 
regression was estimated in the current study (Eq. 2). The spectral indices (NDVI, brightness, 263 
wetness, and greenness), elevation, slope, solar radiation, curvature, and location variables 264 
(latitude and longitude) were candidate variables in the estimation. The initial model including 265 
all candidate variables was of the form: 266 
 267 

        (2) 268 
 269 
where π(FOREST) is the probability of a pixel being forest, β0, β1 - βk are fixed parameters and x1 - 270 
xk are the variables used. Variable selection was conducted using a manual backward elimination 271 
process. In addition, highly correlated variables were identified using Person-correlation 272 
coefficients and removed so no variables had a higher correlation than 0.50. The reference data 273 
included plots of size 625 m2, equal to pixel size, laid out with three kilometer spacing along the 274 
LiDAR transects. Reference data were stratified as potential subalpine zone area using the DTM. 275 
The elevation range of potential subalpine zone area was set to be between 675 and 1150 m 276 
above sea level based on local knowledge and photointerpretation. A total of 534 reference plots, 277 
where the LiDAR derived cover type was forest or alpine, were used in the binomial logistic 278 
regression. The reference plots where the LiDAR derived cover type was subalpine zone were 279 
not used in the binomial logistic regression. The fit of the final model was evaluated with 280 
Naglekerkes R2 (Nagelkerke, 1991), the model deviance and the Hosmer-Lemeshows goodness-281 
of-fit test (Hosmer et al., 1997). 282 

The final binomial logistic regression model was used to predict a probability surface in 283 
the potential subalpine area in Hedmark, whereby the output surface indicates the probability of 284 
a pixel being forest. Even though ecotones are best represented by probability surfaces, a hard 285 
classification is often needed when presenting thematic maps of the subalpine zone or when 286 
information will be used in international reporting (Hill et al., 2007). Hill et al. (2007) tested two 287 
approaches to present the probability surface as a thematic map using alpha-cuts. In the current 288 
study we used the probability of forest for the reference plots, estimated by the binomial logistic 289 
regression model and probability density functions to identify alpha-cuts. Separate density 290 
functions were estimated for the three cover types (forest, alpine and subalpine) using a Gaussian 291 
kernel and bandwidth of 0.05 (R Development Core Team, 2009). Then the alpha-cuts were set 292 
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for the upper and lower boundaries where the subalpine zone according to the density functions 293 
had a higher density than forest and alpine areas. 294 
 295 
2.6.3. Accuracy assessment 296 
The accuracy of the LiDAR derived cover type classes was validated against the field measured 297 
forest and tree lines. The cover type classes (forest, alpine, subalpine zone) determined using 298 
LiDAR data and the approach described above at the 26 field locations was assessed by utilizing 299 
an image gradient method (Pitas, 2000; Wulder et al., 2007). The image gradient describing the 300 
rate of change in cover type class in a local neighborhood was computed as: 301 
  302 

    (3) 303 
 304 
where  is the gradient and x and y are row and column in the raster file created at each 305 
location. The image gradient map has large values where the cover type classes change between 306 
neighboring pixels and values of zero where they do not change. Furthermore, the image gradient 307 
values were aggregated for different distances in pixels to the field measured lines and averaged 308 
over all field locations. Hence, the average change between pixels located at different distances 309 
from the field measured forest and tree lines are computed and analyzed. The largest values 310 
indicate the strongest gradient or highest rate of change in classes between pixels and appear 311 
where the field measured forest and tree lines are located.  312 

The current study utilized tree heights and canopy cover derived directly from LiDAR 313 
data. However, these variables are only proxies for the real values since a LiDAR pulse will 314 
always penetrate into the canopy before an echo is trigged (Gaveau & Hill, 2003; Ørka et al., 315 
2010). In previous studies, canopy cover has been derived for measurements above a certain 316 
height threshold often equal to the height where reference data were collected, such as with a 317 
hemispheric camera (e.g. Riano et al., 2004). The current study used height thresholds of 0.5 and 318 
5 m, for shrubs and trees, respectively, which is in accordance with international forest 319 
definitions. In order to evaluate if the chosen canopy cover and height thresholds in the 320 
classification of the LiDAR data was appropriate, a sensitivity analysis was conducted. Different 321 
height thresholds (HTtrees = { 2 , 2.5,…, 9.5, 10 m} and HTshrub+trees = {0.25, 0.30, …, 0.95, 1 m}) 322 
and canopy coverage thresholds (CT1 = {0.055, 0.060,…, 0.195,0.20} and CT2 = {0.005, 0.010, 323 
…, 0.145, 0.15}) were tested. The mean gradient value at the forest and tree line were recorded 324 
for every combination of height and canopy cover thresholds. In addition, the number of pixels 325 
from the peak of the image gradient to the field measured line was evaluated for both the forest 326 
and tree line.  327 

The logistic regression model and the alpha-cut were validated using a test dataset which 328 
covered the plots located ± 1 km in the east – west direction of the calibration plots and located 329 
inside the potential subalpine zone area. The test dataset plots were classified according to Step 1 330 
(Section 2.6.1). The classification accuracy of the binomial logistic regression model and alpha-331 
cuts was validated both for the calibration and the test datasets.  332 
 333 
3. Results 334 
3.1. Accuracy of LiDAR cover type classification 335 
The predicted forest and tree lines showed a good correspondence with the field measured lines 336 
(Fig. 4). The average image gradient values peaked at the location of field measured lines. 337 
Consequently, the classification of the LiDAR data shifts most frequently between pixels near 338 
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the field measured lines. The high gradient values below the field measured forest line reflect the 339 
patchiness of the forest near the forest line (Fig. 4). In the subalpine zone and in the alpine area 340 
the gradient values are low. Hence, the vegetation above the forest line appears more 341 
homogeneous as classified by LiDAR data. A visual inspection of all the field locations indicated 342 
that four field measured forest lines (15.4 %) and two tree lines (7.7 %) did not have a 343 
satisfactory match of field measured and LiDAR derived boundaries of the subalpine zone. 344 
Examples from three of the 26 field locations illustrating accuracy and errors of the LiDAR 345 
cover type classification appear in Fig. 5.  346 

The sensitivity analysis presented in Fig. 6 demonstrates that the accuracy obtained was 347 
indifferent to the selection of height and canopy cover thresholds. The difference between 348 
highest image gradient value and the field measured lines was within plus or minus one pixel (50 349 
m) for many combinations of height- and canopy cover thresholds. However, the selected height 350 
and canopy thresholds corresponding to the FAO definitions were close to the highest average 351 
image gradient values as illustrated with the dashed lines in the contour plots in Fig. 6. Higher 352 
values could be obtained by reducing the height threshold slightly. Minor changes in the canopy 353 
coverage thresholds, e.g. by 0.01 units, did not affect the accuracy at all.  354 
 355 
[FIGURE 4]  356 
[FIGURE 5] 357 
[FIGURE 6] 358 
 359 
3.2. Accuracy of subalpine zone delineation using full coverage data 360 
The selected variables and fit statistics for the estimated binomial logistic regression model are 361 
presented in Table 2. The two Landsat variables greenness and NDVI were highly correlated (r = 362 
0.85). During the modeling NDVI was selected because of better models obtained compared to 363 
using greenness. We included both NDVI and brightness because of the significant contribution 364 
of both indices to the model. The elevation and slope variables derived from the digital terrain 365 
model were strong explanatory variables. However, neither the solar radiation nor the curvature 366 
provided additional information. Wetness and longitude were significant variables in the model 367 
following a backward elimination procedure (0.05>p>0.01). However, the variables were 368 
removed to get a simpler model without an essential reduction in Akaike information criterion 369 
(AIC). The Hosmer and Lemeshow statistics (Hosmer et al., 1997) indicated that the final model 370 
fit the data sufficiently well (p = 0.40). The proportion of variation explained by the model 371 
expressed by Nagelkerke’s R2 was 0.73.  372 
 Alpha-cuts were selected according to the probability density functions estimated for the 373 
three cover type classes (Fig. 7). The crossing of the subalpine and alpine density functions in 374 
Fig. 7 resulted in a lower alpha-cut of 0.16 and the crossing of forest and subalpine resulted in an 375 
upper alpha-cut of 0.79. Hence, pixels having a probability of forest between 0.16 and 0.79 were 376 
classified as subalpine zone. The selected alpha-cuts resulted in an overall classification accuracy 377 
of 68.8 % and a kappa value of 0.52. For the subalpine zone cover type the producer’s accuracy 378 
was 56.6% and the user’s accuracy 32.5%. The error matrix for the calibration and the test data 379 
sets appear in Table 3.  380 
 Predicting the probabilities for every pixel in the county belonging to the potential 381 
subalpine zone area (See section 2.6.2.) and assigning classes to the pixels based on the 382 
estimated alpha-cut values resulted in a map of the subalpine zone in Hedmark with a total area 383 
of 3660 km2, representing 14% of the land area in Hedmark.  384 
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 385 
[TABLE 2]  386 
[FIGURE 7]  387 
[TABLE 3]  388 
 389 
4. Discussion 390 
4.1. LiDAR cover type classification  391 
The current study utilized tree heights and canopy cover derived directly from LiDAR data to 392 
classify cover types. However, these variables are only proxies for the real values since a LiDAR 393 
pulse will always penetrate into the canopy before an echo is trigged (Gaveau & Hill, 2003; Ørka 394 
et al., 2010). In addition, different LiDAR sensors and acquisition settings affect the LiDAR 395 
measurements of forest canopies (Chasmer et al., 2006; Næsset, 2009; Ørka et al., 2010). In 396 
another subalpine area in Norway tree height underestimation compared to true tree height was 397 
in the range of 0.35 – 1.47 m (Næsset, 2009). The underestimation in the study by Næsset (2009) 398 
was affected by sensor and acquisition settings together with tree species and the terrain model. 399 
The sensitivity analysis performed in the current study suggest that penetration of LiDAR echoes 400 
into the canopy was present in the current dataset, since the accuracy of both forest and tree lines 401 
was slightly improved in the LiDAR classification with height threshold slightly lower than 402 
those specified by the definitions. In previous studies, canopy cover has been derived for 403 
measurements above a certain height threshold often equal to the height where reference data 404 
were collected with e.g. hemispheric camera (e.g. Riano et al., 2004). Changing the canopy 405 
coverage thresholds in the sensitivity analysis did not increase the accuracy of the classification. 406 
Differences in measurements obtained with different sensors and acquisitions usually necessitate 407 
field data for properly calibration of models. The sensitivity analysis suggests that the effect of 408 
varying sensors and acquisition parameters would have a minor impact on the LiDAR 409 
classification but, further research would be required to confirm this.  410 

When mapping the forest and tree lines in the field the uppermost line was followed. 411 
Hence, there could be areas with lower density of trees or lower tree heights below the mapped 412 
areas. In Fig. 5, the site at Litbutjønn illustrates such a case. In the south there are areas matching 413 
the criteria of the subalpine zone about 100 meters after an open/alpine area. When following the 414 
tree line to the north the tree density slightly decreased and thus an error was made when 415 
mapping the tree line in field. At the Danseren site, only minor errors were introduced by 416 
following the forest line. The third location in Fig. 5, Tittelsjøen, the LiDAR derived forest line 417 
was effected by the species composition at the location. At Tittelsjøn, the tree line is abrupt and 418 
formed by birch and was well delineated with the classification of LiDAR data. The forest line is 419 
diffuse and comprised of spruce trees. The spruce trees have a conical form and hence the 420 
canopy cover at the base is much greater than the canopy coverage at 5 m. LiDAR derived 421 
canopy coverage will therefore underestimate true canopy coverage significantly at that spruce 422 
dominated site. Estimation of canopy coverage with a field calibrated and species specific model 423 
might have provided a better estimate of the forest line at this location.  424 
 425 
4.2. Subalpine zone delineation using full coverage data 426 
The binomial logistic regression model developed included five variables important for 427 
characterizing the subalpine zone in Hedmark. Two Landsat derived variables were used in the 428 
model, NDVI and brightness. The two variables describe different vegetation (NDVI) and non-429 
vegetation (brightness) properties. The probability of forest increases when NDVI increases and 430 
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brightness decreases. For the DTM derived attributes, elevation and slope were important. 431 
Higher elevations reduce the probability of forest. Furthermore, increasing slope increase the 432 
probability for forest. In Hedmark one often sees forest growing on the slopes of valleys and 433 
when the terrain flatten out toward the peak forest growth is limited because of higher exposure 434 
to weather conditions. Even though solar radiation and topographic position illustrated by 435 
curvature were expected to be important for tree growth, these variables were not statistically 436 
significant. In a study in the tropical Andes, elevation, aspect and a compound topographic index 437 
were significant when estimating the probability of forest (Bader & Ruijten, 2008). The only 438 
common variable with the current study and the study by Bader and Ruijten (2008) was 439 
elevation, which indicates the importance of elevation as an overall driving factor for forest and 440 
tree lines.  441 

The accuracy (overall accuracy = 69% and kappa = 0.52) obtained for classification with 442 
the binomial logistic regression model and alpha-cuts was lower than what is reported in many 443 
land cover classification studies, for example the land cover projects in North-America, the 444 
National Land Cover Database in United States (Homer et al., 2007) and the Earth Observation 445 
for Sustainable Developments of Forests in Canada (Wulder et al., 2008). However, Wilkinson 446 
(2005) analyzed the accuracies of over 500 peer-reviewed land cover classification experiment 447 
carried out over 15 years and reported that the average overall accuracy was 76% (with a 448 
standard deviation of 15.6%) and average kappa was 0.65 (with a standard deviation of 0.20). 449 
Hence, the accuracy obtained in the current study is within one standard deviation of the average 450 
accuracies obtained in land cover classification reported by Wilkinson (2005). This accuracy was 451 
obtained despite the high degree of mixing with the subalpine zone and the two adjacent classes, 452 
the forest and alpine classes (Table 3). Because of the high mixing we consider the total 453 
classification measures, overall accuracy and kappa coefficient, to be most important. 454 
Furthermore, when considering the high degree of mixing present, the obtained accuracy was 455 
considered acceptable for area estimation and monitoring transitions over large areas, especially 456 
since the pure forest and alpine classes were identified with high accuracies.  457 
 In the current study, only the alpine transition zones were mapped in field. However, the 458 
classification of LiDAR data did not distinguish between forest-alpine transitions and other 459 
forest – non-forest transitions inside the potential area for the subalpine zone. Hence, the areas 460 
below the forest zone will include other transitions zones and also non-forested areas (Fig. 4). 461 
Transitions occurring in the forest may consist of mountain peat lands or transitions related to 462 
change in nutrient level, e.g. from deep soils to bare rock. Hence, enhancement considering 463 
additional land cover classes could be implemented to improve the separation of these 464 
transitions.  465 
 466 
4.3. Application for subalpine mapping and monitoring 467 
In this study, the subalpine zone in Hedmark County, Norway was successfully mapped. The 468 
approach presented utilized high spatial resolution LiDAR data sampled for parts of the county. 469 
Classification of the LiDAR data enabled accurate depiction of the subalpine zone over a large 470 
geographical area without calibration based on field measurements. The information derived 471 
from LiDAR data was combined with Landsat and elevation data to produce full coverage maps 472 
of the subalpine zone. Collecting expensive field data from remote mountainous areas is not 473 
needed using this method. An improved capacity for the national forest inventory to capture the 474 
entire forested area, rather than limited to managed forest areas at lower elevations, is 475 
increasingly desired and may be aided by the approach presented here. The ability to portray 476 
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transitional areas enhances our ability to facilitate stratification and to monitor and report on 477 
carbon stocks and change and to ensure that all relevant forested areas are included. Studies of 478 
climate change may also be aided by the ability to map the subalpine zone over large areas. 479 
Hence, changes in the subalpine zone can be monitored over vast areas and not only at specific 480 
sites. Changes found over time will be important for describing the change processes and the 481 
rates of transition among cover types. 482 

The products from the current study are important in monitoring areas in the subalpine 483 
zone. Maps of changes in the subalpine zone over time can be combined with information about 484 
human activity or grazing by animals to separate the response of climate change on the tree lines 485 
from effects of land use change. As pointed out by Hill et al. (2007), hard classifications of 486 
ecotones are often needed for map products. Hill et al. (2007) used two different approaches to 487 
produce alpha-cuts used to divide the subalpine zone into classes. In the current study a new 488 
method for dividing the probability surface into hard classes was presented. As opposed to the 489 
methods presented by Hill et al. (2007), our method uses information about ecotone derived 490 
using LiDAR to produce these alpha-cuts. The proposed method produces a hard classification 491 
from which an estimate of the area of the subalpine zone can be derived. The method described 492 
also has a probability surface as one of its products. Probability surfaces, or outcomes from soft 493 
classifiers, are more robust in monitoring and change detection in transition zones (Foody, 2001). 494 
In the alpine environment, it has been reported that diffuse tree lines are more likely to have 495 
advanced into the alpine areas than other tree lines types (Harsch et al., 2009). The key research 496 
outcomes include, that monitoring of the subalpine zone is best done using the probability map, 497 
and that the classified map provides area estimates and offers a support for area-wide attribute 498 
estimation (e.g., biomass) using LiDAR-assisted inventory procedures such as those proposed by 499 
Næsset et al. (2009). 500 

 501 
5. Conclusions 502 
The current study demonstrates that a national and regional forest inventory utilizing scanning 503 
LiDAR operated as a strip sampling tool (Næsset et al., 2009) and additional remotely sensed 504 
data can derive the area of the subalpine zone or other transitional areas at a regional scale, 505 
without increasing field inventory intensity. The method for delineating the subalpine zone using 506 
samples of LiDAR data is simple and straightforward. The use of logistic regression and alpha-507 
cut calibrated with LiDAR data using a density estimation approach provide a hard classification 508 
for map products, area estimation and stratification. The probability map is suitable for 509 
monitoring purposes. If detailed monitoring is requested, for example monitoring of 510 
regeneration, growth, and mortality of single trees, then methods utilizing field calibration based 511 
on a statistically sound sample of ground data are required. As, the statistical framework for 512 
utilizing strip samples of LiDAR develops and become operational the approach presented here 513 
would provide additional information of transitional areas also other than the subalpine zone. 514 
Furthermore, the approach presented could be modified and extended to map also other areas.  515 
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Table 1 673 

Table 1. Sensors and acquisition settings 674 

Parameters  
Platform  PA31 Piper Navajo 
Sensor ALTM 3100 
Mean flying altitude above ground (m) 800 
Pulse repetition frequency (kHz) 100 
Scan frequency (Hz) 55 
Half scan angle (deg.) 17 
Mean flying speed (ms-1) ca. 75 
Mean pulse density (m-2) 2.7 a 
Beam divergence (mrad) 0.26 
Footprint diameter (cm) 21a 
aComputed after Baltsavias (1999) based on mean acquisition settings.  675 

 676 

 677 

Table 2 678 

Table 2. Parameters and fit statistics for the logistic regression model. 679 

Coefficient  Estimate Z p-value 
Intercept  4.09 2.56 0.010 
NDVI  17.83 8.60 0.000 
Brightness  -19.97 -6.38 0.000 
Elevation  -0.01 -5.93 0.000 
Slope  0.10 3.33 0.001 
Latitude  0.01 3.54 0.000 
    
Model fit:    
Hosmer-Lemeshow goodness of fita  -0.85  0.397 
Deviance test   1 
aHosmer-Lemeshow goodness of fit (Hosmer et al., 1997) 680 

  681 
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 682 

Table 3 683 

Table 3. Error matrix and accuracy measures of the class map created using logistic regression 684 

and alpha-cuts.  685 

 686 

 Reference   

 Forest 
Subalpine 
zone Alpine Sum 

User’s 
accuracy

Calibration dataset:      
Forest 126 19 5 150 84.0 
Subalpine zone 61 68 81 210 32.4 
Alpine 7 22 254 283 89.8 
Sum 194 109 340 643  
Producer’s accuracy 64.9 62.4 74.7   
Overall accuracy     69.7 
Kappa     0.53 
      
Test dataset:      
Forest 274 55 25 354 77.4 
Subalpine zone 115 133 161 409 32.5 
Alpine 7 47 495 549 90.2 
Sum 396 235 681 1312  
Producer’s accuracy 69.2 56.6 72.7 0  
Overall accuracy     68.8 
Kappa     0.52 
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 689 

 690 

Fig. 1. Study area and field locations.  691 
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 694 

 695 

Fig.2. Examples of three sites with ground photo and orthophotos showing tree line (black dashed 696 

line) and forest line (black line). Sites from left; Heimrabben – Lichen-pine forest, Danseren – 697 

Vaccinium-spruce forest (birch at tree line), and Bjørnsjøklettan – Lichen-birch forest. 698 
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 700 

 701 

Fig. 3. Flow chart summarizing input data, analysis and accuracy assessment.  702 
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 704 

 705 

Fig. 4. Results of the accuracy assessment of the cover type classification from LiDAR. The 706 

average image gradient values (Eq. 3) for different distances from the field measured forest (left) 707 

and tree lines (right). The field measured forest and tree lines appear as vertical dotted lines.  708 



24 

 

24 

 709 

 710 

 711 

 712 

Fig. 5. Examples of the cover type classification from LiDAR (above). For comparison 713 

orthophotos are display below. Forest and tree lines appear on both cover type classification and 714 

on orthophotos as black lines. 715 
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 717 

 718 

Fig. 6. Results of the sensitivity analysis where different height (x axis) and canopy thresholds (y 719 

axis) are used in the LiDAR classification of cover types (forest, subalpine zone and alpine). The 720 

contours represent average image gradient values (Eq. 3) at the field measured forest (left) and 721 

tree lines (right). The distance from the highest image gradient value (Eq. 3) to field measured 722 

forest and tree lines are represented by the number of pixels offset in gray scale from 1 to 7. The 723 

dashed lines represent the values initially used in the study.  724 
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 725 

 726 

Fig. 7.The probability density functions for forest, alpine and subalpine zones used to set alpha-727 

cuts. The resulting alpha-cuts are displayed as vertical lines.  728 


