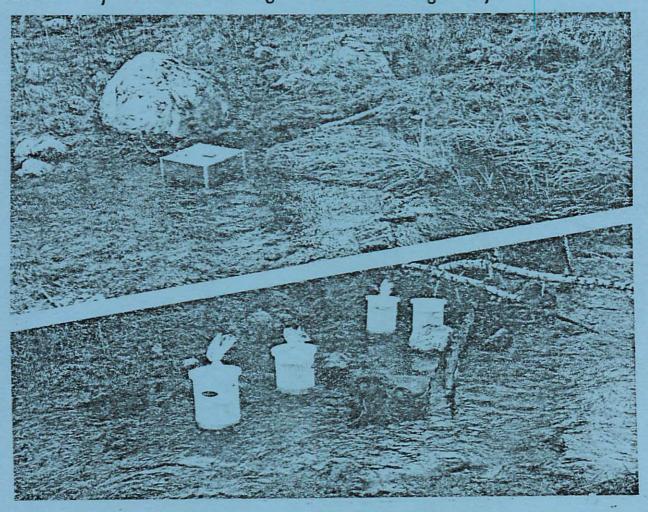
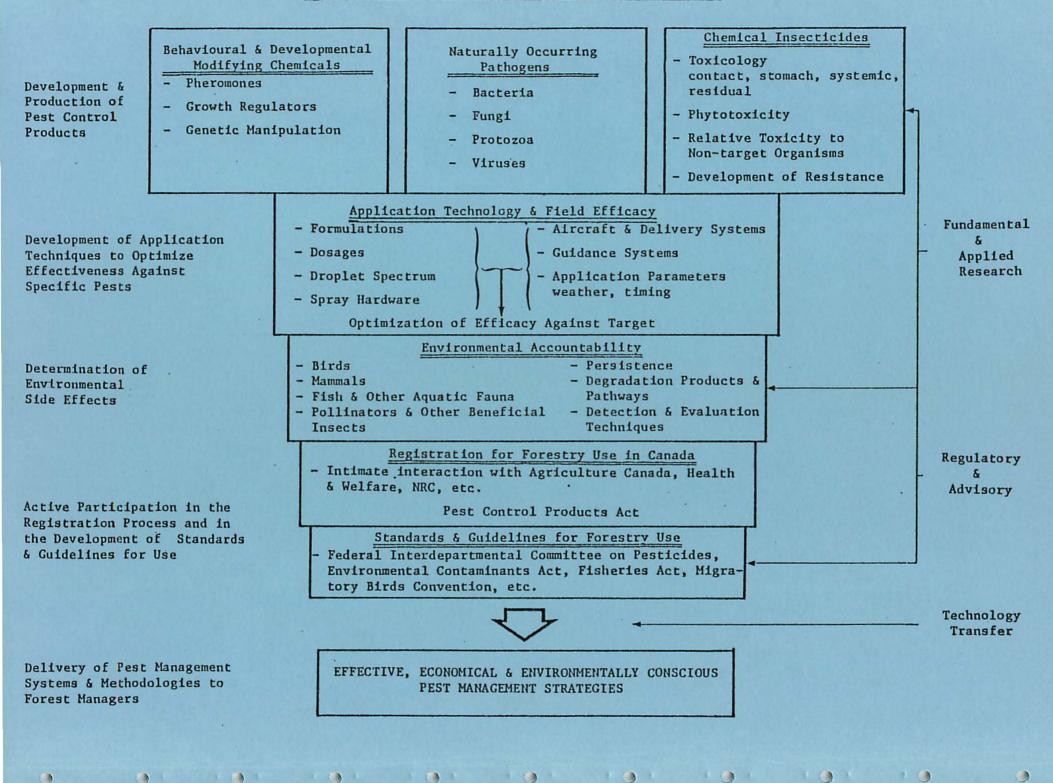
Armstrong, J.A. AUTHOR FILE


Canada

Forestry

Service

Environment Environneme Canada Service des Forèts


FIELD EVALUATION OF THE ENVIRONMENTAL IMPACT OF NONYL PHENOL Edited by J.A. Armstrong and P.D. Kingsbury

FOREST PEST MANAGEMENT INSTITUTE CANADIAN FORESTRY SERVICE SAULT STE. MARIE, ONTARIO INTERIM PROGRESS REPORT

SEPTEMBER, 1979

THE PROGRAM OF THE FOREST PEST MANAGEMENT INSTITUTE

FIELD EVALUATION OF THE ENVIRONMENTAL IMPACT OF NONYL PHENOL

AN INTERIM PROGRESS REPORT ON STUDIES CARRIED OUT BY THE FOREST PEST MANAGEMENT INSTITUTE

IN 1979 [•]

EDITED BY J. A. ARMSTRONG AND P. D. KINGSBURY

SEPTEMBER 1979

FOREST PEST MANAGEMENT INSTITUTE CANADIAN FORESTRY SERVICE SAULT STE. MARIE, ONTARIO

TABLE OF CONTENTS

1

INTRODUCTION	
	1
STUDY SITE	2
SPRAY APPLICATION	5
DEPOSIT ASSESSMENT	6
RESIDUE STUDIES	8
Sample Collection	8
Extraction of stream water	11
Extraction and clean-up of foliage	Ll
	L2
	L2
	L3
	13
	L5 .
AQUATIC IMPACT STUDIES	L5
	15
	17
•	
	30
Bioassays	30
TERRESTRIAL IMPACT STUDIES	34
Spruce budworm population sampling and assessment	34
Terrestrial invertebrate knockdown	39
Honeybees	39
Birds	49
DISCUSSION AND CONCLUSIONS	60
APPENDIX	

Page

INTRODUCTION

Early in 1979 the Pesticides Section of Agriculture Canada received a report from fisheries researchers at the St. Andrews Biological Station dealing with laboratory toxicity studies on the carbamate insecticide aminocarb and its formulation. The researchers reported that nonyl phenol, a component of commercial aminocarb (Matacil[®]) formulations, was considerably more lethal to juvenile Atlantic salmon, Salmo salar L. than pure aminocarb, and on the basis of this finding raised objections to the use of aminocarb formulations containing nonyl phenyl in spruce budworm, Choristoneura fumiferana Clem., control programs. In response to these questions about the safety of current aminocarb formulations, officials of Agriculture Canada convened a meeting of representatives of concerned federal agencies and industry to develop a common understanding regarding the nonyl phenol toxicity question and to decide on necessary actions to be taken. Following this meeting a policy statement was issued by the Pesticides Section indicating that, based on an assessment of currently available data it had been decided that the registration status of Matacil® formulations would not be altered. The main factors taken into account in making this decision were: the extensive field monitoring data available demonstrating the lack of harmful effects on both aquatic and terrestrial ecosystems from aminocarb formulations applied in actual spray operations, the calculated safety factors between toxic levels and potential nonyl phenol residues in water under "worst case" conditions, the desirable quality of nonyl phenol's low toxicity to mammals and safety to humans, and the difficulties involved in changing existing aminocarb formulations and adequately testing new formulations for their safety and effectiveness prior to 1979 control operations with Matacil[®]. At the same time, steps were taken to initiate further investigations by industry and government agencies into the behavior of nonyl phenol in aquatic systems, in order to provide more information upon which the potential hazards of this material could be adequately evaluated.

The Forest Pest Management Institute has played a lead role in generating field data applicable to Canadian forestry situations on the environmental impact of insecticides of current or potential usefulness in forest pest control programs. In light of the concern over possible effects of nonyl phenol, this Institute carried out a field evaluation in 1979 of the environmental impact of this material with the objective of providing pertinent data to better evaluate the hazard of continued use of this solvent in insecticide formulations applied to Canadian forests. The main focus of the study was to document the fate, persistence and biological significance of nonyl phenol applied to an aquatic system under conditions similar to actual forest pest control operations. Studies on the fate of nonyl phenol in terrestrial systems and its effects on terrestrial fauna were also carried out.

The studies reported herein represent the combined efforts of numerous members of the Forest Pest Management Institute staff. Plot layout, spray formulation, deposit assessment and spruce budworm sampling were organized and conducted by A. Obarymskyj, L. Smith, B. Tomkins and B.F. Zylstra; meteorological assessment was conducted by J.W. Beveridge; spray application was carried out by L.B. Pollock. Details of these aspects of the field application procedures were assembled and reported by B.F. Zylstra. Residue studies were planned and carried out by K.M.S. Sundaram, S. Szeto, R. Hindle and D. MacTavish and reported by S. Szeto. Environmental impact studies were planned and co-ordinated by P.D. Kingsbury and B.B. McLeod with S.B. Holmes responsible for aquatic studies, R.L. Millikin responsible for bird and terrestrial insect knockdown work and K.L. Mortensen responsible for the honeybee program. G.M. Howse of the Great Lakes Forest Research Centre co-operated in this program by supervising spruce budworm counting and defoliation assessment in the laboratory and making the results available for inclusion in this report.

STUDY SITE

Field studies were carried out in Algoma District, Ontario just north of the Dubreuilville airstrip, which was used for mixing and loading operations (Fig. 1). A small, unnamed stream approximately 3 km in length flowing into the Magpie River 3 km north of the town of Dubreuilville was used as the nonyl phenol treatment stream. A 40 ha rectangular block centred on the lower portion of the stream and bisected by an access road was the site of the terrestrial studies (Fig. 2).

For descriptive purposes the nonyl phenol treatment stream is hest divided into two sections. The lower section, which is wholly within the spray block, has two distinct riffle areas separated by an old beaver pond. The riffle areas have moderately fast currents over boulder and coarse gravel bottoms. Siltation is evident in areas where the current is reduced by natural obstructions and small pools. In the pond the current is very slow and silt and organic detritus has been deposited to a considerable depth over the boulder bottom. The area around the stream in this section has been almost completely cut over leaving only a fringe of small trees bordering the stream. Alder, Alnus rugosa (DuRoi) Spreng., and white birch, Betula papyrifera Marsh., are the predominant species with a few white spruce, Picea glauca (Moench) Boss., and jack pine, Pinus banksiana Lamb. The upper section of the stream, which is only partly within the spray block, meanders slowly over a fine gravel and sand bottom. Most of the stream bed is covered to varying depths by silt and organic detritus. The bank vegetation in this section is primarily low grasses and sedges and the stream is completely open to the sky.

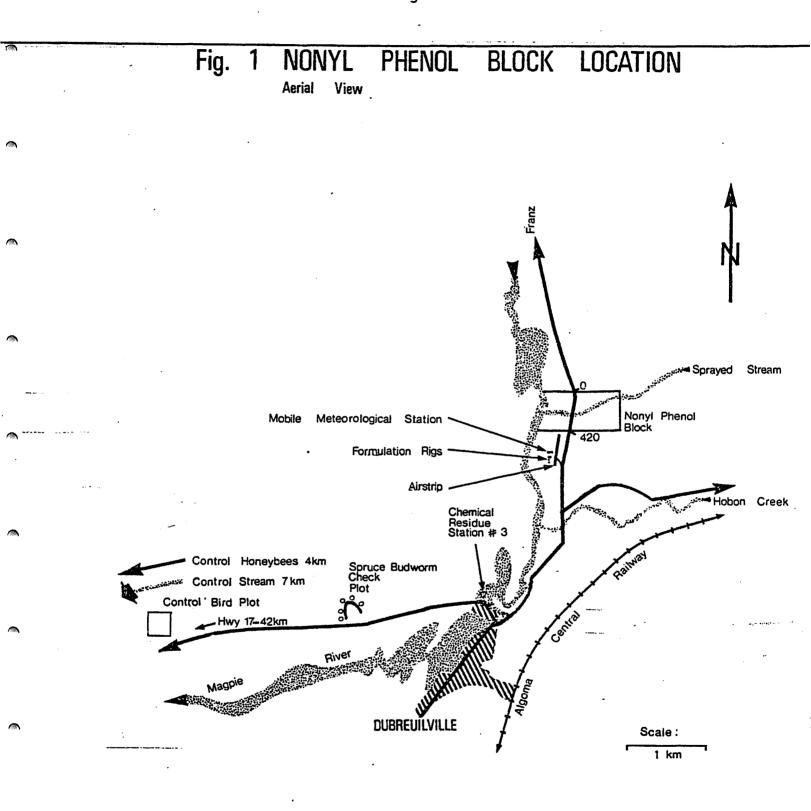
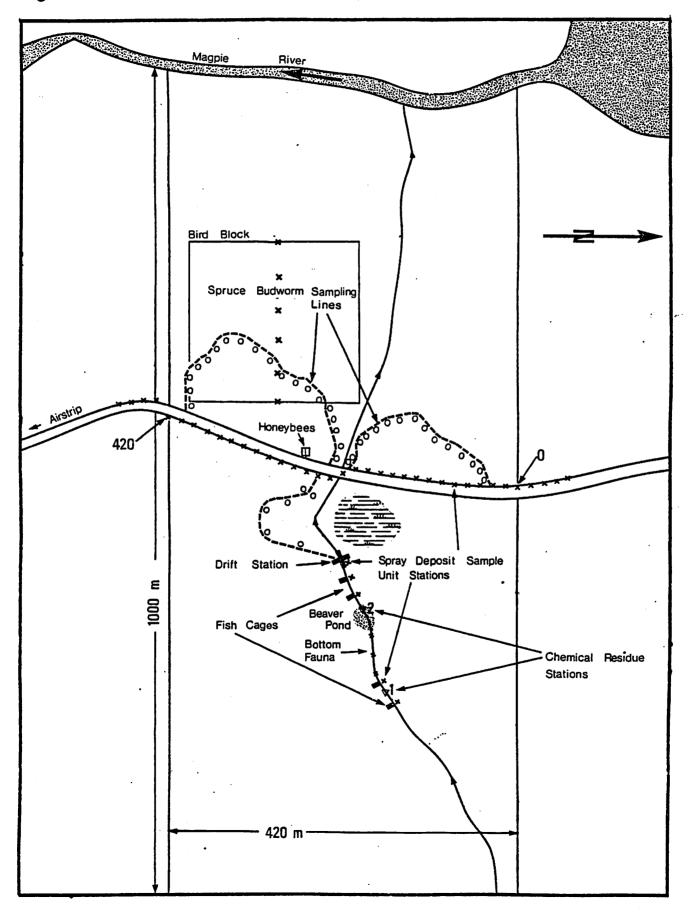



Fig. 2 DIAGRAM OF EXPERIMENTAL BLOCK

An unnamed stream approximately 12 km west of Dubreuilville was used as the untreated control for aquatic studies. This stream flows out of an old beaver pond through a stretch of riffle area approximately 200 m in length and into a lake. The riffle portion has a moderately fast current over a boulder and coarse gravel bottom, and is bordered by alder, black spruce, *Picea mariana* (Mill.) B.S.P., beaked hazelnut, *Corylus rostrata* Ait., honeysuckle, *Lonicera* sp.L., and elderberry, *Sambucus* sp. (Tourn.) L. In the pond the current is very slow and the boulder bottom is covered with a thick layer of silt and organic detritus.

Total streamflow measurements taken on 30 May 1979 were 0.19 m^3 /sec in the nonyl phenol treatment stream and 0.07 m^3 /sec in the nonyl phenol control stream.

A 4-hectare bird census plot was set up within the nonyl phenol treatment block on the south side of the treatment stream between the Magpie River and the access road (Fig. 2). The bird plot was located in a mixed stand of second growth jack pine and trembling aspen, *Populus tremuloides* Michx., with scattered white birch and black spruce. An untreated control bird census plot was set up about 6 km southwest of the treatment plot along the Dubreuilville road. The plot was located on uneven terrain, falling off to a stream on the north and west sides. The stand had been selectively cut; second growth species were white birch, black spruce, balsalm fir, *Abies balsamea* (L.) Mill., and speckled alder in order of predominance.

Two colonies of domestic honey bees, Apis mellifera L., were set up near the centre of the nonyl phenol treatment block and two colonies were set up along the Dubreuilville road about 10 km to the west to serve as untreated control.

Although the treatment block was selected primarily to conform to requirements for environmental impact studies, there was enough balsam fir and white spruce within the block that 25 trees of each species could be sampled to monitor spruce budworm population levels. These fifty trees ranged between 8 and 20 m in height and were located along three sample lines within the boundaries of the spray block. Spruce budworm samples were also collected from fifteen balsam fir and fifteen white spruce located on an untreated check plot 4 km away along the Dubreuilville road.

SPRAY APPLICATION

The environmental impact studies carried out were designed to evaluate the effects on non-target fauna of exposure to the highest dosage of nonyl phenol that would be applied to forested areas under actual operational pest control programs. To this end, the dosage of nonyl phenol applied to the treated stream and plot was $0.47 \ l/ha$, equivalent to the quantity of nonyl phenol applied to an area receiving the seasonal maximum allowable dosage (a total of 0.175 kg/ha applied in two 0.088 kg/ha applications) of aminocarb formulations containing this solvent. The conventional total emission rate of 1.46 l/ha was duplicated by mixing the nonyl phenol in an appropriate quantity of insecticide diluent 585. A small quantity of Automate "B" red dye was added to the spray mixture to facilitate deposit assessment.

The actual spray mixture consisted of:

Nony1 phenol ¹	30.28 l	(32% by volume)
insecticide diluent 585 ²	62.46 L	(66% by volume)
automate "B" dye	1.89 L	(2% by volume)

Spraying was carried out using a Cessna 185 Sky Wagon equipped with micronairs. The aircraft delivery system had been previously calibrated to emit 1.46 l of spray liquid per hectare based on a swath width of 60 m; aircraft speed of 177 km/hr; spray pressure of 40 p.s.i.; and a variable restrictor unit (VRU) setting of 8.

Spraying commenced on 29 May, 1979 at 0710 hours on the south (down-wind) side of the block and then progressed at 60 m swaths to the north (upwind) side of the block. After completion of the block, a single swath application was emitted over a portion of the treatment stream outside the block starting at the eastern block boundary and for a distance of about 0.5 km upstream.

Meteorological measurements taken at canopy height (12 m) the morning of spray application are presented in Table 1. The complete cloud cover and cool, calm conditions favored a good deposit of the emitted formulation.

DEPOSIT ASSESSMENT

Deposit sampling stations were placed in a deposit assessment line along the access road bisecting the nonyl phenol treatment block and at suitable locations in the vicinity of environmental impact study sites within the block (Fig. 2). Deposit stations along the deposit assessment line consisted of 30 cm long aluminum stakes with a 10 x 10 cm aluminum tray fastened to the top of the stake. Similar stakes were used for stream bank deposit stations while 1 m stakes were used to place deposit stations in midstream. Sampling stations along the deposit assessment line were laid out at 15 m intervals beginning at the north boundary of the block (zero, start) and ending at 420 m, the south boundary of the block. Spray drift deposit stations were placed at -15 m beyond the zero station and 435 to 480 m

¹Rohm and Haas Canada Ltd., West Hill, Ontario. ²Shell Canada Ltd., Toronto, Ontario.

)

٢

.

)

)

۲

)

)

Meteorological measurements at canopy height on 29 May 1979*, Dubreuilville airstrip

Time	Temperature °C	Relative Humidity %	W: m/sec	ind Direction**	Pressure mb	Solar radiation cal/cm ²						
05:00	8.0	98	0.9	18°	973.8	_						
05:15	8.0	98	0.4	30°	-							
05 : 45	8.0	98	0.3	10°		-						
06:00	8.2	98	0.9	22°	974.0	-						
06:15	8.2	98	0.4	45°		-						
06:30	8.2	98	0.7	33°		_						
06 : 45	8.2	98	0.2	12°		_						
07:00	8.4	98	0.4	6°		-						
07:15	8.5	98	1.0	18°	974.4	0.10						
07:30	8.7	98	0.8	28°		0.10						
07 : 45	8.8	98	0.7	1°		0.15						
08:00	9.0	98	0.4	39°	974.6	0.15						

* nonyl phenol treatment applied between 7:10 and 7:22.

)

)

•

)

)

** magnetic north with no correction.

,

.

inclusive beyond the south block boundary. Sample units were coded - 15, 0, 15, 30 etc. according to their distance from the start or zero station.

Each deposit sampling unit consisted of a 10 cm x 10 cm Kromekote[®] card and either paired glass slides or a stainless steel plate. Spray droplets deposited on the Kromekote[®] cards were sized and counted using a NCR microcard reader. Droplet density (drops/cm²) were determined for each drop size class and then totalled to provide a drop density figure for the spray card. The glass slides and stainless steel plates were washed with toluene and the quantity of dye rinsed off them was measured using a Baush and Lomb Spectronic 100 spectrophotometer. The equivalent deposit in ℓ ha was calculated by comparison with the quantity of dye measured in a standard made up from the original dyed tank mix.

A summary of deposit measured in the nonyl phenol treatment block is presented in Table 2. Relatively high levels of the emitted spray products were measured on deposit samplers in the various study areas, especially those in open areas like the mid-stream samplers. Deposit across the block as measured along the deposit assessment line (Fig. 3) is reasonably uniform from deposit stations 225 to 420, the portion of the block treated in the first three passes of the aircraft. At this point in the treatment, one of the Micronair units malfunctioned and began producing large drops, resulting in lower drop densities but greater volumes per unit area being deposited in the portion of the block between deposit stations 90 and 210.

RESIDUE STUDIES

Sample collection

Nonyl phenol residues were measured in samples of water and sediment taken from the treatment stream, and white spruce foliage and soil collected from the treated plot. Each of these substrates were sampled one day prior to treatment and 1h, 3h, 4h, 6h, 24h, 2 days, 3, 4, 5, 9, 14, 30 and 62 days thereafter. Water and sediment samples were collected at two stations in the treatment stream: Station 1 in the steady flowing upper portions of the stream and Station 2 in the extremely slow flowing water behind a beaver dam. At Station 1, samples from four sub-stations 10 m apart were combined to give one amalgamated sample representative of flowing portions of the stream.

Water samples were also collected from the Magpie River 3 km southwest of the spray block where the Dubreuiville road crosses the river (designated Station 3). Samples consisted of approximately 5 litres of water collected from the stream surface (including the surface film) or 500 g of sediment scooped from the streambed. After

۵

)

٢

٢

۶

)

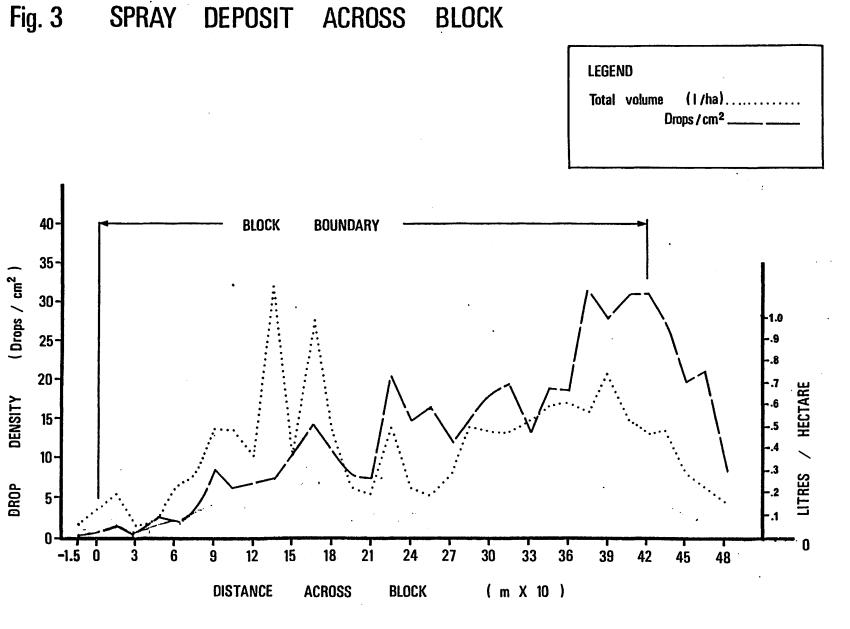
Deposit assessment summary from the nonyl phenol treatment plot* sprayed 29 May 1979, Dubreuilville, Ontario

	No. of deposit samplers	Mean drop density drops/cm ²	Mean volume deposited 1/ha	Mean % of emitted volume recovered
Deposit assessment line	34	13.29	0.41	27.9
Treatment stream				
Mid-stream samplers	4	14.72	0.66	45.2
Stream bank samplers	5	11.14	0.28	18.9
Fish Cages	4	10.90	0.18	12.4
Bird Plot	6	19.72	0.60	40.7
Bee hives	2	10.72	0.38	25.8

* spray emission rate 1.46 1/ha (20 fl. oz./acre).

)

)


.

)

and the second second

)

,

).

)

)

10

3

)

)

)

3

3

)

collection samples were stored in clean glass containers and packed with ice in styrofoam coolers until transported to the laboratory, where they were held at 0°C until analyzed.

White spruce foliage samples consisted of current year's foliage cut from branches taken from mid-crown portions of ten selected dominant trees to give an amalgamated sample from within the treatment block. A fully exposed plot (4m x 4m), about 10 m away from the nearest tree canopy, was selected for the sampling of forest soil. The acidity of the fine sand was about pH 6.4. At each sampling, 20 cores (2.5 cm in diameter) were taken from the top 5 cm layer randomly, wrapped in aluminum foil, and further handled as described for other substrates.

Extraction of stream water

Nonyl phenol residues were extracted from water samples in the laboratory by measuring individually four 250 ml aliquots of stream water into a 500 ml separatory funnel. Nonyl phenol residues were partitioned into dichloromethane (3 x 50 ml) by counter-current extraction. This procedure was repeated until all 5 liters were extracted. The combined extracts were dried on anhydrous sodium sulfate (10 g) and then evaporated just to dryness in a flash evaporator at 38°C. The residues were dissolved in 2 ml methanol (HPLC-grade) for analysis by reverse phase high-performance liquid chromatography (HPLC) without further clean-up.

Extraction and clean-up of foliage

The cut-up foliage samples collected from each sampling were well mixed and a 50 g aliquot was extracted by washing four times with ethyl acetate (100, 50, 50 and 20 ml) in a 500 ml glass-stoppered graduated cylinder. The combined washings were dried by passing through anhydrous sodium sulfate column (10 g) and evaporated just to dryness in a flash evaporator at 38°C. The residues were dissolved in about 3 ml acetone and then transferred quantitatively into a 250 ml separatory funnel with 100 ml of aqueous NaOH/NH₄Cl/NaCl solution (6 g of NH₄Cl and 3 g of NaCl in 1,000 ml of 0.1 M NaOH). Nonyl phenol residues were extracted from the aqueous solution by partitioning 4 times with hexane (50, 25, 25 and 25 ml). The combined hexane extracts were dried on anhydrous Na₂SO₄ (10 g) and concentrated to about 5 ml in a flash evaporator at 38°C for further clean-up by Florisil column.

Chromatographic columns (500 mm x 22 mm o.d.) with Teflon stopcocks were packed with 3 g of activated Florisil which were kept at 130°C for at least 48 h prior to use. The columns were washed with 20 ml of benzene and followed by 20 ml of hexane. Crude foliage extracts were quantitatively transferred to the columns by rinsing with hexane (5 ml), followed by elution with hexane (100 ml) and the eluates were discarded. Nonyl phenol residues were eluted with benzene (250 ml) and the eluates were evaporated just to dryness in a flash evaporator at 38°C. The residues were then dissolved in methanol (HPLC-grade) and analyzed by reverse phase HPLC.

Extraction and Clean-up of forest soil and sediment

Aliquots of 100 g (wet weight) of the well mixed soil and sediment (excess water had been removed by filtration) were homogenized twice with ethyl acetate (2 x 100 ml) for 5 min in a Sorvall Omni mixer. Anhydrous sodium sulphate (50 g) was added to the sample for homogenization. The homogenates were filtered through a layer of anhydrous sodium sulphate (3 cm) over Whatman No. 1 filter paper in a Buchner funnel, followed by rinsing with ethyl acetate (3 x 10 ml). The combined filtrates were evaporated just to dryness in a flash evaporator at 38°C and the residues were dissolved in about 2 ml dichloromethane for further clean-up.

Extracts of soil and sediments were cleaned on Florisil columns (2 g) in a similar manner as described for foliage. Nonyl phenol residues were eluted from the columns with dichloromethane (300 ml) immediately after the applications of crude extracts. The eluates were evaporated just to dryness and the residues were dissolved in 2 ml methanol (HPLC-grade) for analysis by HPLC.

 \sim

1

High performance liquid chromatographic (HPLC) analysis

High performance liquid chromatographic analysis of extracted nonyl phenol residues was performed using a Hewlett Packard Model 1084B HPLC equipped with a variable wave-length UV detector. The operating parameters were as follows:

Column	Partisil PXS 10/2	25 ODS-2 from Whatman
Column Pressure	35 bar	
Mobile Solvent System	95% methanol in w	vater at 1 ml/min
Oven Temperature	40°C	•
UV Detector Wave-length	278 nm	

Under these conditions nonyl phenol gave a major peak with a retention time of 5.50 min and a minor peak of 5.10 min. The major peak accounted for about 95% of the total peak area. Calibration curves were prepared daily before and after sample analysis to confirm the stability of the instrument. Quantification was done by external standardization based on peak area.

Recovery studies

Prespray samples of foliage, forest soil, stream water and sediment were fortified with nonyl phenol at two different levels and subsequently analyzed by the described methods. The percent recoveries are given in Table 1. No significant interference for nonyl phenol analysis was detected in any of the prespray sample. The detection limits were 0.2 ppm for foliage, 0.1 ppm for forest soil, 0.05 ppm for sediment and 1.0 ppb for stream water.

Table 3.	Recovery of nonyl	phenol	from	fortified	foliage,	forest
	soil/sediment and	stream	water	samples.		

Substrate	Fortification	Percent Recovery $(\overline{X} \pm S.D., n = 2)$
Foliage	1.0 ppm	83.7% ± 1.8%
	10.0 ppm	103% ± 4.9%
Soil/Sediment	1.0 ppm	97.0% ± 4.1%
	10.0 ppm	92.6% ± 0.4%
Stream Water	0.1 ppm	107% ± 0.1%
	1.0 ppm	95.6% ± 2.3%

Nonyl phenol residues in aquatic samples

The results of analyses of stream water samples collected from Station 1 demonstrate a rapid disappearance of nonyl phenol residues from flowing water (Table 4). The highest residues measured at this station were 9.1 ppb one hour after treatment of the stream, and these decreased to trace levels (< 2.0 ppb) after six hours and non detectable levels within 24 hours. Residues detected in Station 2 represented an extreme case as the water there was almost stagnant. At the time of first sampling, there was a pool of Automate "B" Red dye floating on the surface. The concentration of nonyl phenol in water from that station four hours after spraying was 1,100 ppb, almost 500 times higher than that of Station 1. However, the residues declined rapidly to 110 ppb in the next two hours, 12 ppb within 24 hours and non detectable levels within three days.

Trace amounts of nonyl phenol were found three hours after spraying at Station 3 in the Magpie River downstream of the treatment stream. Trace amounts of residues were also detected at Station 1 and 2 after four days and at all three stations after five days following heavy rainfalls. Nonyl phenol was not detected in any water sample taken beyond this time.

TABLE 4

Nonyl phenol residues in stream water collected from the treatment stream*, Dubreuilville, Ont.

Time after		phenol residue	
spraying	Station 1	Station 2	Station 3
1 hour	9.1	-	-
3 hours	4.3	-	Trace
4 hours	2.3	1,100	-
6 hours	Trace	110	-
24 hours	N.D.	12	-
2 days	N.D.	2.4	-
3 days	Trace	N.D.	N.D.
4 days	Trace	Trace	-
5 days	Trace	Trace	Trace
9 days	N.D.	N.D.	N.D.
14 days	N.D.	N.D.	N.D.
30 days	N.D.	N.D.	N.D.
62 days	N.D.	-	N.D.

Trace = < 2.0 ppb

N.D. - not detectable (detection limit was 1.0 ppb)

* - treated with 0.47 l/ha nonyl phenol on 29 May 1979.

,

 $\widehat{}$

 \sim

<u>____</u>

Nonyl phenol residues above the detectable limits for sediments (0.05 ppm) were only found in one sediment sample collected from the treatment stream. Trace levels (< 0.1 ppm) were detected in the four hour post-spray sample from Station 1 (Table 5).

Nonyl phenol residues in terrestrial samples

Nonyl phenol residues persisted in white spruce foliage for about 30 days. The highest concentration was 18.9 ppm detected one hour after spraying. It declined to 0.54 ppm in 30 days and was no longer detected 62 days after treatment (Table 5). Levels of nonyl phenol in soil never exceeded the limit of detection (0.1 ppm).

AQUATIC IMPACT STUDIES

Drift netting studies

Drift sampling was done each morning and evening from 24 May -2 June 1979 (five days before to four days after the nonyl phenol application) in the nonyl phenol treatment and control streams. Five and 20 minute drift samples were taken using a standard 0.47 m x 0.32 m drift net. A drift net fitted with a restrictor to reduce the size of the opening to 0.48 m x 0.025 m was used for 2 hour drift sampling. In both cases drift nets were placed in the stream to sample a column of water from surface to bottom, including the surface film. Current speed was measured at the opening to each drift net half way between the surface and bottom using a Teledyne Gurley No. 625 Pygmy Current Meter. Using the above information the following could be calculated:

> depth at station (m) x width of drift net opening (m) x current speed (m/sec) x duration of drift sample (sec) = m^3 of water in drift column. width of drift net opening (m) x current speed (m/sec) x duration of drift sample (sec) = m^2 of surface area of drift column.

Drift samples were either picked immediately and preserved in a 30% methanol solution or preserved in their entirety in a 10% solution of formaldehyde. Invertebrates were counted and identified to order or family and the results expressed as:

number of invertebrates/m³ of water in drift column (for aquatic invertebrates) number of invertebrates/10 m² of surface area of drift column (for terrestrial invertebrates).

 \sim

100

(185)

1

TABLE 5

Nonyl phenol residues in foliage, forest soil and sediment from the treatment plot*, Dubreuilville, Ont.

Time after	Nony	L phenol residue	
spraying	Foliage	Forest soil	Sediment**
1 hour	18.90	N.D.	N.D.
3 hours	7.70	N.D.	N.D.
4 hours	4.86	-	Trace
6 hours	4.44	N.D.	N.D.
24 hours	4.06	N.D.	N.D.
2 days	3.54	N.D.	N.D.
3 days	2.06	N.D.	N.D.
4 days	1.49	N.D.	N.D.
5 days	1.70	N.D.	N.D.
9 days	1.23	N.D.	N.D.
14 days	1.43	N.D.	N.D.
30 days	0.54	N.D.	N.D.
62 days	N.D.	N.D.	N.D.

N.D. = not detectable (detection limits were 0.20 ppm for foliage, 0.10 ppm for forest soil and 0.05 ppm for sediment).

Trace = < 0.10 ppm (detected in sediment collected
from station 1).</pre>

* treated with 0.47 l/ha nonyl phenol on 29 May 1979.

** sediment samples were collected from both station 1 and 2
and analyzed individually.

Additional 5 and 20-minute drift samples were taken on spray day to determine any immediate effects of the treatment.

The results of drift netting are presented in Tables 6 to 13. Numbers of most groups of aquatic invertebrates remained fairly constant over the course of the study. There was a significant (> one order of magnitude) increase in the number of blackfly larvae (Diptera:Simuliidae) caught in the 2-hour drift net set at the treatment station one day after the nonyl phenol application (Table 8), but no indication of any effect on this group in the 20 minute drift net set begun at the same time (Table 6). Blackfly larvae were caught in large numbers in drift sets in the control stream at the same time (Tables 7 and 9), but the proportional increase was smaller than in the 2 hour drift net set in the treatment stream. This increase may have been a response to warming stream temperatures as suggested by the increased drift of blackfly larvae in the control stream. It may also have resulted from mechanical disturbance of the bottom due to sampling activities above the drift station some time after the 20-minute drift had been removed.

There were no indications of increases in the numbers of terrestrial organisms drifting on the stream surface after the nonyl phenol application (Tables 10 to 13).

Bottom fauna

Bottom fauna populations were sampled before and after the nonyl phenol application using a standard 0.093 m² Surber sampler (Surber, 1936). Supplemental information was obtained by collecting organisms from four randomly chosen rocks (approximately 20 cm in diameter). Samples were either picked immediately and preserved in a 30% methanol solution, or preserved in their entirety in a 10% solution of formaldehyde. Benthic organisms were subsequently counted and identified to order or family in the lab. For each sampling date, results were expressed as mean number and standard deviation of aquatic organisms of a particular group collected in four Surber samples or from four rocks.

Sampling indicated no significant overall effect of the nonyl phenol application on bottom fauna populations. Fluctuations in numbers of most groups of aquatic invertebrates over the course of the study were observed, but these generally corresponded quite closely between the treatment and control streams (Tables 14 to 17). There was an indication of a reduction (< one order of magnitude) in numbers of midge larvae (Diptera:Chironomidae) found in Surber and rock samples taken from the treatment stream three days after the spray. This reduction did not show up in the control samples. By ten days postspray, numbers of chironomid larvae in bottom fauna samples from the treatment stream had increased to above the pre-spray levels. Since there was no apparent increase in number of chironomids in the drift

Aquetic organisme caught in 20 min drift net wets*, Nonyl Phenol Treatment Stream, Dubreuilville, Ontario, 24 May - 2 June 1979

Days before or a of 0.47 L/ba not			tea		-5 M	43	-4 PM		-)		-2 put	**	-] P40	tre	Ohr	Spra 43,hr	ny Day +ikr	+ 2hr	pa	8 4	1 	64	+2 pm	đa	+3 P#		14 pm
	· .		·				•						• • •														. 15
Dapth (m)				0.33	0.32	0.35	0.34	0.25		0.24 0.42	0.23	0.25 0.66	0.29	0.24	0.74 0.#1	0.34 0.81	0.24 0.81	0.01	0.21 0.45	0.18 0.78	0.18 0.66	0.16	0.21	0.33	0.39	0.38	0.35 0.51
Current Velocity				0.56						38.71		93.06	0.75	109.64		109.44		109.64		79.19		73.09			138.58	128.59	100.67
Volume of drift	COLUMN	• .		81.74	101.01	42,18	••.,,	103.73	/4.13	39./1	31.69	73.4 8	***.9/	107.04	107.44	109.04			33,20								
Nenatoda				•				0.010			•																
Oligochaete						·		_						0.018										0.005			
fitrud tuo <u>s</u>		•	÷.,	0.013		0.016		•				0.012													0.007		0.019
Gautropola						0.016									0.009	0.009							0.010		W.007		0.014
Yelocypale Areclaida			. * *			0.018																					
Acarl					0.030	0.016	0.010	0.019	0.014	0.026	0.032		0.008		0.027				0.019		0.030	0.014					
CrustAceae			• •		•••••										••••									•			
Detracula				0.012	0.099	0.016	0.075	0.170	0.054			0.054	0.0(9		0.073	0.082	0.073	0.027	0.094			Q.082	0.042	0.163			
Angelstyroda				0.012	0,010								0.001							0.013		•	•	•			
Truckatoriata																											
llopt sgeniide	3 6 ·				0.010				0.014						0.034			0.027	0.038					• • • • •		0.003	• •
Bect Edae (Jonat a			•	0.019	0.030	0.016	0.103	0.047	0.014	0.026	0.126	0.108	0.049	0.073	0.036	0.046		0.047	0.038	0.063	0.104	0.041		0.033		0.031	18
Apachaidan		· · ·		•		· .		0.010																			0
Libollulida	· ·	· ·							•										0.019					•			
Placopters	-			•	0.010			0.010					800.0		0.009					0.025			0.010	0.016		0.016	
Reulptera			•																								
Corisian			1.1.1		•		8.013	0.010		0.024		0.011							0.019	0.025		0.014		_	0.007	0.008	
Gerridae					0.020									0.018			0,009	0.009					0.010	0.008			
Trichoptora Larvag	•			0.056	0.03	0.050				0.078	9.032	0.044	0.049	0.082	0.073	0.082	0.091	0.036	0.019	0.010	0.075	0.096	0.01	0.081		0.016	
Let Ave				U. U26	0.013	6 *030	0.015	0.180	0.014		9.032	0.043	0.043	0.027	0.035	0.027	0.071	0.073	0.019	0.018	0.0/3	0.096	0.011	0.041	·	0.010	0.099
Coleoptera								0.017		4.414						•		•		0.000		0.070					
Hallplidae	adulte		•		0.010	0.016																					
Dyt Incides	adults		•	. •							•										0.015						
	adulte			•		1								0.009		0,018					0.015			•			
Hyraca idae																								0.003			
	sduits larvas							0.010		0.026		0.011	9.003								0.015		0.010				
	adulta						0.015	0.010		0.010		0.011	A*004										0.010	0.008	0.007		
Chrysonolide																					0.015		0.010	0.000	4.007		•
pipters		-									•																
Tiputidae	Jarvas							0.010			0.012	0.011		0.009	0.015	•		0.018			0.015		:	0.003		•	
Tanyderidae	Larvas														0.009												-
Stmillion	larvae			0.058	0.050	0.033	0.120	0.095	0.135	0.155		0.140	0.160	0.027	0.073	0.219	0.301	0.110		0.088	0.149	0.192	0.052	0.098			0.010
	bubue										0.032	0.022			÷ ••	0.009											
Chironutidae			•	0.024	0.010					0.026			0.005	0.009	0.027	0.018	0.055			0.025	0.030	0.014	0.021	0.024	0.007	0.008	0.010
Disidee	Pupae			0.037	0.079		0.015	0.019	0.014		0.012					0.009		0.027							0.007	0.003	
1111488	JULANO						0.015																				
Fish																	•		0.019								

)

Total Aquatic Invertebrates

)

)

3

0.330 0.435 0.182 0.481 0.662 0.324 0.129 0.629 0.494 0.295 0.274 0.410 0.320 0.529 0.328 0.206 0.479 0.463 0.347 0.198 0.497 0.036 0.093 0.129

3

3

)

)

)

* Expressed as number of organisms/n³ of water passing through the drift not

)

** Application at 0707 on 29 May 1979

٢

.

)

)

)

۰.

)

.

)

Aquatic organisms caught in 5 min drift net sets*, Nonyl Phenol Control Stream, Dubreuilville, Ontario, 24 May - 2 June 1979

· · • •

۶.

.

)

• • • .

)

.

)

)

. .

																				•					
Days before or after application of 0.47 1/ba monyl phenol ⁴⁴		.s		-4		-) <u>.</u> .		·3	4.9	-1	Sam	613	hptaj Jam	Day Baa	704		-	+1		+3		••		•4	
	-	1		-		•-		•-		•	-							-	_			-		- .	
Pepth (m) Current velocity (m/aoc) Volume of drift column (m ³)	0.40 0.36 55,30	0.30 0.36 15.23	0.30 0.42 17.30	e.31 0.36 10.71	0.29 0.33 13.49	0.29 0.42 11.69	0.35 0.33 7.92	0,26 0,33 8,24	0,22 0,30 9,31	0.24 0.24 8.12	0.21 0.34 15.99	0,21 0.34 13.99	0.21 0.34 15.99	0.21 0.54 15.99	9.31 0.34 15.99	0.20 . 0.44 33.41	0.17 0.33 7.91	0.13 0.27 6.43	0.14 0.21 4.14	0.13 0.21 4.44	0.18 0.26 6.60	0.18 0.26 6.60	0.19 0.24 6.43	0.22 0.30 9.31	
Newstonia	8.018		· ·									0.063			0.042										
Hirudinen Gustropula Pelucypoda	0.036	0.046 0.066		6.187	0.074	8,036 .	0.126			•	0,062				0.062					0.223					
Arachaija Acars	0.199	3.283	0.248	1.307	0.222	0.342	1.339	0.607	0.215	6.615	0.663	0.168	0.062 '	0.148	0.062			0,584	•	6.225	0.606		0.154	1.074	
Grunt avena Ost garuda Amphi pada	0.131 0.199	7.420	1.653 8,083	3.735	3.316 0.148	1.076	0.252	2,184	1.719 0.107	4.064		0.062	0.125	0.623		2.579	0.126	3.110	1.932	2.703	0.758	3.939	2.955	5.263	
Yphonoruptere Replazivalides Basildan					• .				0.107	0.173	0.063		0.062						0.242					ч 0 _{0.0}	
Flocapiera Brolptura Cortelate Gertidae	0.018								0.107				0.062							•		e.152	0.136 0.336		
Tríchuptora Barvao Bupao	0.036	6.197			0.149		0.176			0.493					4.062		0.125		0.242		0.303	0.606	0.467	0.215	
Colroptera Amphisoidae adulta Naltpiidae adulta Dyttpicdae adulta	6.034								0.107		0.012	0.062			9.062				: 0,342						
nyeseensa aanta Nydsophilidaa adulta Kimidaa Iasvae 1 adulta		0.046									0.062	0.062					0.126							0.197	
Diptora Tipulidae latvae								0.171			0.062														
pupas Callelias Jazvas Similidas Jazvas	2.621	1.904	3.802	2.348 9.187	8.377	0.941	4.346 0.126	5.218 0.121	28.571	12.315	0.175 15.572	15.072	13.350.	11.445	7.755	0.081 5.077	32.617	4.816 4.818	43.961	14.649	0.454	1,364	5.910	0.967	
pupae Chironumidae larvae pupae	0.054 0.145 0.054		0,083 0,413 0,248	0.249	8.074 0.212	0.016	0.126 0.126	0.445	0.322	0.139 0.370	8,250	0.375 0.062	0.188 0.062	0.062	0.062				0,725	0.901				0.322 0.107	
Yotal Aquatic tovortebrates	3.434	12.804	6,529	7.643	12.602	2,481	6.818	8.738	31.257	18,719	16.123	15.948	12.946	12.320	8.130	7.736	32,994	10.657	47,343	18.674	3.323	6.061	9.798	• • . 163	

⁶ Expressed as sumber of organisms/m³ of water passing through the drift net ⁶⁴ Application at 0707 on 29 May 1979 ⁶⁴⁶ 20 min drift net ort

					Dubre	u11v111	e, Unca	T10, 2 4	may -	z June	13/3									
Days before or after application		-5		-4		-1		-2		-1	Spra	y Day	•	+1		+2		+3		+4
of 0.47 1/hs nony1 phenoles		pa	28	pm	48	pa	#10	pm	an	pm	88	pm	8 m	pm	# %	pa	an	pa	038	pm
Depth (m)	0.40			0.40	0.48	0.38	0.32	6.32	0.30	0.32	0.30	0.28	0.21	0.21	0.20	0.24	0.36	0.42	0.41	0,36
Current velocity (m/sec) Volume of drift column (m ³)	0.56 · 40.32			0.39 28.08	0.27 23.33	0.30 20.52	0.27 15.55	0.27 15.55	0.24 12.96	0.30 17.28	0.51 27.54	0.33 16.63	0.18 6.80	0.21 7.94	0.36 12.96	0.18 7.78	0.21 13.61	0,21 15.88	0.18 13.28	0.21 13.61
Arachaida																				
Acari	0.025					0.049							0.147							0.074
Crustaceao Ostracodo														0.378		•				
Amphipoda	0.025																			
Epheneropters Heptagen11dae	0.025		0.032										•							
Baet Idae	0.099			0.036		0.098		•		0.058						0.257	0.220	0.063	0.075	
Trichoptera																				
· larvae pupae	0.025 0.025		0.097	0.071	0.043		•		0.077				0.294	0.126	0.154			0.063	0.075	
Colcoptora																				
faliplidae adults Hydrophilidae sdults						-							0.147	0.126 0.378						
Elmidao larvoo			0.032							•				0.3/4						
Diptora																				
Tipulidae larvae													0.147			0.128				
Simuliidao larvae	0.074		0.064	0.107		0.098			0.077		0.218	•	12.059	0.252	0.154	0.386	0.294	0.063	0.075	0.074
pupae Chironomidae lervae	0.050	0.041	0.032		0.043								0.147			0.126	0.147			
pupae	0.025		0.034													V.120	0.147			
Pich				0.036												0.128				
Total Aquatic Invertebrates	0.372	0.227	0.258	0.214	0.086	0,195			0.154	0.058	0.218		12.941	1.260	0.309	0.900	0.661	0.189	0.226	0.147

Aquatic organisms caught in 2 hr drift net sets*, Nonyl Phenol Treatment Stream, Dubreuilville, Ontario, 24 May-2 June 1979

^AExpressed as number of organisms/m³ of water passing through the drift act ^{AA} Application at 0707 on 29 May 1979

)

3

)

)

3

)

· 20

)

)

and the second

)

Days before or after application of 0.47 1/hs nonyl phenol**	 	-		Pm	-1 84		; 40) Pu	 48	l pa	Spray am	Day pa		pa		2 pm	+ 491	3 pm	+ 40	4 pm
Current velocity (m/sec) _ 0).40).36).92	0.48 0.36 31.10	0.32 0.42 24.19	0.31 0.39 21.76	0.32 0.45 25.92	0.32 0.39 22.46	0.25 0.36 16.20	0.25 0.42 18.90	0.20 0.24 8.64	0.23 0.21 8.69	0.20 0.54 19.44	0.19 0.42 14.36	0.14 0.30 7.56	0.17 0.36 11.02	0.14 0.21 5.29	0.15 0.18 4.86	0.19 0.26 8.89	0.19 0.26 8.89	0.19 0.24 8.21	0.21 0.36 13.61
Oligochauta Gastropoda O.	.039 .077	0.032	9.041		0.116	0.044							0.132			0.206	0.225			0.074
Crustacono Ontracoda 0.	.154	0.997 3,183	0.041 0.455	0.873 1.654	0.154	0.134 2.158	0.309	0.106 0.423	0.694 1.157	0.345 1.611	0.103 0.309	0.139 1.114		0.363 3.085	0.189 1.134	1.646	0.112 2.025	0.675 3.037	0.365 1.949	0.588 2.939
Amphipode O. Ephenoropters Neptogeniidae Buetidae		0.032 0.032											0.265		0.189				2.436	
Plecoptera Beniptera Corixidao 0. Gorixidae 0.		0.032 0.032		0.046														0.225	0.122	
Culcopters	.077 .039	0.161	0.041	0.046			0.062		0.347		0.051			1.180		0.206	1.237	0.338	0.609	. 0. 294
Dytiscidas adults Dipters Similidas Isrvas 6.	.134	0.836	0.992	1.195	1.196	0.712	3.272	0.529	12.616	0.806	9.619	1.462	11.508	0.091 1.724	11.909	0.823	1.462	0.112 0.450	2.558	0.147
Chironomidae larvae 0. pupae 0.	.154	0.161 0.064	0.041 0.124	0.046	0.077 0.039	0.089 0.044	0.124	0.053	0.116	0.115 0.115	0.103	0.279		0.091 0.091			0.112	0.338 0.112	0.122	0.147
Total Aquatic Invertebrates 7.	137	5.563	1.736	3.860	1.582	2.137	3.765	1.111	14.931	2.992	10.185	2.994	11.905	6.624	13.422	2.801	5.174 '	5.399	8.161	4.188

Aquatic organisms caught in 2 hr drift net sets*, Nonyl Phenol Control Stream, Dubreuilville, Ontario, 24 May - 2 June 1979

Table 9

)

)

)

)

.

)

•••

3

)

)

9

21

)

)

* Expressed as number of organizas/m³ of water passing through the drift met ** Application at 0707 on 29 May 1979

. . .

:

Terrestrial organisms caught in 20 min drift net sets*, Nonyl Phenol Treatment Stream, Dubreuilville, Ontario, 24 May-2 June 1979

Days before or aft	er soplication		5		4	-	-3		-2	•	-1		1	Ipray Da	y				41		+2		+3		44	
of 0.47 1/ba monyL			be	. #16	ba	84	be	64 '	Pu	810	h m	Pre	Ohe	- d ⁱ gher	+lbr	42hr	be .	84a	be	84	P4		pm	6 10	1	
Current Valuaity (Surface nice of de		0.56 213.04	0.56 315.84	0.45	0.51 195.84	0.75 423.00	0.69 264.96	0.42 161.28	0.36 138.24	0.66 372.24	0.73 423.00	0.81 456.84	0.81 436.84	0.81 436.94	0.83 456.84	0.01 436.84	0.45 253.80	0.78 439.92	0.66 372.24	. 0.81 436.84	0.81 436.04	0.66 372.24	0.43 355.32	0.60 338.40	0.51 287.64	
Ar.whaide Aranolde				0.038										•												22
Collesbola	•	0.418	• •	•••••	0.102	0.496	0.076	0.062	0.145	0.081			0.072	0.132	0.110	0.072					0.066	0.027				
Flecoptern	adulta											•								· · ·					0,104	j –
Trichaptera	adultu					0.047				0.054			0.131			0.044				0.022		0.054				
flyncnuptera Fornicijan	adults .				0,031	•													0.027				0.028	0.030		
Diker	adulta		0.031		0.031						0.024		0.044		0.022				v.v.,					¥.434	0.035	i i
Coleoptera												•										•				
Stephylistdes	sdults		0.031	•	0.102												0.039		0.134							
Other	adul La											0.022														
Diptore	adul ta	.0.033	0.380	0.116	1.430		0.038		0.579		0.017	0.022	0.131	0.048	0,066	0.044		0.023	0.108		0.044	0.054				
Tutal Tusseatrial (Drgantane	0.312	0.443	0.174	1.736	0.544	0.113	0.062	0.723	0.134	0.071	0.044	0.328	0.219	0.197	0.110	0.039	0.023	0.269	0.022	0.110	0.314	0.028	0.030	0.139	,

A Expressed as number of invertabrates/10m² of surface area of drift column 44 Application at 0707 on 29 May 1979 . ٠

3

3

.)

)

)

3

)

3

)

. .

)

Days before or after applicat of 0.47 1/ba could phecelan	100	-3 • ya		-4 _p				., ,	_ ·	-1	3==	6-0	Epra Tan	y Day Bas	9+a			·1 p=		12 14	_	n		**	
		•				-		-		•								-		•	-	-		-	
Correct velocity (m/sec) Surface area of drift column (m ²)	8.35 138.24	0.34 30,74	0.42 40.32	0.36 34.56	0.33 44,53	0.42 40,32	0.33 31.44	0.33 31.44	0.30 42.34	0.24 33.84	0.54 76,14	0.51 76,14	0.54 26.14	0.54 76.14	0.54 76.14	0.44 42.64	0.33 44.53	0,37 38.07	0.21 29.61	0.21 29.61	0.26 36.66	0,26 34.44	0.24 33.84	0.30 43.30	
Arachaide Arauside Gulleubole Byounotere	r										0.13 l					0.645		8.523						0.236	
furnicidae Diptace	0.072	0.591	0.346	3.472		0.496		0.316		1.182			0.131	0.131	0.131	0.484		0.263			9.373	0.273 0.273			23
Total Terrestrial Organisms	0.072	0.391	0.348	3.472		0.436		0.316		1.182	0.131		0.338	ó.131	0.131	1.128		0.748			6.273	0.546		0.234	

⁴ Expressed on number of organizam/10m² of surface area of drift column ⁴⁴ Application at 6707 on 29 Ney 1979 ⁴⁴⁴ 20 win drift set

Table 11

)

9

)

)

)

)

)

Terrestrial organisms caught in 5 min drift net sets*, Nonyl Phenol Control Stream, Dubreuilville, Ontario, 24 May-2 Juna 1979

)

)

)

Terrestrial organisms	caught in 2 hr d	drift net sets*, Nony	l Phenol Treatment Stream,
I	ubreuilville, Ont	tario, 24 May - 2 June	1979

.

.

• • •

3

3

)

.

.

.

•

.

)

)

)

.

9

)

Days before or after application		-5		-4.		-3	-	-2	-	1	Spra	y Day	+1	L		+2		+3 [.]		+4	
of 0.47 1/ha nonyl phenol**	410	pm	AR	, ba	63	pm	4B	pa	ân	pm	82	pa	8	ри	8 M	- Pm	â n	Pa	A m	pm	
Current velocity (m/scc) Surface area of drift column (m ²) 1	0.56 100.80	0.56 100.80	0.42 75.60	0,39 70.20		0.30 54.00	0.27 48.60	0.27 48,60	0.24 43.20	0.30 54.00	0.51 91,80	0.33 59.40	0.18 32.40	0.21 37.60	0.36 64.80	0.18 32.40	0.21 : 37.80	0.21 37.80	0.18 32.40	0.21 37.80	
Collembola Nemiptora Trichoptera	1.290	0.099 0.099	0.661 0.132		no data										0-154	0.617					24
Hymenoptera Formicidae				0.285										0.265							
Coleoptera Diptera	0.099	0.099	0.132	1.567										0.529	0.154	0.926	0,265			0.529	
Total Terrestrial Organisme	1.389	0.298	0.926	1.852										0.794	0.309	1.543	0.265			0.529	
										-	•										

* Expressed as number of invertebrates/ $10m^2$ of surface area of drift column ¹ * Application at 0707 on 29°May 1979

3

)

Terrestrial organisms caught in 2 hr drift net sets*, Nonyl Phenol Control Stream, Dubreuilville, Ontario, 24 May - 2 June 1979

	after application		5		-4	-			-2		-1		y Day		+1		2	+		•		
ef 0.47 1/ha so	wal brenor	810	be	43	₽ m	-	Pe	846	be	A 74	ba	6m	6m	# 1	pa	8 48	pe		be	âm	Pe	•
Current velocit Buriace ares of	y (m/sec) drift columa (m ²)	0.36 64.80	0.36 · 64.80	0.42 75.60	0.39 70.20	0.45 \$1.00	0.39 70.20	0.36 64.80	0.42 75.60	0.24 43,20	0.21 37.80	0.54 97.20	0.42 75.60	0.30	0.36 64,80	0.21 37.80	0.18 32.40	0.26 46.80	0.24 46.80	0.24 43.20	0.36 64.80	
Colcoptera Staphylinida other Diptera	e adulta adulta	•			0.142			· .							0.154	•						
	adulta		0.154	0.256	1.282	0.370					0.529	0.103					0,309					
Tusal Terroesr <i>i</i>	al Orgeniums	• .	0.154	0.256	1.424	0.370			•		0.529	0,103			0,154		0.309					

)

3

3

١

)

Ì

⁴ Expressed as number of invertebrates/10m² of surface area of drift column ⁴⁴ Application at 0707 on 29 May 1979

-

1.1.1.1.1.1.1

· · · ·

)

)

).

)

Bottom fauna populations*, Nonyl Phenol Treatment Stream Dubreuilville, Ontario, 25 May - 15 June 1979

ays before or after application f 0.47 l/ha nonyl phenol**	May 25 -4	June 1 +3	June 8 +10	June 15 +17
ematoda	0.25 ± 0.50			
ligochaeta	0.25 ± 0.50		0.75 ± 1.50	0.75 ± 0.96
irudinea			0.75 ± 1.50	
elecypoda			0.75 ± 1.50	0.50 ± 0.58
rustaceae				
Amphipoda	.0.75 ± 0.96	0.50 ± 1.00	1.00 ± 0.82	0.25 ± 0.50
ollembola	•		0.50 ± 1.00	
phemeroptera				
Ephemeridae		0.25 ± 0.50	•	
Baetidae	1.00 ± 1.41	4.00 ± 6.00	3.25 ± 1.71	8.25 ±11.21
donata				
Cordulegastridae			0.25 ± 0.50	•
lecoptera	0.25 ± 0.50			
richoptera				
larvae	4.25 ± 2.06	5.00 ± 4.55	11.25 ± 6.70	4.25 ± 3.86
pupae				0.25 ± 0.50
oleoptera				
Elmidae larvae	0.50 ± 0.58		0.25 ± 0.50	
adults	0.25 ± 0.50		0.50 ± 0.58	
iptera				
Tipulidae larvae		0.25 ± 0.50	0.25 ± 0.50	0.75 ± 1.50
Dixidae larvae	0.25 ± 0.50			
Simuliidae larvae	3.25 ± 5.19	1.00 ± 0.82	51.50 ±25.64	48.25 ±48.94
pupae			0.75 ± 0.50	2.25 ± 3.86
Chironomidae larvae	1.75 ± 0.50	0.25 ± 0.50	6.50 ± 3.87	2.25 ± 1.26
рирае	0.50 ± 0.58	0.50 ± 0.58	3.50 ± 1.73	0.25 ± 0.50
Empididae larvae			0.25 ± 0.50	
pupae				0.25 ± 0.50
otal Aquatic Invertebrates	13.25 ± 8.34	11.00 ±10.52	81.50 ±28.87	68.25 ±53.97

* Mean numbers and standard deviations of organisms collected in four 0.093 m² Surber samples. ** Application at 0707 on May 29, 1979

•)

3

1)

)

)

3

•)

₹ ,

26

.)

()

)	· · · · · · · · 》	1 4 4 4 7 m	9) .))) .)
	· · · · · ·	1		• • • •	1		•	- -
	• • • •							
	 • • • • • • • • 	1 .	•	• • •	10 1 1 1 1 1	1		
		· •			· · ·			1
	8 D I - 2 I	1 -			анан Аларын Алар			
	1 .	1 18 1 1	• •			,		
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1			1 1			
	4 • • •							
•	· · · · · · · · · ·		1.		t (1) (1) (2) (2) (2)			
					Table 15			
		• • • •	Bottom fau		ons*, Nonyl Phenol	Coutrol Stream		
•	, ₁ , 11 - 1	19 11 14 14 14 14 14 14 14 14 14 14 14 14			Ontario, 26 May - 1			
	Days before or		ation Ma	ay 26	June 1	June 9	J	lune 16
	of 0,47 1/ha no:	nyl phenol**		-3	+3	+11		+18
	Nematodmorpha					0.25 ± 0	50	
	Oligochaeta		0.2	5 ± 0.50	0.25 ± 0.50	0.50 ± 0		25 ± 0.50
	Hirudinea		V. 2.	J I 0.30	0.23 1 0.30	0.30 ± 0		J I U.JU
	Gastropoda		0.50) ± 0.58	2.50 ± 2.65	3.00 ± 3		
	Pelecypoda		0.50	J T 0.30	2.30 1 2.03	0.75 ± 0		
	Arachnida					0.7510	.90	
	Acari		2 21	5 ± 3.86	0.50 ± 1.00	0.50 ± 0	58	
	Crustaceae		£ • £.	1 1.00	0.50 1 1.00	0.30 1 0		
	Amphipoda		1.00) ± 1.16	7.75 ± 9.60	2.25 ± 0	96	
	Ephemeroptera		1.00	, 1 1.10	7.75 1 9.00			
	Ephemeridae				0.25 ± 0.50			
	Heptageniida	•	0.2	5 ± 0.50	1.00 ± 1.16	0.75 ± 0	.96 1.0	0 ± 1.41
	Baetidae			5 ± 0.50	1.25 ± 1.26			5 ± 9.29
	Plecoptera			$) \pm 0.58$	0.50 ± 1.00	0.25 ± 0		5 ± 1.50
	Hemiptera							
	Corixidae		0.2	5 ± 0.50	0.25 ± 0.50	0.75 ± 0.	.96	
	Notonectidae		•				0.2	5 ± 0.50 N
	Gerridae					0.25 ± 0.	.50	27
	Trichoptera							
	-	larvae	7.2	5 ± 4.92	5.50 ± 5.57	9.50 ± 5	.00 6.7	5 ± 1.71
		pupae			0.25 ± 0.50	0.75 ± 1.		0 ± 0.58
	Coleoptera	•••	•					
	Haliplidae	adults					0.5	0 ± 1.00
	Elmidae	larvae	1.2	5 ± 2.50	2.25 ± 3.86	0.75 ± 0.000	.96 2.7	5 ± 2.06
		adults	0.2	5 ± 0.50		0.25 ± 0.25	.50 ' 1.2	5 ± 1.89
	Diptera							
	Simuliidae	larvae	1588.50) ± 1317.74	838.50 ± 1367.	10 944.50 ± 10	060.20 153.5	0 ± 148.57
		pupae	2.2	5 ± 2.63	221.25 ± 236.3	8.50 ± 6	.66 7.5	0 ± 1,29
	Chironomidae) ± 5.32	6.75 ± 12.84		.99 9.0	0 ± 9.66
		pupae	1.50) ± 2.38	3.00 ± 3.83	2.00 ± 1	.83 0.2	5 ± 0.50
	Heleidae	larvae		$1, 2, \dots, n \in \mathbb{N}$	0.25 ± 0.50	N		
	Empididae	larvae			1.00 ± 2.00			
							50	
	Fish	and the second second			•	0.50 ± 0.50	• 28	

* Mean numbers and standard deviations of organisms collected in four 0.093 m⁻ Surber samples ** Application at 0707 on 29 May 1979

and the second second

)

•

. · · ·

1 A 1

· 1

)

.

Bottom fauna populations*, Nonyl Phenol Treatment Stream Dubreuilville, Ontario, 25 May - 15 June 1979

Days before or of 0.47 l/ha no	after application onyl phenol**	May 27 -2	June 1 +3	June 8 +10	June 15 +17
Hirudinea Gastropoda			0.25 ± 0.50	0.25 ± 0.50 0.25 ± 0.50	
Ephemeroptera				0,25 2 0,50	
Heptageniida Baetidae	ae	0.25 ± 0.50 5.75 ± 2.63	3.25 ± 2.63	0.25 ± 0.50 6.00 ± 4.97	0.75 ± 1.50 4.25 ± 4.19
Odonata Libellulidae	2			0.25 ± 0.50	
Plecoptera Trichoptera		0.25 ± 0.50	0.25 ± 0.50	0.50 ± 0.58	
	larvae	5.00 ± 5.23		3.25 ± 2.99	2.25 ± 3.86
	pupae	0.25 ± 0.50		0.25 ± 0.50	0.50 ± 1.00
Coleoptera					
Elmidae	larvae				0.25 ± 0.50
	adults	0.25 ± 0.50	0.25 ± 0.50	0.25 ± 0.50	
Diptera					•
Simuliidae	larvae	0.75 ± 0.50	1.25 ± 1.89	0.75 ± 0.96	0.25 ± 0.50
	pupae	0.25 ± 0.50		0.25 ± 0.50	
Chironomidae	e larvae	4.50 ± 1.92	0.50 ± 0.58	7.00 ± 2.94	7.25 ± 5.12
	pupae	0.25 ± 0.50		0.25 ± 0.50	
Total Aquatic]	Invertebrates	17.50 ± 6.61	5.75 ± 2.63	19.50 ± 1.92	15.50 ±13.30

* Mean numbers and standard deviations of organisms collected from four rocks ** Application at 0707 on 29 May 1979

3

·)

·)

و ي

()

(]

:)

28

/)

7

)

)) 1 - 1 - 1))	2	٢))	.,) ,	
a an	i	n to a					an sharan sharan s	
tititi Tititi		· · · · · · · · · · · · · · · · · · ·	and the state of the	,	· · · ·	· :	· · · · · · · · · ·	
	L • · · ·	The construction of the	$(1, 1, \dots, n) = (1, \dots, n)$, ·			6	
e ta terrar com	to the second second	♦ A state of a state of a state	· · ·				f · · · ·	
and all in products	the figure of the state	1914 - Contra Cont	Table 17				1	

bister and the second state of Bottom fauna populations*, Nonyl Phenol Control Stream
bister and the second state of Dubreuilville, Ontario, 26 May - 16 June 1979

Days before or after app of 0.47 1/ha nonyl pheno		May 26 -3	June: 1 +3	June 9 +11	June 16 +18
Oligochaeta					0.25 ± 0.50
Gastropoda		0.25 ± 0.50	0.75 ± 0.96		
Pelecypoda				0.25 ± 0.50	
Arachnida			2.25 ± 4.50		
Acari Crustaceae			2.23 ± 4.30		
Amphipoda			1.25 ± 2.50		
Ephemeroptera					
Heptageniidae					0.50 ± 1.00
Baetidae					0.75 ± 0.96
Plecoptera ·		0.25 ± 0.50			0.25 ± 0.50
Megaloptera Corydalidae	•				0.25 ± 0.50
Trichoptera					
larvae		9.75 ± 17.52	0.50 ± 1.00	5.75 ± 4.57	8.25 ± 7.85
pupae			•		0.50 ± 1.00
Coleoptera		0 0F 1 0 F0			0 50 1 1 00
Elmidae larvae		0.25 ± 0.50	1 3 1 X 2		0.50 ± 1.00
Diptera	270	0 05 ± 00/1 /0	1077 AA + 1749 46	2620 00 + 2526 01	262 00 + 110 02
Simuliidae larvae		2.25 ± 2941.48	1877.00 ± 2742.46 89.75 ± 126.38	2629.00 ± 2534.01 29.50 ± 34.04	263.00 ± 110.02 9.00 ± 3.16
pupae Chironomidae larvae		1.00 ± 19.37 2.50 ± 8.27	7.75 ± 8.10		
CUTLODOWIDAG TALAG	L	2.JU I 0.2/	7.73 ± 0.10	11.50 ± 5.51	18.00 ± 8.52
Total Aquatic Invertebra	ites 381	6.25 ± 2948.10	1979.25 ± 2777.60	2676.00 ± 2564.80	301.25 ± 109.04

* Mean numbers and standard deviations of organisms collected from four rocks ** Application at 0707 on 29 May 1979

· .

. . t

.

E S A

29

at this time, it is unlikely that this short-term reduction in numbers can be attributed to the nonyl phenol application.

Caged fish

Four days before the nonyl phenol application, hatchery reared brook trout, *Salvelinus fontinalis* (Mitchell), were placed in cages in the nonyl phenol treatment and control streams. Two cages (1 and 2) were placed in the control stream and four (3, 4, 5 and 6) in the treatment stream, with between 20 and 26 fish in each cage (Table 18).

The results of caged fish studies are presented in Fig. 4 and Table 19. Up until 3 June, five days after the nonyl phenol application, there was no significant difference (95% confidence limits, Appendix 1) in mortality between fish caged in the treatment and control streams (17.7 and 16.3% respectively). At this time approximately half the fish were removed for residue analysis. By 6 June, eight days post-spray, mortality of remaining treatment fish was significantly higher than control fish (58.7% vs 24%). By 8 June, ten days post-spray, 93.5% of the fish caged in the treatment stream were dead compared to only 32.0% in the control. Although this data suggests that nonyl phenol may have had a delayed lethal effect on caged fish, mortality in the control was far too high to state this. with any degree of certainty.

Bioassays

Bioassays were conducted to determine the toxicity of nonyl phenol to fingerling brook trout and rainbow trout, Salmo gairdneri Richardson. The rainbow trout bioassay was conducted prior to the field season in the laboratory under environmentally controlled conditions. Measured volumes of a stock solution of nonyl phenol dissolved in absolute ethanol (20 mg/ml) were added to tanks containing 20 litres of dechlorinated tap water to produce the desired range of four concentrations (100, 180, 300 and 1000 μ g/&). Ethanol was added to a fifth tank of water to serve as a control. Nine fingerling rainbow trout were introduced into each tank and held at 9.0 \pm 1.0°C in an environmental chamber for 96 hours. At intervals the fish were observed for mortality and the dead fish removed.

The brook trout bioassay was conducted in the field at the time of the nonyl phenol application. Measured volumes of a stock solution of nonyl phenol in ethanol (2 mg/ml) and ethanol alone were added to polypropylene bags containing 20 litres of water taken from the control stream to produce the desired series of four concentrations (100, 210, 460 and 1000 μ g/ ℓ) and a control. Nine fingerling brook trout were introduced into each bag. The bags were then closed with a wire tie, placed in large plastic buckets, and set in the control stream. In this way the photoperiod and fluctuations in water

1. 3

1.1.1

.

9

· · 🔊

1.1.

3

• •

112

۲

in the second second

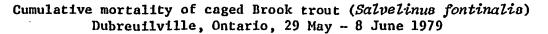
.

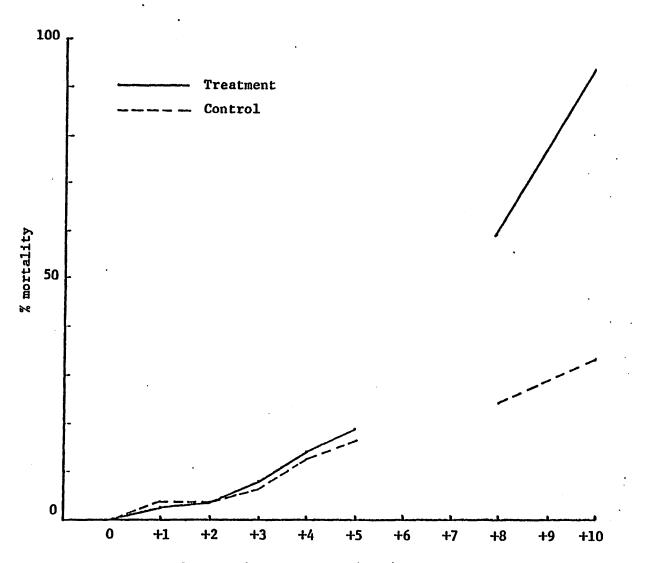
and the second second

Brook trout, Salvelinus fontinalis, caged in nonyl phenol treatment and nonyl phenol control streams, Dubreuilville, Ontario

25 May - 8 June 1979

Cage Number	Number of fish in cage	Number of fish weighed and measured	Total L	Total Length (mm)		Fork Length (mm)		Weight (g)	
			ed Mean	Range	Mean	Range	Mean	Range	
1	24	24	100.3	74-138	97.8	72-134	9.41	3.1-22.3	
2	25	20	99.7	78-117	97.0	76-114	9.59	4.4-15.5	
3	26	12	99.1	86-113	96.Ò	84-110	8.43	4.7-15.1	
4	20	. 7	101.1	91-120	98.7	89-117	9.51	7.2-13.9	
5	25	25	94.0	75-117	91.7	72-113	7.21	3.0-11.9	
6	25	25	88.6	67-114	86.0	65-110	6.34	2.8-12.5	
Total	145	113	96.2	67-138	83.5	65-134	8.18	2.8-22.3	


the solution of the second s


and the second state of the state

 $(\mathbf{r}_{1}, \mathbf{r}_{2}) = \mathbf{r}_{1} + \mathbf{r}_{2} + \mathbf{r}_{2} + \mathbf{r}_{2} + \mathbf{r}_{3} + \mathbf{r}_{4} + \mathbf{r}_{4}$

.

n en gan de Mandelande en Bernellen en de Bernellen en daar de Bernellen en de Bernellen en de Mandelen en de De andelen de Bernellen en de Bernellen de Bernellen de Bernellen de Bernellen en de Bernellen de Bernellen de B

٠

()

)

Days after application of 0.47 1/ha nonyl phenol

63

•)

(]

·)

(J)

32

()

•)

;)

•)

and the second second

2. One from the second seco

Table 19

Mortality/Survival of caged Brook Trout (Salvalinus fontinalis) Dubreuilville, Ontario, 25 May - 8 June 1979

.

	May 25	May 26	May 27	May 28	May 29	Hay 30	May 31	June 1	June 2	June 3	June 4	Juna 5	June 6	June 7	June 8
Days before or after application of 0.47 1/ha nonyl phenol	-4	-3	-2	-1	0	+1	+2	+3	+4	+5	+6	+7	18	+9	+10
Cage Number	•														
Control								•							
1	0/24	0/24	0/24	0/24	0/24	1/23	1/23	2/22	5/19	7/17*					
• 2	0/25	0/25	0/25	0/25	0/25	1/24	1/24	1/24	1/24	1/24			6/19	•	8/17
Treatment			•												
3	0/26	0/26	0/26	0/26	0/26	2/24	2/24	3/23 [·]	5/21	5/21			17/9	·	24/2
4	0/20	0/20	0/20	0/20	0/20	1/19	2/18	2/18	3/17	3/17			10/10		19/1
_ 5	0/25	0/25	0/25	0/25	0/25	0/25	0/25	[`] 0/25	0/25	4/21*					
6	0/25	0/25	0/25	0/25	0/25	0/25	0/25	2/23	5/20	5/20*					

* On June 3, cages 1, 5 and 6 were removed and the fish collected for residue analysis. At this time some dead fish were removed which may not have been noticed when the daily checks were made.

1.1.1.1.2

.

and a second sec

and a second second

1

. • • •

3

1

. . .

٢

.),

... **)**

.

•

temperature of a natural stream situation were reproduced. Fish were observed for mortality and the dead fish removed at intervals over a 96 hour period.

The results from these experiments (Tables 20 and 21) were used to construct toxicity curves for nonyl phenol on log-probit graph paper (Figs. 5 and 6). From these curves approximate 96 hour LC50's of nonyl phenol were interpolated as $^{230} \mu g/\ell$ to fingerling rainbow trout under controlled laboratory conditions and 145 $\mu g/\ell$ for brook trout under actual field conditions.

An attempt was made to look for evidence of delayed lethal effects of nonyl phenol on fish following exposure to levels similar to those found in the field experiment. Measured volumes of a stock solution of nonyl phenol dissolved in absolute ethanol were added to tanks containing 20 litres of dechlorinated tap water to make a series of five concentrations (2.5, 5, 10, 20 and 40 μ g/ ℓ). Absolute ethanol equivalent to the amount added to the highest nonyl phenol concentration was added to the control. Eleven fingerling lake trout, *Salvelinus namaycush* (Walbaum), were placed in each tank and held at 12.0 + 1.0°C in an environmental chamber. At the end of two weeks no mortality had been observed in any of the tanks with the exception of one fish which jumped out of the 10 μ g/ ℓ concentration. This bioassay is continuing.

TERRESTRIAL IMPACT STUDIES

Spruce budworm population sampling and assessment

Twenty-five balsam fir (*Abies balsamea* [L.] Mill) and 25 white spruce (*Picea glauca* [Moench] Voss) within the spray block were selected as sampling sites to measure spruce budworm population densities. Ground vegetation around each tree was removed to allow accessibility for the sampling crew and any adjacent or overstory trees which would screen out the spray were removed. Each sample tree was identified with a code number for reference. Branch tips, 46 cm in length were removed from the mid to upper crown region using pole pruners and the individual tips were placed in separate 25 lb. Kraft paper bags at the collecting station, coded appropriately to indicate place and date of sampling and then taken to the Great Lakes Forest Research Centre, Sault Ste. Marie, for budworm counting. All bagged samples were stored in a cold room at 6°C until the actual counts were made.

-

1

The sampling protocol followed was collecting one pre-spray sample immediately prior to spray application, a first post-spray sample 8 days after application and then a last sample at a stage when approximately 50% of the larvae had pupated. When pupation was complete, branch samples were also taken for defoliation determination.)

 $f(p) = \frac{1}{100} + \frac{1}{100}$

	PL spin	Corpora
The tradition of the second be	$\mathbf{O} = \{\mathbf{v}_{i}\}_{i \in \mathcal{V}} \in \mathcal{O}$	$\alpha_{1}(\alpha_{1}) = \alpha_{2}(\alpha_{1}) + \alpha_{2}(\alpha_{2})$
$(1,1,1,2,\ldots,k) \in \{1,\ldots,k\}$	(A 41)	Θ_{1} (Θ_{2}) Θ_{2} Θ_{2}) Θ_{2}) Θ_{2} (Θ_{2}) Θ_{2}) Θ_{2}) Θ_{2}) Θ_{2
14. A. 1. 1.	1 - 11.	(A)

۰ ۱۰ 👔

Table 20

· 🌶

)

i 🌒

9

1 I

۶

)

۰۰۰ 🌘

Mortality/survival of laboratory bioassay fingerling rainbow trout, Salmo gairdneri* 2 - 6 April 1979

			Time c	of Exposure	3			
Concentration	0 hr	3 hr	6 hr	12 hr	36 hr	48 hr	72 hr	96 hr
Control	0/9	0/9	0/9	0/9	0/9	0/9	0/9	0/9
100 ug/1	0/9	0/9	0/9	0/9	0/9	0/9	0/9	· 0/9
180 ug/1	0/9	0/9	0/9	0/9	0/9	0/9	0/9	0/9
300 ug/1	0/9	0/9	0/9	0/9	8/1	8/1	9/ 0	9/0
1000 ug/1	0/9	1/8	9/0					
* Total length Fork length Weight	Mean 0.52 cm 0.49.cm 1.35 g	0.40	Range 2 - 0.61 c) - 0.59 c	n 1. 200 m 200 - 200 m 200 - 200 m 200 - 200 n 200 - 200 n 200 - 200 n 200 - 200 n 200	•			

(Comparing of Control of Contr

Fig. 5

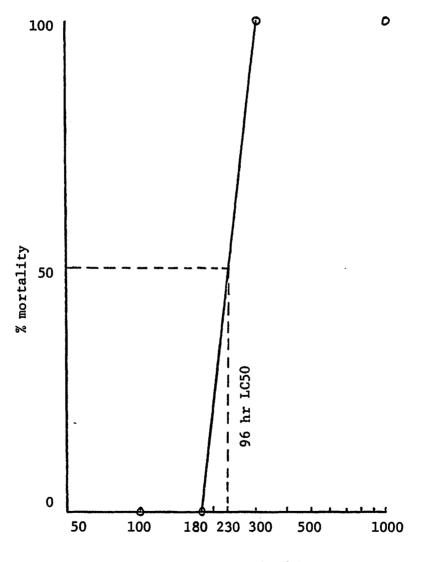
1

ŗ

1

<u>e</u>

~


٢

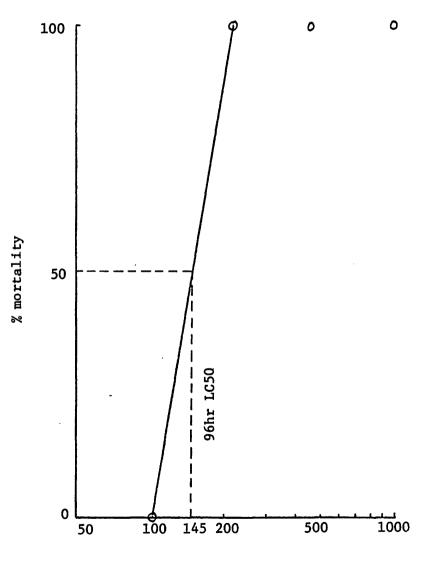
r.

٢

<u>~</u>

Graphic estimation of 96 hr LC50 of nonyl phenol for fingerling rainbow trout, Salmo gairdneri, from laboratory bioassay data

Concentration (ug/1)


					·	· .	,				
		He in		t initia							
	Text of the end of the end of the text of text	0 49 m 0 48 m				21					
	+1. j 3:+	0.00									
		1	Fiald his	Mo assay fingen		survival of		- fontinali	'o		
•		🔺		Dubreuilvil							
										•	
						Time of ϵ	-				
	Concentration	0 hr	8 hr	22 hr ·	30 hr	35 hr	46 hr	59 hr	69 hr	83 hr	96 hr
	Control	0/9	0/9	0/9	0/9	0/9	0/9	0/9	0/9	0/9	0/9
	CONCLOT	012	07 <i>5</i>	012	012			~; -			-,-
	100 ug/l	0/9	0/9	0/9	0/9	0/9	0/9	0/9	0/9 .	0/9	0/9
	200			-,-		- · ·	- •	- •	·	-	
	210 ug/1	0/9	0/9	0/9	0/9	0/9	0/9	0/9	1/8	1/8	9/0
		•	-	·	-	-					
	460 ug/1	0/9	0/9	1/8	2/7	4/5	9/0				
	U	•	-	·	-	·					
	1000 ug/1	0/9	9/0								
		•	- •						•	· 1	
			<u></u>						<u> </u>		
					4 4 ⁶ 7 1	!					
				:	an An an <mark>an t</mark> a a A	Zarra (Frank)	•				
		Mean		Range	1 First 1 +	an a		$E = \frac{1}{2} \sum_{i=1}^{n} $	•		
	* Total length Fork length			.36 ⁴ – 0.55 ⁴ .35 – 0.54 c							
	Weight	0.90 g		.50 - 1.40 g	-	1 1	, ···				
	** The field b		9 F.		26 Mar	- 1070 and		0830 -	- 20 May 1	070	
	. The fleta by	loassay v	Was start	ied at vosu	on zo nay	/ 19/9 and	Compreted	άτ υσου υι	,1 JU Hay 1;	1/7	

(0,0) or (1,0) and (0,0) and (0,0)

Graphic estimation of 96 hr LC50 of nonyl phenol for fingerling brook trout, Salvelinus fontinalis, from field bioassay data

.

Concentration (ug/1)

38

C

10

 $\tilde{}$

Ć

<u>____</u>

(m) ______

 \bigcirc

0

.

æ

Fifteen balsam fir and 15 white spruce trees were identified and marked in the untreated check plot, and standard branch samples taken from them on the same days as the test trees were sampled. The data from these branches provided information to calculate the budworm population decline as occurred in an untreated population due to natural causes.

The results of the spruce budworm larval assessment study are presented in Table 22. Pre-spray larval densities on both the nonyl phenol and the untreated check plots were low, but increased on each by the next sampling date (1st post-spray sample). This apparent increase in the budworm population is the result of attempting to assess the numbers of early emerging instars using a sampling procedure developed for later instars. At the time the pre-spray sample was taken, not all larvae had emerged and migrated to the branch tip, thus a lower count was obtained using the 46 cm branch tip than if the whole branch had been taken and checked for L-2 budworm. Later samples taken when all emergence and migration was complete yielded a higher number and thus there is the indicated increase in larval density. It is thus impossible to determine whether there was any effect of the aerial spray on budworm larvae and with no accurate fix on the population the defoliation data are also meaningless.

Terrestrial invertebrate knockdown

Rectangular plastic washtubs 29 cm x 33 cm x 15 cm were placed under tree species typical of the forest stands on the treatment and control bird plots (Table 23) and of the shoreline cover along the treatment and control streams (Table 24). Invertebrates (live and dead) were collected from the buckets each evening, preserved in 70% methanol and later identified to order in the laboratory.

Terrestrial insect catches in all the areas sampled showed very similar patterns of increase and decrease, both between various areas sampled in each plot and between treatment and control plots (Fig. 7 and 8). There was a slight increase in the catch of spiders (Arachnida) and flies (Diptera) in the treated bird plot after the treatment, particularily under coniferous trees (Tables 25 and 26). A slight increase along the nonyl phenol treatment stream the day of spray application consisted mostly of mites (Acari), springtails (Collembola) and adult hymenopterans (Tables 27 and 28). In all cases these increases were no larger than similar increases seen in the control areas within the next few days. Catches on all plots were high on 1 June as the result of heavy rains which fell throughout the day.

Honeybees

. . :

Two colonies of domestic honey bees were set up in the nonyl phenol spray plot and in an untreated area about 10 km away on 25 May.

Table 22. Densities of living budworm on various sample dates, pupal survival and current defoliation for a plot sprayed with nonyl phenol and a check plot. Sprayed May 29/79 a.m. Treated plot n = 25, check plot n = 15.

	Prespray ¹ Living L ₂ per 46 cm branch tip		lst Post Living L 46 cm br	3-4 per	2nd Post Living I 46 cm br	the second s	pu	cessful pal gence ⁴	X 1979 Defoliation	
	. bF	wS	bF	wS	bF	wS	ЪF	wS	bF	wS
Nonyl phenol	2.8	4.5	27.4	33.3	8.0	4.8	68	50	74	80
Check	5.3	24.7	76.3	113.3	10.9	19.9	38	68	91	95

()

)

()

¹Nonyl phenol plot sampled May 28/79 Check plot sampled May 29/79

²Both plots sampled June 6/79

: >

³Nonyl phenol plot sampled July 6/79

⁴% Successful pupal emergence = <u>emerged budworm</u> budworm alive on sample date x 100

13

()

40

.)

()

()

()

()

TABLE 23

Tree species samples for terrestrial invertebrate knockdown on bird plots, Dubreuilville, Ontario, 25 May - 3 June, 1979

Nonyl phenol treatment plot

Bucket number

Bucket

è

380

Species

Species

_	
1	Pinus banksiana Lamb.
2	Abies balsamea (L.) Mill.
3	Abies balsamea (L.) Mill.
4	Abies balsamea (L.) Mill.
5	Picea mariana (Mill.) B.S.P.
6	Populus tremuloides Michx.
7	Corylus cornuta Marsh.
8	Populus tremuloides Michx.
9	Salix L.
10	Salix L.
11	Salix L.
12	Salix L.

Nonyl phenol control plot

number Abies balsamea (L.) Mill. 1 2 Abies balsamea (L.) Mill. 3 Abies balsamea (L.) Mill. 4 Picea mariana (Mill.) B.S.P. Abies balsamea (L.) Mill. 5 6 Corylus cornuta Marsh. 7 Betula papyiifera Marsh. 8 Populus tremuloides Michx. 9 Salix L. 10 Salix L. 11 Salix L. 12 Salix L.

TABLE 24

Tree species samples for terrestrial invertebrate knockdown along streams, Dubreuilville, Ontario 24 May - 2 June, 1979

Nonyl phenol treatment stream

Bucket number

· •

Species

1 2	Picea glauca Picea glauca		
3	Alnus rugosa Alnus rusoga	(Du Roi)	Spreng
5	open		

Nonyl phenol control stream

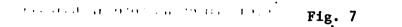
Bucket number	Species
1	Picea mariana (Mill.) B.S.P.
2	Alnus rugosa (Du Roi) Spreng
3	Lonicera sp. L.
4	<i>Sambucus</i> sp. (Tourn.) L.
5	open

42

5

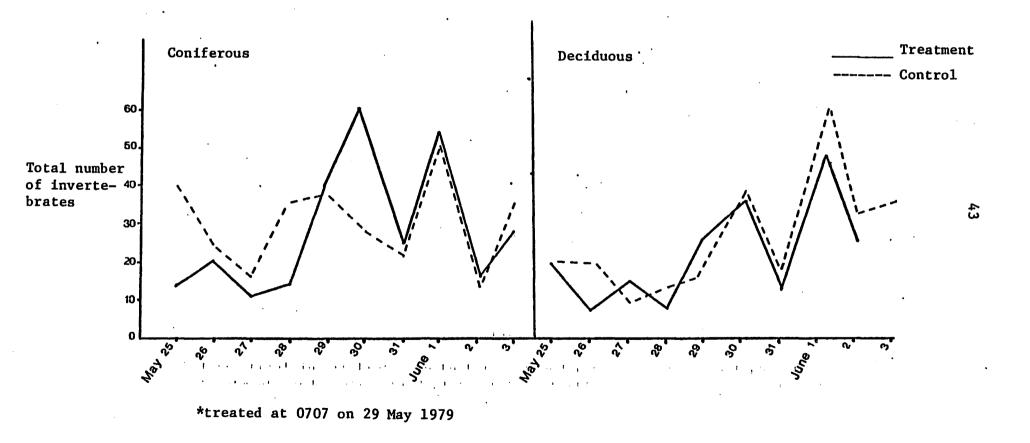
0

٢


(P) .____

Ē

<u>____</u>

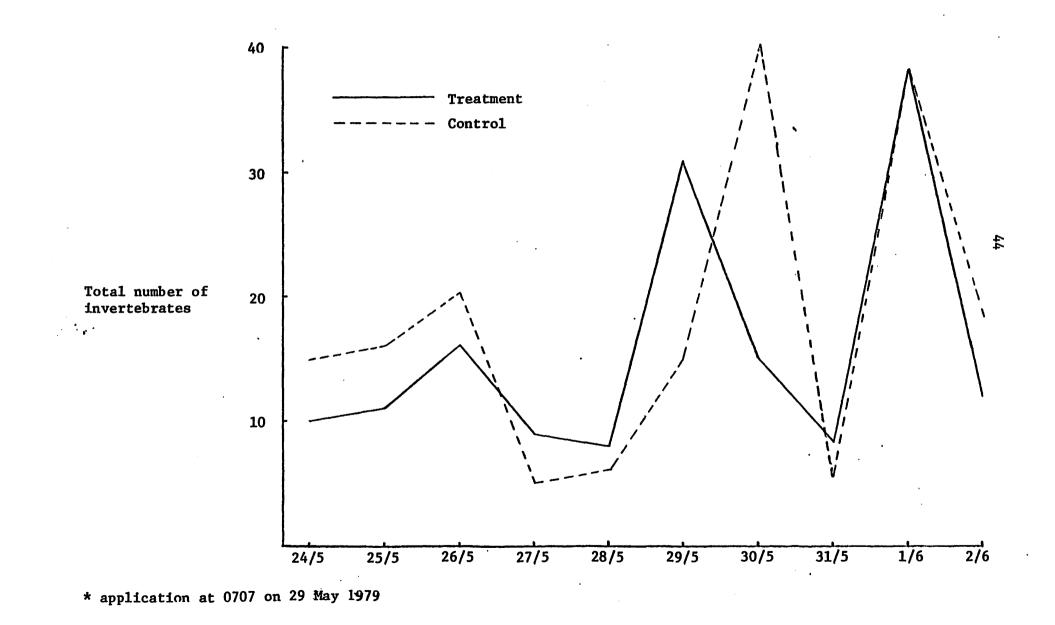

Ô

C

Terrestrial invertebrates in buckets set under trees in the nonyl phenol treatment* and control bird plots, Dubreuilville, Ontario. 25 May-3 June 1979

۵

Constrained and


۵

1.1

.

Let a log at

.)

()

')

3

:)

:)

()

()

,)

: 3

()

€to pito spito o s	<u>چ</u> ۱۰۰۰۰	۲	n	n	ا€	0	n	<u>الا</u>	"	١	٥	.,)
Dipless	f toja sou – julio Ottoja										- 0 1 1		
θ_{1} is a super-	Freesawa (k. 1997) 1910 -										.,		
E BAR BAR S	the second		١		17	<i>i</i> •			,			,	

Terrestrial insect knockdown Nonyl phenol treatment plot, Dubreuilville, Ontario 25 May-3 June 1979

		-										
		May 25	May 26	May 27	May 28	May 29	May 30	May, 31	June 1	June 2	June 3	
		-4	-3	-2	-1	+0	+1	+2	+3	+4	+5	
Arachnida	Phalangida Araneida Acari	0 2 0	•. 0 3 0	0 3 0	0 1 0	0 7 0	0 8 0	0 5 0	0 2 1	1 2 1	0 4 0	
Collembola	•	1	0	0	0	0	0	1	1	0	0	•
llemiptera		0	0	1	0	0	2	0	1	0	1	
Coleoptera	Staphylinidae Other	0 0	0 0	0 0	0 0	2 4	4 3	3 1	3 5	5 0	4 0	
Trichoptera		0	0	0	0	0	0	0	0	0	0	
Lepidoptera	Larvae	0	0	1	0	0	0	· 0	1	0	0	
Diptera	Chironomidae Other	0 7	0 6	0 4	0 9	0 24	1 31	0 8	0 39	0 14	0 27	
Hymenoptera	Formicidae Other	0 2	0	0 1	1 2	0 0	6 Q	1 2	0 9	0 3	1 1	
Total Number of	Organisms	12	9 1 - 1 - 1	10	13	37	55	21	62	26	38	

H. Service and J. B. Hermitian and P. Barris, P. Roberts, P. R. Sons, D. Diemit, R. P. Roberts, P. Martin, P. Starris, P. Samuelli, and S. Samuelli, and S Samuelli, and Samuelli, a

na _{de} na _{de} na de la construcción La construcción de la construcción d La construcción de la construcción d

Concentration of a

3

)

the stars pro-

n n e n e n e l e e

3

Terrestrial insect knockdown Nonyl phenol control plot, Dubreuilville, Ontario 25 May-3 June 1979

 $\langle \rangle$

: 🦻

1 3

`)

()

(ک

			•								
		May	May	May	May	May 29	May 30	May 31	June	June 2	June 3
		<u>25</u> -4	<u>26</u> -3	<u>27</u> -2	<u>28</u> -1	+0	+1	+2	+3	+4	+5
Gasteropoda		0	0	0	0	0	•0	0	0	1	0
Arachnida	Araneida	3	0	۱	1	1	3	1	2	1	2
Collembola		ı	0	3	5	0	1	0	2	0	. 0
llemiptera		0	0	0	0	۱	0	0	0	0	0
Homoptera		0	0	0	0	0	0	0	0	. 0	1
Coleoptera	Staphylinidae Other	· 3 0	0	0	0 0	1 3	4	1 2	2 2	1 0	2 0
		_	-	-	_		·		_	-	-
Lepidoptera	Larvae	1	0	3	0	1	0	0	0	0	0
Diptera	Chironomidae	0	0	0	0	1	1	0	2	2	4
Diptera	Other	13	16	4	1Ŏ	18	27	19	51	28	30
Hymenoptera	Formicidae	0	0	0	٥	0	0	0	0	1	2
nymenoptera	Other	4	1	Ö	0 3	4	3	Ŏ	6	2	2 2
Total Number of	Organisms	25	17	' 11	19	30	40	23	67	36	43

·)

: 🦻

• • • • •

·)

;)

	,,,,,) ,,,,,,,,,,,,,,,,,,,,,,,,,,	1	€ ب) I	,) ∴)	`)	Ì		¢ ،
pt _f is a		•.	•	F ')	,	• .	•			,	•
On the art fit data (pro-		·		1	Table	27		,			
Por al Annart Ennel	Acces	Ter		insect kn euilville					am	۰. ۱۰	•
						•		. .			
· · · ·		May 24	May 25	[.] May 26	May 27	May 28	May 29	May 30	May 31	June 1	June 2
Days before or af application of 0.4 1/ha nonyl phenol		-5	-4	-3	-2	-1	0	+1	+2	+3	+4
Arachnida Araneida Acari		1		1	1	1	3 5	3 2	•		1
Collembola Ephemeroptera				1	2		6	1		3	
Hemiptera	adults	•								1	
` 1	nymphs adults	1								1	•
Lepidoptera		•					_				•
lymenoptera	larvae						1				74
Formicidae	dults	2	1	3	2	4	1 8	1 2	2 2	4	1 1
Coleoptera			•	•	$t \sim t^2 + \epsilon$	· 2	-				_
	dults dults	1	2	1 1 1	2	1	: 2	1	1	4 2	1 1
Diptera E Unidentifiable Ins	dults lects	5	2	10 1	2	2	5	2	3	23	12 1
•			••., •	ч., н	;			·	•	. i	•
Total Insect Knock	down	10	11	16	9	8	31	15	8	. 38	18
−1775 and a strategraphic of the strategraphic strategra											
n a Factor An an Detail Constant Constant An Antonia) }		ł	1		,	•		:	
Radio and Arthurs	a des litera				,		·				

Alto Hear

.

Terrestrial insect knockdown, nonyl phenol control stream Dubreuilville, Ontario, 24 May - 2 June 1979

		May 24	May 25	May 26	May 27	May 28	May 29	May 30	May 31	June 1	June 2
Days before or af application of 0. l/ha nonyl phenol	.47	-5	-4	-3	-2	-1	0	+ 1	+2	+3	+4
Arachnida Araneida Acari Collembola		4	8	7	2		1	2 1 1		2	
Plecoptera Hemiptera Gerridae			1				1		1		
Other	nymphs adults	2 1	-	1			-			· 1	48
	larvae adults							1		1	œ
Hymenoptera Formicidae	adults		1	1.	2		2	2 5	1	1 5	1
Coleoptera Staphylinidae	adults	2	2 3	1	L		1	10	1	5 2	
Other Diptera	adults adults	6	3	10		6	8	5 12	3	2 21	11
Unidentifiable In	nsects				1		1	1			
Total Insect Knoc	kdown	15	16	20	5	6	15	40	6	38	12

()

:)

Ý 🕽

3

63

')

()

()

()

()

())

The colonies were of Italian strain from stock overwintered at the FPMI apiary near Sault Ste. Marie. Once on site, all colonies were fitted with a dead bee box, an Ontario Agricultural College pollen trap and an electronic photo-electric cell equipped activity counter. Hive weights were taken with a bathroom scale placed under the edge of the hive. Monitoring was carried out daily from 27 May to 4 June. On 5 June the colonies were returned to the laboratory apiary to prevent their possible destruction by black bears. Brood measurements (square centimeters of capped brood) were made on 30 May, 6 June and 30 July. On 30 May a portion of a frame from each colony was delineated and the number of cells containing eggs was estimated. On 6 June these areas were resurveyed and the cell contents recorded.

The application of nonyl phenol had relatively little impact upon population or activity of domestic honey bees. A slight increase in the numbers of dead foraging bees was recorded from the treated hives on the day following the day of treatment, but subsided quickly to "normal" levels in subsequent days (Table 29). Activity patterns (flights to and from the hive) were relatively constant on the treated site but somewhat more variable on the untreated control site, probably reflecting local conditions such as hive location, shelter, microclimatic conditions, etc. Pollen collections reflect weather patterns throughout the experimental period. Very little pollen was recorded at the treated site and the discovery of a virgin queen in one of the untreated hives would indicate that the colony had superceded an old failing queen which would account for the reduction in pollen collecting for brood rearing.

Hive weights remained relatively constant throughout the experimental period. The area of capped brood was slightly affected by the requeening as the area of brood declined slightly over a period of 9 days in the treated hives while a slight increase was recorded on the untreated hives. Measurements taken later in the season show a substantial increase of capped brood in hives from both treated and untreated sites. Of 340 cells counted in a marked portion of brood in the untreated hives, 295 contained eggs of which 292, or approximately 99%, reached the capped brood stage, while 400 cells out of 490, or 81%, reached the capped brood stage in the treated hives (Table 30).

Birds

Bird censuses were conducted on the nonyl phenol treatment and control bird plots for five days before and after treatment. Singing males were identified and their territories delineated for the pre-spray and post-spray periods.

Avian activity on both plots follow a similar pattern except for a noticeable decline in singing activity on the treatment plot during the spray operations when large numbers of people were engaged in various activities on or very near the bird plot (Fig. 9). None of

Honeybee activity on nonyl phenol treated and untreated control plots

.

13

,)

1)

Dubreuilville, Ontario 27 May - 6 June 1979

	Untr	eated control	L beehive	3		Non	yl phenol tr	eated bee	hives	
Date	Mortality (adult bees)	Activity bee/trips	Pollen (gm)	llive weight (kg)	Brood (cm ²)	Mortality (adult bees)	Activity bee/trips	Pollen (gm)	Hive weight (kg)	Brood (cm ²)
27 May	4.5		-	-		18.0			-	
28 May	2.0	35520	-	-		3.5	2880	-	-	
29 May	2.0	7296	4.12	12.2	928	3.0	11776	0	12.2	1016
30 May	6.5	18688	21.85	12.4		23.5	23552	4.04	12.4	
31 May	4.0	10624	7.01	12.2		8.5	23552	0	12.4	
1 June	3.0	47232	4.91	12.2		5.0	23872	1.45	12.7	
2 June	1.0	8448	8.14	12.2		2.0	20416	1.80	12.4	
3 June	1.5	11648	16.24	12.2		3.5	20864	0	12.4	
4 June	0.5	8640	22.80	11.9		6.5	38976	1.91	12.4	
6 June	-	-	-	-	1168	- 11	-			944
30 July	_	_	-	-	2688) –	_			2296

•

63

(average of two colonies on each site)

· >>

• •

્ર 🕽

50

 $\langle \rangle$

• • • •

(

 ${\bf q}_{\rm eff} = {\bf e}_{\rm eff} + {\bf e}_{\rm eff$

e e su diversión de la companya de l Internación de la companya de la comp

Ň

• • • • • • • • • • • • • •

3

Table 30

)

)

Honeybee brood development

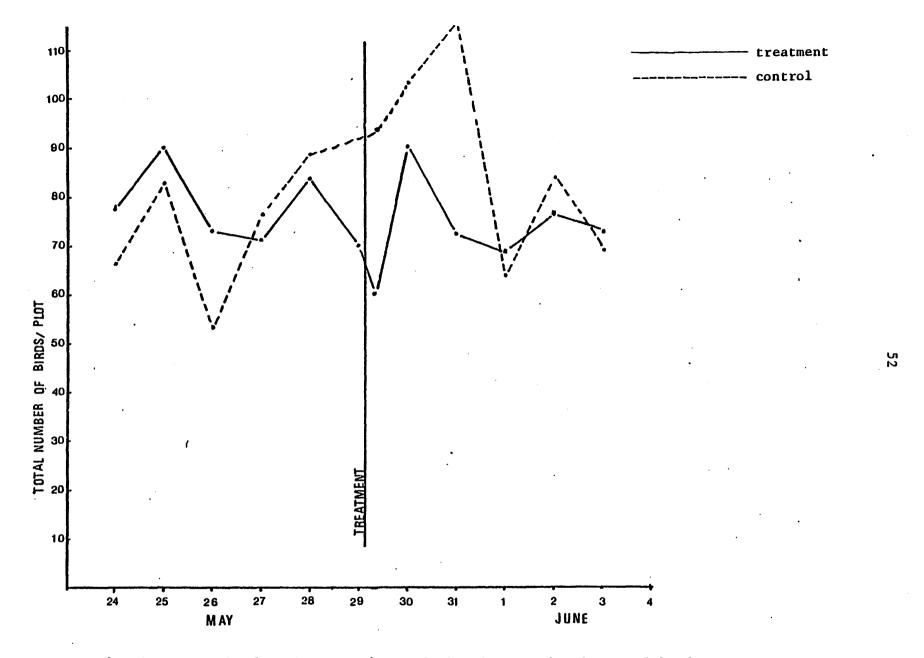
Nonyl phenol experimental area Dubreuilville, Ontario 30 May - 6 June, 1976

Untreated control hives				Tre	eated hives				
·	30 May	6 June		~				30 May	6 June
no. of cells examined	340	340	no. o	of	cells	examined		500	500
no. of cells containing eggs	295	0	no. c	of	cells	containing	eggs	490	10
no. of cells containing larvae	0	0	no. c	of	cells	containing	larvae	0	10
no. of cells containing capped brood	0	295	no. c	of	cells	containing	capped brood	0	400
no. of empty cells	45	48	no. o	of	empty	cells		10	80

en en la sur provinció en la s

51

)


)

Ì

١

. .

.)

• • •

Fig. 9. Forest songbird activity on the nonyl phenol treated and control bird plots, Dubreuilville, Ontario

3

)

)

3

)

())

5

:)

)

.)

the major family groups were affected by the treatment and a recorded decline in the family Fringillidae on the treated plot also occurred on the untreated control plot (Tables 31 and 32).

Populations of the ruby crowned kinglet, *Regulus calendula* (Linnaeus), a small insectivorous bird known to be quite pesticide sensitive, were not affected. Activity of such species as the Nashville warbler, *Vermivora ruficapilla* (Wilson) and the yellow-rumped warbler, *Dendroica coronata* (Linnaeus) decreased following treatment while others like the Cape May warbler, *Dendroica tigrina* (Gmelin) and Tennessee warbler, *Vermivora peregrina* (Wilson) increased. White-throated sparrow, *Zonotrichia albicollis* (Gmelin) activity declined on both plots following treatment (Tables 33 and 34).

While the activity of some species were affected by human activity following treatment, breeding territories remained occupied. The breeding territories of six species of wood warblers (family Parulidae), Fig. 10, as well as territories for the white-throated sparrow, ruby-crowned kinglet and the hermit thrush, *Hylocichla guttata* (Pallus), Fig. 11, are illustrated and show that the experimental application of nonyl phenol did not force abandonment of territories.

Intensive plot searches were carried out for two days following the experimental treatment but no dead birds were recovered and no birds were observed exhibiting the typical symptoms of pesticide stress.

. . . .

• • •

. } •

Forest Bird Population Census Nonyl phenol treatment plot Dubreuilville, Ontario 24 May - 3 June 1979

				respr							Posts			
Family	May 24 -5	May 25 -4	Maÿ 26 -3	May 27 -2	May 28 -1	May 29 -0	Daily ave.	May 	May 30 +1	May 31 +2	June <u>1</u> +3	June 2 +4	June 3 +5	Daily ave.
Tetraonidae	0	0	1	0	0	0	0.2	0	0	0	0	1	1	0.3
Alcedinidae	1	0	0	0	1	0	0.3	0	1	1	0	1	0	0.5
Picidae	1	3	3	4	0	0	1.8	0	0	0	2	0	0	0.3
Tyrannidae	0	0	0	2	0	0	0.3	2	2	4	0	4	2	2.3
Corvidae	4	2	2	2	2	0	2.0	0	1	0	0	3	0	0.7
Paridae	0	0	2	1	0	0	0.5	0	3	1	0	0	2	1.0
Sittidae	2	0	0	0	0	0	0.3	. 0	0	0	0	0	0	0.0
Troglodytidae	2	0	0	2	2	2	1.3	0	0	0	0	0	2	0.3
Turdidae	1	3	3	0	9	6	3.7	2	8	6	8	6	11	6.8
Sylviidae	C	8	6	8	4	6	6.3	6	8	4	2	2	2	4.0
Vireonidae	2	0	0	4	0	2	1.3	0	2	2	0	0	0	0.7
Parulidae	41	51	24	39	47	33	39.2	40	50	32	37	40	42	40.2
Icteridae	0	0	2	0	0	0	0.3	0	0	0	0	0	0	0.0
Fringillidae	17	23	30	9	18	21	19.7	10	15	22	19	19	11	16.0
Total Birds	77	90	73	71	83	70	77.3	60	90	72	68	. 76	73	73.2

)

· F

)

54

.

()

;)

)

()

-

)

.

•

•

•

· 3

.

•

9

. . .

• • •

3

)

.

.

.

۲

)

3

.

١

.

.

.

)

)...

,

. . . .

. . . .

٢

••

.

.

.

1 5

۲

Forest Bird Population Census Nonyl phenol untreated control plot Dubreuilville, Ontario 24 May - 3 June 1979

		P	respr	ay					Pos	tspray			
Family	May 24 -5	May 25 -4	May 26 -3	May 27 -2	May 28 -1	Daily	May 29 +0	May 30 +1	May 31 +2	June 1 +3	June 2 +4	June 3 +5	Daily Ave
		-4	-3			Ave		11	+2			<u> </u>	Ave
Tetraonidae	0	1	0	0	1	0.4	2	0	1	0	0	1	0.7
Picidae	2	1	2	0	2	1.4	5	1	2	0	1	0	1.5
Tyrannidae	2	0	0	0	0	0.4	0	4	2	0	6	4	2.7
Corvidae	2	0	0	1	0	0.6	1	4	2	0	0	0	1.2
Paridae	2	0	0	1	2	1.0	0	0	0	0	1	0	0.2
Troglodytidae	2	2	4	4	2	2.8	2	0	0	2	2	2	1.3
Turidae	4	4	0	6	4	3.6	2	9	6	3	6	5	5.2
Sylviidae	6	6	4	4	10	6.0	8	10	2	3	2	6	5.2
Vireonidae	0	0	0	0	0	0.0	0	4	4	2	2	2	2.3
Parulidae	42	51	38	49	54	46.8	69	59	68	51	53	40	56.7
Icteridae	0	0	0	0	0	0.0	0	2	0	0	2	0	0.7
Fingillidae	5	18	6	12	13	10.8	5	10	24	2	9	9	9.8
TOTAL	67	83	54	77	88	73.8	94	103	111	63	84	69	87.3

1.11

and a second ទទ

Forest Bird Population Census Nonyl phenol treatment plot Dubreuilville, Ontario 24 May - 3 June 1979

					Prespi	cay						Postsp	гау		•
		May	May	May	May	Hay	May		May	Hay	May	June	June	June	
		24	25	26	27	28	29	Daily	29	30	31	1	2	3	Daily
Family	Spec1es	-5	-4	-3	-2	-1	-0	ave.	+0	+1	+2	+3	+4	+5	ave.
Tetraonidae	Spruce Grouse	0	0	1	0	0	0	0.2	0	0	0	0	1	1	0.3
Alcedinidae	Belted Kingfisher	1	0	0	0	1	0	0.3	0	1	1	0	1	Ο.	0.5
Picidae	Common Flicker	0	0	3	0	0	0	0.5	0	0	0	1	0	0	0.2
	Yellow-bellied Sapsucker	1	3	0	4	0	0	1.3	0	0	0	1	0	0	0.2
Tyrannidae	Great Crested Flycatcher	0	0	0	2	0	0	0.3	0	0	2	0	0	0	0.3
	Least Flycatcher	0	0	0	0	0	0	0.0	0	2	2	0	2	2	1.3
	Olive-sided Plycatcher	0	0	0	0	0	0	0.0	2	0	0	0	2	0	0.7
Corvidae	Gray Jay	0	0	1	0	1	0	0.3	0	0	0	0	0	0	0.0
	Blue Jay	2	2	1	1	1	0	1.2	0	0	0	0	0	0	0.0
	Raven	2	0	0	1	0	0	0.5	0	1	0	0	3	0	0.7
Paridae	Black-capped Chickadee	0	0	1	0	0	0	0.2	0	0	0	0	0	0	0.0
	Boreal Chickadee	0	0	1	1	0	0	0.3	0	3	1	0	0	2	1.0
Sittidae	Red-breasted Nuthatch	2	0	0	0	0	0	0.3	0	0	0	0	0	0	0.0
Troglodytidae	Winter Wren	2	0	0	2	2	2	1.3	0	0	0	0	0	2	0.3
Turdidae	American Robin	0	1	0	0	0	0	0.2	0	0	0	0	0	2	0.3
	Hermit Thrush	1	2	3	0	9	6	3.5	2	7	6	8	6	7	6.0
•	Veery	0	0	0	0	0	0	0.0	0	1	0	0	0	2	0.5
Sylviidae	Ruby-crowned Kinglet	6	8	6	8	4	6	6.3	6	8	4	2	2	2	4.0
Viroonidae	Solitary Vireo	2	0	0	0	0	2	0.7	0	0	2	0	0	0	0.3
	Red-cyed Vireo	0	0	0	4	0	0	0.7	0	2	0	0	0	0	0.3
Parulidae	Black and White Warbler	0	1	0	1	3	0	0.8	0	0	0	0	0	0	0.0
	Tennessee Warbler	2	0	2	2	9	6	3.5	8	12	10	8	6	8	8.7
	Noshville Warbler	6	10	6	6	7	10	7.5	3	8	2	2	2	2	3.2
	Magnolia Warbler	8	15	4	5	6	6	7.3	8	6	8	9	8	12	8.5
	Cape May Warbler	6	8	2	10	4	2	5.3	7	6	4	4	8	4	5.5
	Yellow-rumped Warbler	13	13	8	9	0	7	8.3	4	2	0	2	4	6	3.0
	Black-throated Green Warbler	0	0	0	0	0	0	0.0	0	4	0	0	0	2	1.0
	Chestnut-sided Warbler	0	0	0	1	Û	0	0.2	4	2	0	2	4	0	2.0
	Bay-breasted Warbler	2	2	0	0	2	0	1.0	0	4	0	6	2	4	2.7
	Ovenbird	0	0	0	0	4	0	0.7	0	0	0	0	· 0	2	0.3
	Northern Waterthrush	2	2	2	4	4	2	2.7	4	6	6	4	4	2	4.3
•	Wilson's Warbler	2	0	0	0	2	0	0.7	0	0	0	0	0	0	0.0
	Canada Warbler	0	0	0	0	2	0	0.3	2	0	2	0	0	0	0.7
	American Redstart	0	0	0	1	4	0	0.8	0	0	0	0	2	0	0.3
Icteridae	Brown-headed Cowbird	0	0	2	ò	0	0	0.3	0	0	0	0	0	0	0.0
Fringillidae	Rose-breasted Grosbeak	0	0	2	Ò	0	0	0.3	2	4	0	0	4	0	1.6
	Evening Grosbeak	1	1	9	0	0	0	1.8	1	3	0	0	1	0	0.8
	Purple Finch	0	0	0	0	0	0	0.0	0	0	2	0	0	0	0.3
	Dark-eyed Junco	0	0	1	0	0	0	0.2	0	2	1	4	4	2	2.2
	Chipping Sparrow	0	4	0	0	2	2	1.3	0	2	0	0	0	0	0.3
	White-throated Sparrow	16	18	18 ·	9	16	19	16.0	7	4	19	15	10	9	10.7
TOTALS:		77	90	73	71	83	70	77.3	60	90	72	68	76	73	73.2

•

• •

3

•)

56

()

)

)

•)

3

3

3

•

•

3	3	• • • • • • • • • • • • • • • • • • •).		, ia)		, 1) ·).))
y	9					.						÷		-	•	-	-
		THE STATE AND A DECEMBER OF A	•,		~ 1			• .	. 1						2 -		
		ALC: The second second second		· •													
		where we can also a structure to		5	'		••	,				,					
		and the second	•	••	•	'											
		P. F. T. LA		•	•	•			•								
		(1,2,1,1,1) = (1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1	1	••	·, ·		•	10 E							•		
		and the state of the		••		•	•	4.1					•				
	· · · · · · · · ·	and a grad a set of a	. •			Table	34					·.		•	•		
		and the second second second						• · · · ·	•				* *				
		provide the second state of the second	57.	Fore	SC Bir	d Popul	lation	Census				•.	•		1°		
		and the second	1 20	ouat b	neno1	untrea: lville,	red coi	atrol plo	05 ,			11 ·		,			
		and the state of the second		. •	26 Man	- 3 Jur	, ULLA	D CTO'				11	••				
	····	ter en			za ridy	- 3 30		· .	•	· .		•.					
		•	,	I.	• •	Presp	rav				•	Por	stepray				
			Hay	May	May	Hay	May		May	May	May	June	June	June	·		
			24	25	26	27	28	Daily	29	30	31	1	2	3	Daily		
	Family	Species	<u>24</u> -5	-4	-3	-2	-1	ave.	+0	+1	+2	+3	+4	+5	ave.		
															,		
	Tetraonidae	Ruffed Grouse	0	1	0	0	1	0.4	2	0	· 1	0	0	1	0.7		
· · · · · · · · · · · · · · · · · · ·	Picidae	Yellow-bellied Sapsucker	2	1	2	0	2	1.4	5	1	2	0	1	. 0	1.5		
	Tyrannidae	Least Flycatcher	0	0	0	0	0	0.0	0	2	0	0	2	2	1.0		
	a	Olive-sided Flycatcher	2	0	0	0	0	0.4	0	2	2	0	4	2	1.7		
	Corvidae	Gray Jay	0	0	0	1	0	0.2	0	0	0	0.	0	0	0.0		
		Blue Jay	1	0	0	.0 .0	0	0.2	0	4	1	0	0	0	0.8		
	Bouldes	Raven	1	0	. 0	-	0	0.2	I	0	1	0	U O	U D	0.3		
	Paridae	Black-capped Chickadee Boreal Chickadee	2	0	0	0 1	2 0	0.8	0	0	0	0	1	0	0.0		
,	Troglodytidae	Winter Wren	2	2	6	4	2	0.2 2.8	2	0	0	2	1 2	2	0.2 1.3		
	Turdidae	American Robin	ĺ.	2		2	0	0.8	0	3	0	0	2	0	0.8		
•	10101000	Hermit Thrush	ň	2	ŏ	2	š	2.2	2	6	6	õ	Ĩ	5	3.8		
		Swainson's Thrush	1	ō	ŏ	2	0	0.6	ō	Ő	ŏ	3	0	ő	0.5		
4	Sylviidae	Golden-crowned Kinglet	ō	ŏ	ŏ	ō	2	0.4	ŏ	ŏ	ŏ	õ	õ	õ	0.0		
•	-,	Ruby-crowned Kinglet	6	6	ŭ	4	8	5.6	8	10	2	3	2	6	5.2		
· · · · · · · · · · · · · · · · · · ·	Vireonidae	Solitary Vireo	ō	ō	Ö	ò	ō	0.0	ō	2	2	2	ō	2	1.3		
		Red-eyed Vireo	ō	ō	ŏ	ō	ō	0.0	ō	2	2	ō	2	ō	1.0		
	Parulidae	Black-and-white Warbler	4	ŏ	2	4	2	· 2.4	õ	Ō	ō	ī	Ō	ō	0.1	57	
		Tennessee Warbler	8	- Ă	4	6	16	7.6	20	14	18	10	12	8	13.7		
		Nashville Warbler	4	13	2	4	3	5.2	4	2	3	2	0	2	2.2		
4		Magnolia Warbler	10	6	10	6	10	8.4	6	4	6	8	4	6	5.7		
		Cape May Warbler	6	4	8	4	6	5.6	10	8	6	4	8	0	6.0		
		Yellow-rumped Warbler	2	6	2	11	4	5.0	6	2	· 8	4	4	4	4.7		
	•	Black-throated Green Warbler	0	2	0	0	0	0.4	0	0	4	0	2	0	1.0		
		Blackburnian Warbler	2	0	0	-2 '	0	0.8	0	0	2	6	6	4	3.0		
		Chestnut-sided Warbler	2	. 4	0,	. 0	. O	1.2	2	4	4	0	2	4	2.7	•	
		Bay-breasted Warbler	0	8	. 8,	6	.5	5.4	10	15	4	4	4	6	7.2		
		Ovenbird	4	. 4	. 2 ,	4 -	6	4.0	7	4	4	4	4	2 -	4.2		
		Northern Waterthrugh	0	0	0	.2 ,	2	0.8	2	2	4	4	4	4	3.3		
		Canada Warbler	0	0	0	0	0	0.0	2	4	5	4	3	0	3.0		
	Icteridae	Red Winged Blackbird	0	0	0	0.	0	0.0	0	0	0	0	2	0	0.3		
,		Brown-headed Cowbird	0	Ņ	0	Q	0	0.0	0	2	0	0	0	0	0.3		
	Fringillidae	Rose-breasted Grosbeak	2	4	2	0	2	2.0	0	3	4	0	2	0	1.5		•
		Evening Grosbeak	1	1	2	1	2	1.4	1	Q	2	0	2	1	1.0	•	
		Purple Finch	2	0	0	0	0	0.4	0	4	6	0	0	2	2.0		
	(.) · · · · · ·	Pine Siskin	Q	q	0	2	0	0.4	0	0	Q	0	0 Ć	Ő	0.0	٠	•
	2 I. A.	Dark-eyed Junco	0	1	0	0	2	0.6	0	Q	0	0	Q	2	0.3		
	1 . I	Chipping Sparrow	0	0	0	1	Ű	. 0.2	2	0	0	0	0 F	- 0	0.3		
		White-throated sparrow	0	12	2	8	7	5.8	2	3	12	2	5	4	4.7		
	TOTALS:	· · · ·	67	83.	54	77	88	73.8	94	103	111	63	84	69	87.3		
		э. Г.,	,														
	•	1	•	•							1						
		and the second second second		•							٠.	• •				•	
		and the production of the first	•			1											

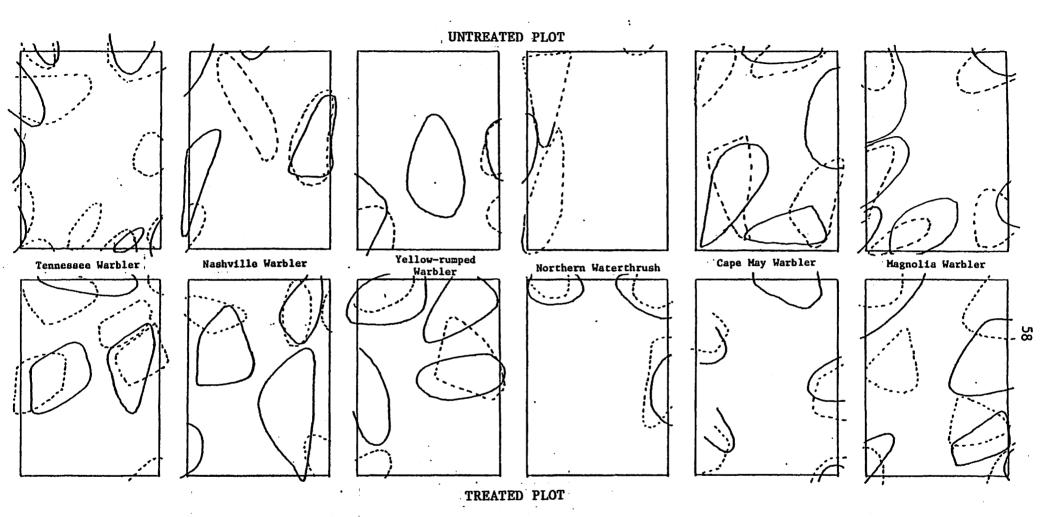


Fig. 10

Pre and post-spray territories of warblers (Parulidae) on nonyl phenol treatment and control plots, Dubreuilville, Ontario, 1979.

)

•)

()

)

)

. 🦻

----- prespray territorial boundary

11

----- postspray territorial boundary

)

• 👌 -

)

þ

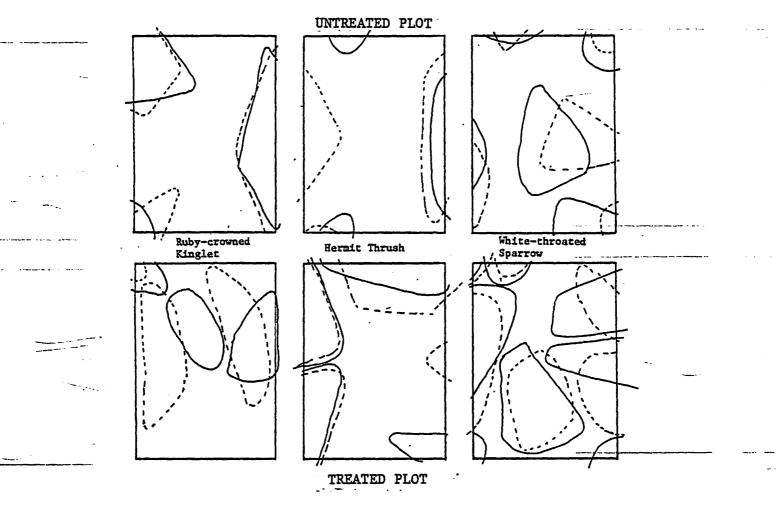


Fig. 11

	Pre and post-spray territories of ruby-crowned kinglet, <i>Regulus calendula</i> (Linnaeus), hermit thrush, <i>Hylocichla guttata</i> (Pallas), and white- throated sparrow, <i>Zonotrichia albicollis</i> (Gmelin), on Nonyl phenol treatment and control plots, Dubreuilville, Ontario, 1979.	<pre>N: 1.1 * * *.* * Nityll: 1.1 *.* Nityl: 2.1 *.* Nityl: 2.1 *.* Nityl: 2.1 *.* Nityl: 1.1 *.* Nityl: 1.1 *.* Nityl: 1.1 *.*</pre>
	prespray territorial boundaries	11=0100
ر د بنا بن به مراد ک همه	postspray territorial boundaries	tititi (aile
	plots are 4 ha.	· · · ·

DISCUSSION AND CONCLUSIONS

The experimental application of nonyl phenol was planned to ensure that environmental impact studies would be carried out under "worst case" conditions rather than typical operational spray program conditions. This objective was achieved by attaining within the study areas a relatively high measured deposit of nonyl phenol applied at a rate equivalent to the quantity of nonyl phenol applied in allowable maximum seasonal applications of Matacil[®] (2 to 3 1/2 times suggested single application rates).

The evidence of rapid disappearance of nonyl phenol residues from aquatic systems and its relative low-persistence in foliage and non-persistence in soil under these "worst case" conditions indicate that environmental contamination from nonyl phenol present in the insecticide formulations used in pest control operations would be minimal. The rapid dissipation of nonyl phenol residues in water could be mainly due to the dilution by water flow. Other factors such as conjugation, hydrolysis, photolysis and microorganisms may have played an important role in the degradation of this compound. The failure to detect nonyl phenol residues in sediment samples except for trace amounts found right after treatment indicates that downward movement of this chemical in water was minimal. The relatively rapid initial decline of nonyl phenol residue in foliage may be primarily due to volatilization, but other environmental and biological factors may be important for its subsequent degradation in foliage. The failure to detect nonyl phenol in soil samples collected from an open plot well exposed to the sky suggests that this chemical disappears very rapidly from soil through physical, chemical or biological processes.

The results of the field and laboratory bioassays indicate that no significant mortality of salmonids is likely to occur at concentrations below 100 μ g/ ℓ in 96 hours of continuous exposure. Nonyl phenol concentrations in flowing water in the treatment stream peaked at a level below 10 μ g/ ℓ and fell to trace levels within 6 hours of treatment, indicating that even under the "worst case" conditions there was a wide margin of safety between actual nonyl phenol concentrations in flowing water and lethal thresholds to salmonids. Less of a safety margin was evident in standing water, where nonyl phenol residues were above 100 μ g/ ℓ for at least six hours after spray application, but the potential hazard of these residues was again limited by their rapid disappearance.

The lack of significant differences in mortality among brook trout caged in the treatment and control streams over the first five days after treatment confirms the absence of short term lethal effects on salmonids attributable to the residue levels measured. Higher mortality in the treatment stream eight to ten days after treatment suggests that nonyl phenol may have had a delayed lethal effect on caged fish, but the removal of half the caged fish for residue analysis five days after treatment and the high mortality (32%) among control fish by the end of the caging studies weaken the significance of the observed differences in mortality. In light of the evidence of the rapid disappearance of nonyl phenol in the treatment stream and a lack of delayed lethal effects on trout exposed to low concentrations of nonyl phenol in the laboratory for several weeks, the differences in mortality observed in the field are likely due to other factors (such as differences in water quality) than the nonyl phenol treatment.

There is no evidence from the results of drift netting, bottom fauna, terrestrial insect knockdown or honeybee studies to suggest that nonyl phenol has any significant insecticidal effects in either aquatic or terrestrial ecosystems. The lack of a reliable pre-spray population fix on both treated and untreated check blocks make it impossible to state whether there was any effect of the nonyl phenol spray on the spruce budworm population. It is also impossible to say whether the slightly less defoliation of the nonyl phenol treated trees relative to the untreated trees was due to the spray application or a lower prespray population density on the untreated trees. Another possible cause for the differences found between treated and control budworm densities and tree defoliation may have been effects of the fuel oil carrier on budworm larvae. There is no evidence from the forest songbird census data collected to suggest any effects on avian populations or interference with normal breeding activities resulted from the nonyl phenol treatment.

In conclusion, the data collected on residue levels and persistence and environmental effects of nonyl phenol applied under "worst case" field conditions does not indicate that this material poses any significant hazard to the integrity of either aquatic or terrestrial forest ecosystems under present usage.

Appendix I

The difference in mortality between treatment and control fish is estimated by the following approximate 95 per cent confidence interval:

$$\overline{x}_{1} - \overline{x}_{2} - 1.96 \sqrt{\frac{\overline{x}_{1} (1 - \overline{x}_{1})}{N_{1}} + \frac{\overline{x}_{2} (1 - \overline{x}_{2})}{N_{2}}} < p_{1} - p_{2}$$

$$< \overline{x}_{1} - \overline{x}_{2} + 1.96 \sqrt{\frac{\overline{x}_{1} (1 - \overline{x}_{1})}{N_{1}} + \frac{\overline{x}_{2} (1 - \overline{x}_{2})}{N_{2}}}$$

where N_1 and N_2 = number of fish in control and treatment \overline{X}_1 and \overline{X}_2 = proportion of dead fish in control and treatment p_1 and p_2 = mortality in control and treatment The hypothesis H: $p_1 - p_2 = 0$ (equal mortality) is rejected if the above confidence limits for $p_1 - p_2$ do not include 0.

 3 June 1979
 - 0.148 < p1 - p2 < 0.108</td>
 accept

 6 June 1979
 - 0.570 < p1 - p2 <-0.130</td>
 reject

 8 June 1979
 - 0.815 < p1 - p2 <-0.425</td>
 reject