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Abstract. Variation in forest structure provides information on vegetation complexity and provides insights on

biodiversity. Characterizing forest structural diversity with remotely sensed data supports reporting, monitoring, and

policy development. We explored the relationship between forest structural diversity in Mediterranean pines of the

Spanish Central Range and variables derived from imagery captured with a commercial high spatial resolution satellite

(QuickBird-2; with pixels sided 2.4 m multispectral and 0.68 m panchromatic). To combine multiple aspects of tree

conditions at a stand level, ‘‘structural diversity’’ was characterized at the plot level (N � 1022) as a linear combination

of the median of absolute differences of individual trees’ bole diameter, height, and crown diameter measured on the

field from the local median equivalents. Spectral reflectance variations in the visible and near-infrared, as well as image

co-occurrence texture metrics from the panchromatic imagery at various window sizes were generated. All relationships

to image-derived values were assessed against circular 0.3 ha areas corresponding with the field measured plots.

Canonical correlation analysis aided in identification of combinations of reflectance and texture metrics most highly

related with forest structural diversity (R � 0.89). Reflectance diversity was found to be more important than

co-occurrence texture features in describing forest structural diversity when forest structure was limited (R � 0.47 vs.

R � 0.39), whereas texture was more informative to the model when the forest structural diversity was high

(R � 0.88 vs. R � 0.63), relating more complex forest conditions. Our results, although empirically defined by the local

conditions and image acquisition characteristics, demonstrated the potential in high spatial resolution imagery for

description of forest structural diversity in forests of the Mediterranean environment, especially important for Spain

where a national high spatial resolution image data base has been collected.

Résumé. La variation de la structure forestière fournit de l’information sur la complexité de la végétation et apporte un

éclairage quant à la biodiversité. La caractérisation de la diversité de la structure forestière à l’aide des données de

télédétection est un outil utile pour la communication des données, le suivi et le développement de politiques. On a exploré

la relation entre, d’une part, la diversité de la structure forestière dans les pins méditerranéens dans la cordillère centrale

de l’Espagne et, d’autre part, les variables dérivées des images acquises par un satellite commercial à haute résolution

spatiale (QuickBird-2 avec un espacement de pixels de 2,4 m en mode multispectral et de 0,68 m en mode

panchromatique). Pour combiner les multiples aspects des conditions des arbres au niveau du peuplement, la ‘‘diversité

structurale’’ a été caractérisée au niveau de la parcelle (N � 1022) comme étant une combinaison linéaire de la médiane

des différences absolues du diamètre des troncs, de la hauteur et du diamètre de la couronne des arbres individuels mesurés

sur le terrain à partir des équivalents de la médiane locale. On a ainsi généré des variations de la réflectance spectrale dans

le visible et le proche infrarouge de même que des mesures de cooccurrence de la texture à partir des images

panchromatiques pour diverses dimensions de fenêtre. Toutes les relations par rapport aux valeurs dérivées des images ont

été évaluées en fonction de parcelles circulaires de 0,3 ha de superficie correspondant aux parcelles mesurées sur le terrain.

Une analyse de corrélation canonique a permis d’identifier les combinaisons de mesures de réflectance et de texture les

plus reliées à la diversité de la structure forestière (R � 0,89). On a pu observer que la diversité de la réflectance était plus

importante que les caractéristiques de cooccurrence de la texture pour décrire la diversité structurale de la forêt lorsque la

structure de la forêt était limitée (R � 0,47 vs. R � 0,39), alors que la texture procurait plus d’information pour le modèle

lorsque la diversité structurale de la forêt était élevée (R � 0,88 vs. R � 0,63), montrant des conditions forestières plus

complexes. Nos résultats, bien qu’empiriquement définis par les conditions locales et les caractéristiques d’acquisition
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d’image, démontrent le potentiel des images à haute résolution spatiale pour la description de la diversité structurale de la

forêt dans les forêts en milieu méditerranéen, ce qui est particulièrement important dans le cas de l’Espagne où une base de

données nationale d’images à haute résolution a été élaborée.

[Traduit par la Rédaction]

Introduction

Forest structural diversity is important for sustainable

management (Rı́o et al., 2003) and for conservation of

biodiversity (Gil-Tena et al., 2010). Structurally complex

forests are found to better contribute to recreational uses

compared with plantations (Rydberg and Falck, 2000), and

they provide a wider range of habitat conditions as well

(Sullivan et al., 2001). The complexity in the arrangement

of forest elements is also associated with the resilience to

change, that is, the ability to adapt and respond to

disturbances and perturbations (Rozdilsky and Stone,

2001; Elmqvist et al., 2003; Garcı́a-López and Allué, 2011).

The structure of forest stands can be characterized by

the size, age, and species distribution in vegetation

layers, frequently focusing on the tree component (Poage

and Tappeiner, 2005). Measures of forest structure often

include vertically distributed features (e.g., dominant height,

number, and distribution of strata) and horizontal features

(e.g., crown size, gaps) (Spies and Franklin, 1991; Wulder

et al., 2004), as well as species richness (Maltamo et al.,

2005). The number and variation of relative abundance of

different attributes across forest stands defines the forest

complexity (McElhinny et al., 2005). When species richness

is low, tree size variables such as height, diameter, and crown

dimension may become the most important factors affecting

structural diversity (Neumann and Starlinger, 2001) and a

key aspect to assess stand biodiversity (Pommerineng, 2006).

A variety of indices have been developed to quantify tree

size diversity (e.g., Shannon index, Gini coefficient, Simpson

index) (McElhinny et al., 2005), requiring measurement of

certain parameters on the ground for evaluation (Lexerod

and Eid, 2006). Measures describing tree size diversity

within stands are important to assess economical, ecological

and social values of the forest (Lexerod and Eid, 2006).

For an accurate description of stand structure a combina-

tion of various measures or resultant indices is often

required (Rouvinen and Kuuluvainen, 2005). Furthermore,

mapping and monitoring tree size diversity over large areas,

and with a given temporal repetition for local and interna-

tional reporting purposes, requires affordable methods from

both economic and application perspectives. The synoptic

view, extensive coverage, and the consistency and frequency

of data acquisition, make remote sensing uniquely well

suited as a source of information for the periodic assessment

of forest structural diversity. Remote sensing provides data

collected in a consistent and systematic fashion representing

large areas at a known period in time (Wulder et al., 2004).

The remotely sensed data can be integrated with ground

data to extend and inform about local measures to represent

wide areas in a consistent, practical, and repeatable manner.

The goal of this research is to assess the potential of high

spatial resolution imagery to characterize forest structural

diversity in Mediterranean pines of the Spanish Central

Range with the following objectives: (i) to determine and

quantify the relationships between ‘‘forest structural

diversity’’ measured at the plot level and data captured by

a satellite-borne sensor in the form of visible and

near-infrared (NIR) spectral reflectance as well as spatial

combinations of panchromatic reflectance values, as related

by texture metrics; (ii) to identify the relative relevance of

reflectance measures versus texture metrics in characterizing

the forest structural diversity; and (iii) to assess how the

spectral diversity � structural diversity relationship varies

under different conditions of forest density, i.e., determine

if different relations occur in open versus closed forest

conditions.

Background

Remote sensing has been widely used to characterize

forest structure (St-Onge and Cavayas, 1995; Cho et al.,

2009; Wolter et al., 2009) and forest structural complexity

(Coops and Catling, 1997; Ozdemir et al., 2008; Pasher and

King, 2010) with data acquired from a variety of sensor

types representing a range of scales of information. Cohen

et al. (1995) applied the Tasseled Cap Transformation

components from medium spatial resolution Landsat

imagery (30 m pixel size) to map four structurally different

coniferous classes in Oregon, with an overall accuracy of

82%. White et al. (2010) characterized forest canopy

structural diversity in coastal temperate forests of Canada

with hyperspectral data from Hyperion EO-1 and canonical

correlation analysis. They found that age and height

diversity are the structural attributes most strongly related

to spectral diversity and concluded that in addition to

species, structural diversity should be considered for assess-

ment of biodiversity in coastal environments. Miura and

Jones (2010) demonstrated that LiDAR (Light Detection

and Ranging) is particularly valuable for description of

vertical structure. They developed a protocol for character-

ization of the structure of a dry Eucalypt forest landscape

using different laser pulse return properties from a waveform

LiDAR system. The classification scheme consisted of eight

structural categories and allowed the quantification of

gaps in different layers. Hyde et al. (2006) tested the synergy

of various types of sensors for estimation of structural

parameters at the stand and at the landscape level in a

range of forests environments in California. They concluded

that LiDAR with Landsat Enhanced Thematic Mapper

Plus (ETM� ) was the best combination of sensors produ-

cing the most accurate regression models between forest

structural parameters and remotely sensed metrics. The
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synoptic view and the range of techniques available for

analysis of data make remote sensing valuable for assisting

the assessment of forest structure conditions (Cohen and

Goward, 2004).
The availability of high spatial resolution imagery has

enabled the development and application of image analysis

techniques such as ‘‘crown isolation’’ (Gougeon and Leckie,

2006; Hirata, 2008), ‘‘shadow analysis’’ (Greenberg et al.,

2005; Leboeuf et al., 2007), ‘‘texture analysis’’ (Franklin

et al., 2001; Kayitakire et al., 2006) or ‘‘geostatistical’’

approaches (Song, 2007; Feng et al., 2010) that individually,

or combined, facilitate the study of forest structure and

structure complexity at local spatial scales. Panchromatic

imagery, with finer spatial resolution (B1 m pixel size) than

multispectral (MS) imagery is well suited for accurate

identification of individual tree characteristics (Colombo

et al., 2003), enabling the analysis of spatial relations

through image texture measures (Ouma et al., 2006; Song

et al., 2010). Combining the spatial detail of panchromatic

imagery and the unique spectral information conferred

by MS imagery leverages complementary information

(Lu et al., 2002) that can be employed separately or with a

pan-sharpening approach (Ozdemir 2008; Pu et al., 2011).

It has been frequently noted that as crown closure increases

the capacity to characterize forest structural attributes

decreases (Falkowski et al., 2009), with leaf area index

(LAI) as an example where an asymptote in LAI is typically

reached (e.g., LAI approx. 3�3.5, crown closure 60%). Based

upon this understanding of the limitation of optical imagery

and related analysis techniques, we posit that forest open-

ness (e.g., open, semi-open, or closed) may indicate which

technique is most appropriate for a particular site and that

some techniques might be transferable between sensors and

sites (Song et al., 2010).

In Mediterranean environments the study of forest

structure and complexity has received heightened attention

during recent years. Pascual et al. (2008) used LiDAR data

and a two-stage object-based methodology to characterize

the structure of Pinus sylvestris L. stands in forests of central

Spain. Five structure types were defined based on height and

density parameters. The median and standard deviation

of height were the most valuable variables for definition of

structure types. The approach applied was proposed for

operational application in the inventory procedure and

forest management plans. Vázquez de la Cueva (2008)

explored the existence of relations between forest structural

attributes at the plot level (e.g., height, density, basal area,

and crown canopy closure) and spectral information derived

from Landsat ETM� (30 m pixel size) imagery combined

with topographic data. The study considered three types of

forest in central Spain and applied a multivariate canonical

ordination method (redundancy analysis). There was a

strong influence of vegetation type on the results but the

low percentage of variance explained by the statistical

analysis precluded derivation of practical empirical models.

Merino de Miguel et al. (2010) explored the existence of

relations between dasometric parameters and textural vari-

ables in Pinus pinaster Ait. stands in central Spain. The

research applied geostatistical tools such as the variogram,

calculated with orthophotography and IKONOS-2 imagery
of original and degraded spatial resolution and found the

strongest correlations when the variogram was calculated for

spatial resolutions of 1 m and 2 m.

Lamonaca et al. (2008) explored forest structural complex-

ity of a beech forest in Italy with a multilevel classification of

QuickBird imagery. Applying field-based diversity indices of

tree size, spacing, and species assemblage, they quantified

structural heterogeneity amongst forest regions delineated by
segmentation and evaluated the relationships between spatial

heterogeneity in forest structure and segmented polygons.

Their results supported the premise that a mixture of macro

and micro structural heterogeneity is present within the beech

forests investigated. Ozdemir et al. (2008) examined the

potential of ASTER imagery (15 m pixel size) to estimate tree

size diversity over forested landscapes in Turkey. With an

object-oriented approach they related texture measures with
diversity indices, finding the Gini coefficient more related

with image parameters than the Shannon index. To the best

of our knowledge there has not been any exploration of the

capacity of high spatial resolution (B5 m pixel size) imagery

to characterize forest structural diversity in Mediterranean

forests at the plot level.

Methods

Forest parameters measured in the field, analogous to

those made in support of forest management inventories,
were used to derive the structural diversity attributes. The

spectral and spatial measures were generated from Quick-

Bird-2 multispectral and panchromatic imagery. The rela-

tionship between the measures of forest structural diversity

at the plot level and reflectance-texture diversity were then

explored using Canonical Correlation Analysis (CCA) and

the outputs were interpreted based on the correlations

between the diversity measures and the canonical variates
(Figure 1).

Study area

The study focused on two pine forests in the Central

Range of Spain (Figure 2): Pinar de Valsaı́n (hereafter

Valsaı́n) and Valle de Iruelas (hereafter Iruelas), with

distinctive structural parameters derived from natural

circumstances (e.g., species composition, site condition,

disturbances) and human induced factors (e.g., silvicultural

treatments and production use) (Table 1).
Valsaı́n is a 7627 ha forest of Pinus sylvestris L. on the

north facing slopes of Sierra de Guadarrama (Segovia). It is

a multifunctional forest, dedicated to timber production,

recreational opportunities, and protection, with an estab-

lished management plan since 1889. The silvicultural system
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630 # 2012 Government of Canada

C
an

ad
ia

n 
Jo

ur
na

l o
f 

R
em

ot
e 

Se
ns

in
g 

D
ow

nl
oa

de
d 

fr
om

 p
ub

s.
ca

si
.c

a 
by

 N
at

ur
al

 R
es

ou
rc

es
 C

an
ad

a 
on

 0
4/

30
/1

2
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.



applied evolved from an initial uniform shelterwood system

in permanent blocks (rotation of 120 years and regeneration

period of 20 years) to a selective cuttings system until
1988, when a flexible management system was established

to allow for revisions to the established plan with reference

to the overall production objectives. Management actions

and recreational activities such as trail walking, which have

gained importance in recent decades and occur mainly at

lower elevations, have had an impact on the forest structure

(Montes et al., 2004).

Iruelas is a 5483 ha forest of P. pinaster Ait., P. sylvestris

L., and P. nigra Arn. in Sierra de Gredos (Ávila). It is also a

multifunctional forest producing wood, resin, and pastures

and providing recreation opportunities such as trail walking,

camping, and bird watching. Although the first management

plan was approved in 1886, historical circumstances pre-

vented an implementation directly following specification.

The production of resin during the twentieth century

favoured old growth development; a rich history of fires
has also conditioned the forest structure.

Forest structure diversity parameters

Forest structure is difficult to characterize using a single

variable (Lefsky et al., 2005) and requires information

relating both vertical and horizontal distribution of vegeta-

tion elements. Horizontal structure largely concerns the

spatial distribution and density of trees (St-Onge and

Cavayas, 1995) and is frequently described through the

diameter at breast height (DBH) or some derived statistics;

vertical structure refers to tree height distribution requiring

some height related parameter for description (Tappeiner II

et al., 2007).

Plot-based forest inventories are periodically conducted

for management in both study sites. Following local

management inventory practices circular plots of 11 m

radius, on average, are established over a regular grid with

GPS providing precise location, with attributes such as

DBH, height, crown diameter, and number of trees being

measured for all or a representative sample of trees in each

plot. The distribution of structural parameters of individual

trees follows an inverse J-shaped curve in Valsaı́n and

Iruelas at a global level, as typically occurs in sustainably

managed Mediterranean forests.

We derived ‘‘structure diversity attributes’’ from field

measured mensurational data (Table 1); the Median Abso-

lute Deviation (MAD) (Equation (1)) of the DBH (DMAD),

height (HMAD) and crown diameter (CMAD) was calculated

at the plot level for a total of 1022 plots (461 in Valsaı́n and

561 in Iruelas). MAD variables were normalized with a

Box�Cox algorithm (Box and Cox, 1982). The ‘‘MAD

metrics’’ are always positive and their values are directly

related with structural diversity, i.e., plots with higher values

of DMAD, HMAD, and CMAD are structurally more diverse

Figure 1. Schematic methodology followed in the study. The relationship between forest

structural diversity evaluated with data collected on the ground at the plot level and remotely

sensed data measures of diversity is evaluated with CCA.
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Table 1. Descriptive parameters of forest structural attributes measured on the ground.

Valsaı́n Iruelas Combined

DBH H C N DBH H C N DBH H C N

Mean 23.30 15.20 4.46 445.78 30.5 13.81 4.61 451.32 30.58 15.97 4.63 448.92

Standard error 0.09 0.03 0.01 13.42 0.11 0.32 0.01 16.07 0.11 0.23 0.01 10.79

Median 25 13.7 4.26 398.67 26.2 13.3 4.17 324.67 26.25 14.7 4.18 365.44

Standard deviation 14.56 6.09 1.75 289.25 15.13 5.57 1.69 395.27 15.24 6.68 1.70 353.04

Sample variance 212.01 37.15 3.09 83667 229.19 31.13 2.87 156243 232.51 44.64 2.90 124641

Range 122 44.2 13.30 1893 204.6 30.5 18.98 2532 209.6 44.5 19.30 2532

Minimum 10 5.8 0.92 33.22 15.0 4.5 2.71 32.46 10 4.5 0.92 32.46

Maximum 132 50 14.23 1926 219.6 35 21.69 2564 219.6 50 21.69 2564.0

Note: DBH, diameter at breast height (1.30 m); H, height; C, crown diameter; N, number of trees per ha.

Figure 2. Location of study sites in the Central Range of Spain. Valle de Iruelas is located in Ávila province; Pinar de Valsaı́n in Segovia

province.
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(and therefore more complex) than plots with lower values.

A zero value is possible, while unlikely, if all trees measured

in a plot have exactly the same dimension. As a density

attribute, the number of trees per ha (N) would be expected
to be significant in the characterization of forest structure

diversity at the stand level, but at the scale of analysis (plot

level) there is no internal variation of this variable. We

included the number of trees per ha (N) as an absolute value

(no plot MAD could be calculated) in the initial stages of

analysis, but found no significance in the models.

MAD ¼ medianiðabs ðX i �medianjðX jÞÞÞ (1)

where Xi is the attribute (i.e., DBH, height, crown diameter)

of the ith element in each plot and Xj is the attribute of the

jth element of the complete sample.

High spatial resolution imagery

Imagery acquired by the QuickBird-2 satellite covering

the study sites was used. QuickBird-2 collects data in various

regions of the electromagnetic spectrum, with three bands in

the visible and one in the NIR (with 2.4 m � 2.4 m pixels);

an additional panchromatic band provides data with finer
spatial resolution (with 0.68 m � 0.68 m pixels; Table 2).

QuickBird-2, launched 18 October 2001, is a commercial

satellite and is unique among other satellites in this class as

it has the largest image footprint and most on-board storage

capacity.

Processing of imagery involved: atmospheric correction

of the multispectral images with the COST model (Chavez,

1996) using water bodies as dark objects and the atmo-
sphere-scattered path radiance Ll

p estimated with a relative

spectral scattering DOS model (l�4) under very clear

atmospheric conditions (Chavez, 1988). Separate orthorec-

tification of the multispectral (MS) and panchromatic (Pan)

bands with a digital elevation model derived from a contour

vector map 1:10 000 (www.sitcyl.jcyl.es) (Root Mean Square

Error of 0.69�0.72 m for the MS bands and 0.66�0.81 m

for the Pan bands); and registration to aerial photography

of 0.25 m pixel size (www.sitcyl.jcyl.es), with the full suite

of characteristics in Table 2.

Image metrics: reflectance and texture
diversity

Image texture is a valuable criterion for visual inter-

pretation, contains information about spatial and structur-

al arrangement of objects (Tso and Mather, 2001), and

provides context that may improve estimates of forest

structural parameters (Wulder et al., 1998). Image texture

is a means to interpret the spatial relationships between

digital numbers (Haralick et al., 1973) and to understand

how the variability in these values can inform on what is

being portrayed by the imagery. Single pixel measures often

inform on a portion of an object, with additional content

offered when considering neighbouring pixels. Texture

measures provide information regarding the simplicity or

complexity of neighbourhoods of pixels. For characteriza-

tion of forest structure, high resolution imagery texture

provides spatial information about density, distribution,

and spatial arrangement of trees (Ouma et al., 2006) and is

also related to the three-dimensional organization of tree

crowns (St-Onge and Cavayas, 1995; Bruniquel-Pinel and

Gastellu-Etchegorry, 1998). Greater variance in digital

numbers often implies a more complex forest environment,

whereas simple forest structure is associated with less image

variance (Cohen et al., 1990). In short, a relationship exists

between image spatial structure and the forest structure in

the scene (Wulder et al., 1998). One approach for

characterizing the spatial inter-relationships between image

digital numbers is the grey-level co-occurrence matrix

(GLCM) and associated indices that can be used to

describe the matrix (Haralick and Bryant, 1976). The

GLCM is a tabulation of how often different combinations

of pixel grey levels occur in an image (Hall-Beyer, 2007) at

a specific distance and orientation. For evaluation of image

texture we applied the approach of Haralick (Haralick and

Bryant, 1976), a method using statistical measures based

on the GLCM values (Caridade et al., 2008) that is also

known as a second order approach.

Exploratory research over a range of measurement

contexts (i.e., plot, stand) indicated that second order

texture metrics ‘‘homogeneity’’, ‘‘contrast’’, and ‘‘entropy’’

appeared as most appropriate of the GLCM texture metrics

for distinguishing forest stands of varying structure (differ-

ing height, age, number of trees per hectare, and DBH) for

the Mediterranean pine forests present. Homogeneity and

contrast are measures of the amount of local variation in the

image (Haralick et al., 1973) and are by definition

highly correlated (Equations (2�3)). Entropy is a measure

of orderliness (Hall-Beyer, 2007) (Equation (4)) or lack of

image structure.

Table 2. Characteristics of the satellite imagery used in the study.

QuickBird-2 imagery

Spatial resolution Multispectral 2.4 m

Panchromatic 0.68 m

Bands Blue 0.45�0.52 mm

Green 0.52�0.60 mm

Red 0.63�0.69 mm

NIR 0.76�0.90 mm

Pan 0.45�0.90 mm

Valsaı́n Iruelas

Date 19 May 2004 05 August 2005

Sun elevation (8) 58.4 72.0
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Homogeneity ¼
XN�1

i;j¼0

Pi;j

1þ ði � jÞ2
(2)

Contrast ¼
XN�1

i;j¼0

Pi;jði � jÞ2 (3)

Entropy ¼
XN�1

i;j¼0

Pi;jð� ln Pi;jÞ (4)

where Pi,j is the (i, j)th entry of the normalized GLCM

matrix, N is the number of rows and columns in the image.
Texture metrics evaluated at three different window

sizes were calculated over the panchromatic channel of the

QuickBird-2 imagery. For evaluation of texture metrics

we aimed to apply window sizes corresponding to the

mean dimension of the scene objects (Kayitakire et al.,

2006), that is, a distance equivalent to individual crown

diameters or groups of trees’ canopy size, in each of the sites

(Table 3). For this purpose we followed the semivariogram

approach (Johansen et al., 2007; Nijland et al., 2009)

whereby the ‘‘range’’ value of the semivariogram identifies
the size of the scene objects and therefore determines the

window size to use (Franklin et al., 1996). As expected, the

uneven structure in Iruelas indicated a need for larger and

different window sizes than in Valsaı́n, where the species

and silvicultural system applied have made the forest stands

more homogeneous (Figure 3). These findings are included

at this stage of the communication as the window sizes

produced are used to guide subsequent analyses.
To quantify the variation of the image metrics at the plot

level we used the MAD which, unlike the standard devia-

tion, is resistant to outliers (Chung et al., 2008); half the

values are closer to the median than the MAD and half

are further away. For each reflectance band (three in the

visible and one in the NIR) the MAD of pixel values was

calculated for each 0.3 ha circular area (approx. 616 pixels)

and the absolute difference with each equivalent global
MAD (calculated using all plots at each site) was evaluated.

A similar process was followed with co-occurrence texture

metrics over the panchromatic image (approx. 6640 pixels

per 0.3 ha circular area).

Canonical correlation analysis

While complex, quantifying structural diversity may be
approached through the application of multivariate statistical

analysis (McElhinny et al., 2005). The statistical analysis

Table 3. Texture metrics evaluated in the study sites.

Window Metric Valsaı́n Iruelas

Small Homogeneity 7 � 7 7 � 7

Contrast

Entropy

Medium Homogeneity 9 � 9 13 � 13

Contrast

Entropy

Large Homogeneity 13 � 13 23 � 23

Contrast

Entropy

Figure 3. Examples of areas with different forest structure and visual texture (top line: multispectral visualization (Red: NIR, Green: red,

Blue: green); bottom line: panchromatic visualization).
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required in this study will demonstrate if there is a relation,

and how strong it is, between the forest structural diversity

measured at the plot level as captured by the inventory

attributes and the spectral diversity measured by the reflec-

tance of the MS satellite-borne high spatial resolution sensor

and texture co-occurrence metrics evaluated with various

window sizes. We chose the CCA statistical approach as it

facilitates the study of interrelationships among sets of

multiple dependent and independent variables (Hair et al.,

2010). CCA places few restrictions on the data: normality,

that was tested with the Jarque-Bera test, and absence of

outliers that was checked through the Grubbs test (Grubbs,

1950). The ratio of sample size to number of variables was in

our case well over the recommended value of ten. In Table 4 we

summarize the variables included in the statistical analysis.

CCA enables generation of two outcomes of interest:

the ‘‘canonical variates’’ representing the optimal linear

combinations of dependent and independent variables and

the ‘‘canonical correlation’’ representing the strength of

the relationship between them. All variables are linearly

combined by group (dependent and independent) into

‘‘variates’’; the dependence role is interchangeable and

used to facilitate interpretation.

A number of orthogonal (independent) ‘‘canonical func-

tions’’ are derived, maximizing the correlation between linear

composites. Each variable partial correlation with the respec-

tive canonical function is represented by its coefficient or

‘‘canonical weight’’, which enables understanding of the

function composition. However, frequent instability of these

coefficients advice the alternative use of ‘‘canonical loadings’’

after a process of variables standardization (Hair et al., 2010).

Therefore, canonical loadings measure the simple linear

correlation between an original observed variable in the

dependent or independent set and the set’s canonical variate,

intended to indicate the variance that the variable shares with

its canonical variate. Variables that are highly correlated with

a canonical variate have more in common with the variate and

should therefore be given more importance in the variate’s

interpretation. Additionally, a measure of ‘‘redundancy’’ may

be calculated that informs on the amount of variance in a set
of input variables (dependent or independent) that is ex-

plained by the other canonical variate. To determine which of

the canonical functions to interpret, a combined criterion

based on the statistical significance, the practical significance

of the canonical correlation and the redundancy measures for

each variate should be applied (Hair et al., 2010). ‘‘Canonical

cross-loadings’’ measure the simple linear correlation be-

tween the original observed variables and the opposite set’s
canonical variate, i.e., they represent the relation between one

variable and the linear combination of variables on the other

side. These coefficients are useful to determine which

independent variables are explicative of the dependent set

combination and, in our case, which spectral or textural

metrics would better explain the forest structural diversity.

Results

The CCA yielded two results of interest: the canonical

variates, which represented the optimal linear combinations
of dependent (forest structural diversity) and independent

(image reflectance�texture diversity) variables and the

canonical correlation, representing the relationship between

variates. We describe and interpret some outcomes of the

analysis which were relevant to our study objectives.

Canonical correlations and relative
importance of reflectance and texture
metrics

The number of canonical functions CCA yields is limited

by the lower number of variables in either the dependent or

Table 4. Dependent and independent variables used as input into the canonical correlation analysis.

Dependent variables Independent variables

Reflectance

MAD of:

Blue

Green

Red

Near infrared

Texture

MAD (Median Absolute Deviation) of: MAD of:

Diameter (DMAD) Homogeneity small window

Height (HMAD) Homogeneity medium window

Crown diameter (CMAD) Homogeneity large window

Contrast small window

Contrast medium window

Contrast large window

Entropy small window

Entropy medium window

Entropy large window
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independent variate (Hair et al., 2010); in our case the

maximum number of functions was three, as this was the

number of original dependent variables considered

(DMAD, HMAD, CMAD). Our interest focused on determining

if there is a relation and how strong it is between variates.

Therefore, only the strongest relation in each case scenario

was retained for further analysis and discussion, even if

more than one function was statistically significant (Table

5). The statistical significance was tested with the x2 test.

In both Valsaı́n and Iruelas there was a moderate relation

between the dependent (forest structural diversity) and the

independent (reflectance�texture diversity) variates, with

similar values of correlation in both cases (0.50 in Valsaı́n

and 0.51 in Iruelas). To test the strength of the relationship

between forest structural diversity and the reflectance and

texture variables’ groups individually, we ran the analysis

independently with either set treated as independent.

This analysis showed that when including all variables in

the independent group there was a stronger relation than

including just one type of image variables (reflectance or

texture), which demonstrated the information associated

with spectral and textural signatures is complementary

(Lu et al., 2002; Colombo et al., 2003; Ouma et al., 2006).

Although they exhibited a relatively weak relationship, the

reflectance variables alone were more related in both sites

with structural diversity than the texture variables alone

(Table 5).

In a combined scenario, considering all plots from Valsaı́n

and Iruelas together, with ‘‘expectation’’ median values

evaluated together, we found a strong relation between

variates, with an R of 0.89 (Table 5). This scenario illustrates

a more heterogeneous forest where the range of forest

parameters is considerably higher than either the individual

sites (Table 1). In this case, texture diversity measures were

more able to explain forest structural diversity (R of 0.88 vs.

R of 0.63). Possibly the limited explanatory power of texture

variables in the individual sites was in part due to the limited

range of ground variables and consequent limited variation

in image texture outcomes.

Most significant variables

Canonical cross loadings were interpreted to assess how

the individual independent variables (measures of reflectance

and texture diversity) related linearly with the forest structural

diversity or dependent variate. This procedure enabled

identification of those image metrics most contributing in

the characterization of structural diversity for the combined

case scenario (Valsaı́n and Iruelas plots analyzed together).

Contrast and homogeneity evaluated at different window

sizes were the variables most strongly correlated with forest

structural diversity (Figure 4). This result supported the

intuitive notion that visual changes in the image are related

with variability of tree sizes on the ground, as this variability

produced internal shadowing effects within the stand. As

contrast and homogeneity are by definition strongly corre-

lated metrics, similar cross-loading values were expected, and

the opposite sign that occurred at medium window sizes

remains unexplained. Variations in the reflectance bands

were positively correlated with structural diversity, with the

three visible bands found more strongly correlated than the

NIR band. The character of entropy is variable and not

completely clear, being negatively correlated with structural

diversity when measured at the small window size (that is,

7 pixels � 7 pixels, or 4.2 m � 4.2 m) and weakly correlated

when measured at the other window sizes. It should be noted

that at the smaller window sizes, single tree crowns may be

represented, resulting in texture measures with a high local

variance (with noncrown conditions represented in

neighboring locations). These findings support the use of

larger windows relating stand conditions, rather than

individual trees (objects). Varying behaviour of GLCM

metrics at different window sizes was previously reported

(Moskal, 1999) and detailed examination would be required

for complete understanding in local circumstances.

The linear correlation between the original variables

(DMAD, CMAD, HMAD) and the forest structure diversity

variate is measured by the canonical loadings. These coeffi-

cients showed diameter variability (DMAD) was the most

relevant parameter (loading 0.63) in building the forest

structure diversity variate, followed by crown diameter

variability (CMAD, loading 0.15), and leaving height varia-

bility (HMAD loading 0.10) in third position. The importance

of diameter variability for characterization of forest structural

complexity was an expected result, as diameter is a common

variable used for description of forest structure and its

variation is frequently used for computation of diversity

indices such as Simpson or Shannon (McElhinny et al., 2005).

Validation of the CCA in the combined case
scenario

To ensure that the results of the CCA were not specific to

the sample data, the method was validated over a subsample

of 500 plots, proportionally and randomly selected from

Table 5. Canonical correlations of the first canonical function in

different scenarios (all statistically significant).

Site Independent group

R (canonical

correlation)

Valsaı́n Diversity (reflectance and texture) 0.505

Diversity reflectance 0.474

Diversity texture 0.389

Iruelas Diversity (reflectance and texture) 0.512

Diversity reflectance 0.460

Diversity texture 0.360

Combined Diversity (reflectance and texture) 0.890

Diversity reflectance 0.634

Diversity texture 0.882
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both sites (226 plots from Valsaı́n and 274 plots from

Iruelas). The validity of the CCA was assessed by conduct-

ing a sensitivity analysis in which the stability of the

redundancy index and the overall canonical correlations

was assessed applying the same procedure after removing

individual independent variables from the analysis (Hair

et al., 2010) (Figure 5). The similarity of the values of the
redundancy index and canonical correlation for all tested

situations indicated the stability of the CCA results; cross-

loadings were also found to be relatively stable.

Optical sensors have limited capacity to identify canopy

height and differences (Hudak et al., 2002), often relying on

the existence of image shadows or the calculation of gap

fraction to partially accomplish this task (see Mora et al.

(2010) for a summary of height estimation from optical
imagery). To test the relevance of HMAD in the model, it was

removed from the analysis and results were checked: the

canonical correlation decreased markedly and the redun-

dancy index was lower than all other situations, demonstrat-

ing the significance of HMAD contribution to the structural

dependent variate in this model. As expected more notable

reductions in redundancy index were found when DMAD or

CMAD were removed from the analysis.

Discussion and conclusion

Forest structural diversity defined in terms of field

inventory measures at the plot level has been related to

values of reflectance and texture diversity as captured by a

fine spatial resolution satellite-borne optical sensor in

Mediterranean pine forests of the Central Range in Spain.

Results showed a strong relationship between both sets of

diversity features (field derived and image derived) when

considered at the plot level and with an appropriate range of

variation, indicating the potential of remote sensing and

image processing as an approach for characterization of

forest structural diversity over wide areas.

Quantifying structural diversity on the ground is difficult

and costly, and its importance for biodiversity and produc-

tion (Lexerod and Leid, 2006) makes exploring remote

sensing as an optional means for this purpose. Remote

sensing is not seen to fully supplant the need for field

measures, but to spatially and temporally augment such

measures. The data acquisition regularity offered by satel-

lites and the consistency over space and time enables

repetitive estimations and monitoring. In this study we

included field measured variables (DBH, height, and crown

diameter) in structure diversity characterization for ease of

measurement (McElhinny et al., 2005) and, as identified by

Rı́o et al. (2003), among the most important aspects of

forest structure. Furthermore, the scale of analysis is also an

important factor when measuring or characterizing diversity

(Lähde et al., 1999). The availability of field data determined

the scale of our analysis, enabled by accessibility to high

spatial resolution imagery. The detailed plot-level measures

available made for a logical informational link between the

field and image-based data sources with both of a compar-

able scale. We worked with circular spatial units of 0.3 ha,

analogous to the inventory plots established and measured

on the ground. At this scale of analysis (alpha diversity) the

Figure 4. Cross loadings in the combined scenario. Homogeneity and contrast at various

window sizes were the variables with highest explicative capacity; visible reflectance was more

relevant to the model than NIR data.
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study showed there is potential for characterization of

structural diversity from the space. Lamonaca et al. (2008)

reached similar conclusions in a study that applied an object

oriented approach for characterization of the structure

diversity in Mediterranean environments at the stand level.

Pasher and King (2010) modelled and mapped forest

structural diversity in temperate hardwood forests of

Quebec (Canada) with airborne derived data, highlighting

the convenience of satellite derived data for mapping of

larger areas.

Interestingly, among our findings was the consideration of

the scenarios with various crown closure conditions pooled

together, that is, the data from open and dense forest sites

analyzed jointly. In this case the relation between the

variability in image-derived variables and forest structural

diversity was stronger (higher canonical correlation) than

considering either individual scenario alone. Previous works

with remotely sensed data in the study area (Merino et al.,

2010; Vázquez de la Cueva, 2008) found significant relations

between image and field variables but poor explanatory

power of statistical models. Further work is recommended

to determine if the limited success relating structural

measures with optical sensors’ data is due to the limited

local variation in structural parameters.

Diameter and basal area are the attributes most fre-

quently used in studies of structural diversity (Solomon and

Gove, 1999; Varga et al., 2005; Motz et al., 2010) and forest

structure per se (Goodburn and Lorimer, 1998; Rouvinen

and Kuuluvainen, 2005; Rubin et al., 2006). We found these

to be the attributes indicating variation in forest structure at

the plot level that had the highest relevance in the canonical

variates in all scenarios. Height showed slight importance in

the canonical relations between field-measured and image-

detected diversity but was still relevant to the model, as

shown in the sensitivity analysis. Height variation is difficult

to detect with optical sensors (Mora et al., 2010), which are

better suited for mapping horizontal structure (Hyde et al.,

2006). Although shadows and gap fraction are sometimes

useful (Shettigara and Sumerling, 1998; Leboeuf et al.,

2007), the images we used, captured with high elevation

angles (�60 degrees), did not include significant shadows.

Including LiDAR measured heights in the modelling process

may improve the study results, as fusion of high spatial

resolution and LiDAR data is an approach yielding good

results (St-Onge et al., 2008; Ke et al., 2010; Chen and

Hay, 2011).

In scenarios of relatively low structural diversity, when

we considered each of the study sites individually, the

variation in reflectance of the visible and NIR was more

explicative of the structural diversity than variations in

other texture measures evaluated with finer spatial resolu-

tion panchromatic data. Similarly, Rocchini et al. (2010)

highlighted the relevance of spectral resolution versus

spatial resolution for evaluation of species diversity,

Figure 5. Sensitivity analysis of CCA results. The stability of the results is indicated by minor changes in the

redundancy index and canonical correlations when individual variables were removed from the dependent variate.
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supported by a series of studies in different environments

that buttress this idea.

The information associated with spectral and textural

signatures is complementary (Lu et al., 2002) in estimation

of forest parameters (Lu and Batistella, 2005). Wulder et

al. (1998) observed an improvement of correlation between

LAI and image variables including texture in northern

deciduous and mixed wood forest in Canada using aerial

imagery. Chubey et al. (2006) studied structural parameters

of forests in Alberta, Canada, with Ikonos-2 imagery,

obtaining successful results when including reflectance and

texture variables. Other studies used textural parameters

only (Franklin et al., 2001; Couteron et al., 2005;

Kayitakire et al., 2006) for estimation of forest structure,

which was shown to be particularly useful in complex

structures such as tropical forests (Lu and Batistella, 2005).

Image texture is influenced by several biophysical para-

meters including crown diameter, distance between trees,

tree positioning, LAI, and tree height. The importance of

the window size for evaluation of texture measures has

been stressed (Ferro and Warner, 2002; Kayitakire et al.,

2006) and the variogram approach is recommended as an

appropriate method to guide window size selection (Frank-

lin et al., 1996). We found a common variogram range

value in both study sites (open and closed canopy

conditions) which is coincident with the median value of

crown diameter. The absence of shadows in the imagery

allowed the identification of individual trees as dominant

textural objects on the ground (Kayitakire et al., 2006).

The limited use of texture parameters, previously indicated

as due to a lack of software tools (Bruniquel-Pinel and

Gastellu-Etchegorry, 1998), is progressively being over-

come, but other considerations remain, such as viewing

and illumination configurations, spectral domain, and

spatial resolution. However, image texture analysis has

demonstrated utility for characterizing habitat structure

(St-Louis et al., 2006) and identifying areas of high

diversity with conservation priority.

Mediterranean forests are notorious for their complex

topography (Salvador and Pons, 1998) which often results in

high spatial heterogeneity (Neumann and Starlinger, 2001).

If field information is contrasted with image data, the

accurate spatial location of field plots and a high quality

geometric processing (e.g., low RMSE) of the remotely

sensed data are particularly important to develop strong

empirical models. As demonstrated in this study, high

spatial resolution imagery from optical sensors integrated

with field measures of forest structure provided a useful

approach to investigate and characterize forest structural

diversity in Mediterranean pine forests, particularly in Spain

where a national high spatial resolution image data base has

been initiated, with an annual revisit proposed. Details on

the nature of the database and access criteria through

Spanish Plan Nacional de Teledetección remain to be

determined and communicated.
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