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Abstract 
Leading species at the forest stand level is a required forest inventory attribute. 

Information regarding leading species enables the calculation of volume and biomass in 
support of forest monitoring and reporting activities. In this study, approaches for leading 
species estimation based upon very high spatial resolution (pixel sided < 1m) have been 
developed and implemented, with opportunities for improving attribute accuracy using 
data fusion methods. Over a study region located in the Yukon Territory, Canada, we 
apply the Dempster-Shafer Theory (DST) to integrate multiple resolutions of satellite 
imagery (including spatial and spectral), topographic information, and fire disturbance 
history records for the estimation of leading species.  

Among the data source combinations tested in the study, the QuickBird 
panchromatic combined with selected optical channels from Landsat-5 Thematic Mapper 
(TM) imagery provided the highest overall accuracy (70.4%) for identifying leading 
species and improved the accuracy by 3.1% over a baseline from a classification-tree 
based method applied on all data sources. Additional insights to the application of DST to 
fuse satellite imagery with ancillary data sources to map leading stand species in a boreal 
environment are also elaborated upon, including the range and distribution of training 
data and DST mass function establishment.  
 
Keywords: mapping, satellite imagery, evidential reasoning, landscape, forest, tree crown 
object metrics 
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1. Introduction 
 
1.1. Context  
In forestry, the leading species in a stand is usually defined as the tree species with the 
highest proportion in terms of basal area. The identification of stand leading species is 
required to estimate stand volume and biomass [1], [2]. Forests and other wooded lands 
cover over 40% of Canada landmass [3], with forest dominated ecosystems representing 
approximately 60% of the national land base [4]. The National Forest Inventory (NFI) is 
based on a multiphase, plot-based framework designed to provide a 1% systematic 
sample of Canada’s landmass. For the first phase of the inventory, over 19,000 photo 
plots 2 by 2 km in size and located on a 20 by 20 km grid have been used. Following 
installation and reporting of the first iteration of this sample plot based NFI [5], update of 
the NFI is now ongoing. The development of alternate data sources and processing 
methods [6], [7] is also underway to enable data collection and characterizations over 
remote areas or those areas not captured with provincial or territorial inventory programs. 
Very High Spatial Resolution (VHSR, <1 m) imagery offers a flexible means for data 
collection and opportunities for automated generation of forest stand attributes [2].  

Mora et al. [6] proposed a method to identify stand leading species over a boreal 
environment, using information extracted from panchromatic QuickBird imagery (0.6 m 
spatial resolution). The method was based on a series of classification trees [8] and 
provided an overall accuracy of 72.5% with species accuracies ranging from 44% to 
100%. Opportunities for incorporation of ancillary information sources that could 
improve the classification outcomes were envisioned, with topographic and disturbance 
information expected to add additional differentiation capacity. A linkage between 
disturbance history and species is also known, with fire history records informing on tree 
species-linked regeneration regimes.  

The objective of this study is to investigate the capacity of a multi-source 
classification approach to improve upon classification accuracy of stand leading species 
compared to a conventional method. This work is based on the expectation that the 
Dempster-Shafer Theory (DST) [9], [10] is a suitable framework to combine 
heterogeneous data sources of information such as satellite imagery, topographic 
parameters, and spatial fire history records. We therefore posit that the precision of 
topographic and fire history records are sufficiently high to enable an efficient modelling 
of their influence on the spatial distribution of species present over the study area. 
 
1.2. Methodological background 
Moisen and Frescino [11] used classification trees to predict broad forest classes (i.e., 
spruce-fir and woodland) in Montana and Arizona, USA. The predictor variables 
included elevation, aspect, slope, spectral bands from the Advanced Very High 
Resolution Radiometer (AVHRR) sensor, and a vegetation cover map derived from 
Landsat-5 Thematic Mapper (TM) imagery. Tree species were predicted for forested 
areas in Wyoming and Idaho, USA, with classification trees using Landsat-7 Enhanced 
Thematic Mapper Plus (ETM+) imagery, with elevation, aspect and slope as predictors 
[12]. Aertsen et al. [13] used classification trees to predict site index, a measure of site 
productivity, in Mediterranean mountain forests. Soil, vegetation, and topographical 
variables were used as inputs. In these studies classification trees along with regression 
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trees, were found to be efficient at selecting the best predictor variables and provide 
satisfying results for some attributes but the method was also defined as too simple to 
describe some real-world situations [13], [14]. 
 Other classification procedures such as neural networks [15], Bayesian inference 
[16], fuzzy sets [17], and those referred to as evidential reasoning methods [18], have a 
demonstrated capacity to fuse heterogeneous (i.e., categorical or numerical) sources of 
information. Among the aforementioned procedures, the DST is a generalization of the 
Bayesian theory of subjective probability [16]. The strength of the DST is based upon a 
capacity to explicitly uncertainty and vagueness associated with the data to be fused. As 
opposed to classification trees, the DST enables the consideration of union classes (e.g., 
“black spruce OR trembling aspen”), along with singleton classes (e.g., “black spruce”, 
“trembling aspen”). Note that uncertainty refers to the probability of an event occurring, 
while vagueness relates to the accuracy of an observation or measurement. The DST has 
the capacity to provide accurate results when the degree of conflict between the sources 
of information is limited, that is, when the input data sources do not provide contradictory 
information. Indeed, as shown by Zadeh [19], the DST can produce counter-intuitive 
results when data sources provide contradictory inputs. Some authors have proposed 
avenues to address and mitigate conflict between predictor data sources. The possibility 
theory first introduced by Zadeh [20], and further developed by Dubois and Prade [21], 
defined a disjunctive combination rule that allows the redistribution of the global conflict 
to the ignorance (union of classes). Smets [22] proposed the transferable belief model 
with a non-normalized combination rule that adheres to the open-world assumption. 
Smarandache and Dezert [23] proposed a non- normalized combination rule associated to 
a super power set that includes not only singleton and union classes but intersection 
classes as well. 
 Few applications of the DST have demonstrated the added value of the method for 
forest mapping, which manifests as an improvement of the overall classification 
accuracies compared to classical methods. Some recent examples include, Mora et al. 
[24], who fused SPOT-5 imagery with topographical information to map regenerating 
stands in southern Quebec, Canada (+7.4% compared to a maximum likelihood (ML) 
classifier). Cayuela et al. [25] fused a vegetation type map derived from Landsat-7 ETM+ 
with altitude, slope, and human settlement maps, for land-cover mapping in the 
Highlands of Chiapas, southern Mexico (+7.5% compared to a ML classifier). Franklin et 
al. [26] fused Landsat-5 TM imagery with DEM and forest inventory information to map 
grizzly bear habitat in Alberta, Canada (+14% compared to a ML classifier). Varma et al. 
[27] designed a DST-based decision support system for sustainable forest management. 
The proposed theoretical framework presented by Varma et al. [27] enables the 
estimation of the level of sustainability of forest management and the monitoring of land 
use strategies using spatial information such as forest type, age, health, protection status, 
soil and water protection status, and socio-economic functions. The authors demonstrate 
— in a theoretical manner — the capacity of the DST to handle various types of data 
sources and model their related uncertainty to facilitate decision making in forest 
management applications. 
 
1.3. Sources of information 
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Topographic parameters are known to drive the spatial distribution of tree species. 
Statistics from Zoladeski [28] show that deciduous stands tend to grow on better drained 
sites in comparison to conifer stands. Wilson and Gallant [29] indicate that terrain aspect 
influences local solar insolation and evapotranspiration, with slope playing a role related 
to soil water content. Bonnan and Shugart [30] report that low solar elevation angles at 
high latitudes accentuate the influence of topographic aspect and slope. South facing 
slopes receive more solar radiation compared to north-facing slopes and as a 
consequence, tend to be warmer and drier. Soil moisture has been reported as the most 
important parameter affecting white spruce growth and productivity [31], [32]. Kenkel 
[33] indicates that in the boreal forests of Manitoba, Canada, trembling aspen stands can 
be found on well drained sites. In the sub-boreal spruce zone of British Columbia, 
Canada, lodgepole pine site quality improves as the soil moisture regime changes from 
very dry to moister, and then declines for increasingly wetter sites [34, [35]. 

Fire disturbance has been identified as a major factor controlling vegetation 
patterns (structure and composition) in boreal forests [36]. Wildfire is also known to 
perform an important role in the development of black and white spruce, as well as mixed 
spruce hardwood forests [37], [38]. More particularly, the study by Johnstone et al. [36] 
supports previous works indicating that the majority of tree establishment occurs within 
three to seven years after a forest fire in boreal forests. In addition, the authors indicate 
that forest patterns two or three decades after a fire disturbance can be reliably predicted 
from observed stand density and composition within five years after fire. Bonnan and 
Shugart [30] show pre-burn vegetation as a driving parameter for post-fire vegetation 
establishment, with different tree species having different reproduction strategies, such as 
wind dispersed propagules for white birch, fire resistant cones for black spruce, fire 
tolerant thick bark for Scots pine (Pinus sylvestris), and vegetative reproduction for white 
birch.  

Despite the complexity in extracting information from VHSR imagery [2], 
Wulder [39] observes that VHSR images enable the characterization of individual trees, 
potentially leading to better forest inventory attribute estimates. Mora et al. [6] has 
developed a classification method to identify leading stand species with a series of tree 
crown metrics derived from panchromatic QuickBird imagery. Crown shapes can be 
predictable as each species tends to grow in an expected manner in given environmental 
conditions [40]. Therefore based on the species-specific tree crown characteristics 
described by Sayn-Wittgenstein [41] and Murtha and Sharma [42] for the species found 
over the study area, a series of crown object metrics were selected. Statistical tests 
showed significant differences between the species according to the selected metrics [6]. 
Utilizing crown objects to create metrics that are representative at the stand level reduces 
a reliance on the particular characteristics of a given crown but considers the assemblage 
of characteristics present. That is, crown characteristics are summarized at the stand level 
enabling the statistical description of conditions, including means and percentiles of 
crown sizes or shapes generated from the VHSR imagery. In this current study we 
consider these stand-level crown object metrics to build species-specific mass functions. 

Landsat data is known to provide imagery with spatial and spectral characteristics 
uniquely suited to the development of land cover maps [43]. An example of cover type 
mapping over a large area is the Earth Observation for Sustainable Development of 
Forests or EOSD project [4], where a Landsat TM/ETM+ -based map of Canada’s forests 
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provided broad forest classes (e.g., conifer, deciduous, mixedwood) accompanied with 
density sub-classes (dense, open, sparse). Less common is the development of species 
level information from Landsat. The capacity to spectrally distinguish between species 
can be problematic, often requiring ancillary data or alternate classification approaches 
[44]. Franco-Lopez et al. [45] and Franklin [46] used Landsat TM imagery to map 
forested areas with more detailed class stratification (e.g., balsam poplar, white spruce) in 
Minnesota, USA, and in Alberta, Canada, respectively. For additional examples, Franklin 
and Wulder [47] provide a review on wide area land cover classification with instruments 
such as Landsat.  
 
2. Material and methods 
 
2.1. Study area 
The study region was located in the southern Yukon Territory where four study sites were 
selected according to road access, the range of species and structural conditions 
represented, as well as availability of cloud-free QuickBird imagery (figure 1). All of the 
study sites had areas varying from 625 to 2400 ha and were located in the Boreal 
Cordillera Ecozone [48]. This Ecozone is characterized by mean annual temperatures 
ranging between 1°C and 5.5°C, over a typical mean range from -23°C in the winter to 
11.5°C in the summer. Mean annual precipitations range from less than 300 mm in 
valleys shadowed by coastal mountain ranges, to more than 1500 mm at higher 
elevations. The topography of the Boreal Cordillera Ecozone includes extensive plateaus, 
mountains, wide valleys, and lowlands. The original topography in the area was altered 
by glaciation, erosion, solifluction, eolian, and volcanic ash deposition. The most 
common surface materials are glacial drift, colluvium, and outcrops. Permafrost is 
frequent in the more northern areas of the ecozone. Depending on local conditions, the 
dominant species across the four sites were black spruce (Picea mariana), white spruce 
(Picea glauca), lodgepole pine (Pinus contorta), white birch (Betula papyrifera), 
trembling aspen (Populus tremuloides), and balsam poplar (Populus balsamifera). 
 
<< Figure 1 about here>> 
 
2.2. Data 
2.2.1. QuickBird imagery 
For each study site, an 8 km by 8 km panchromatic (0.45–0.90 μm) QuickBird image 
with a spatial resolution of 0.60 m was acquired (Table 1). Top-of-atmosphere radiance 
conversion was implemented according to Krause [49]. The orthorectification process 
(RMSE < 5 m) was undertaken as indicated in Wulder et al. [50].  
 
<< Table 1 about here>> 
 
2.2.2. Landsat imagery 
For each study site, a co-located orthorecitfied Landsat-5 TM image was acquired from 
the United States Geological Survey, with scene information listed in Table 2. Further 
processing of the Landsat-5 TM images included a top-of-atmosphere reflectance 
conversion following Han et al. [51]. Image selection was based upon minimizing cloud 
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cover and to match, as possible, the acquisition date with that of the QuickBird imagery. 
Landsat TM images consist of six optical channels at a spatial resolution of 30 m.  
 
<< Table 2 about here>> 
 
2.2.3. Topographic parameters 
Beven and Kirby [52] and Moore et al. [53] proposed the Topographic Wetness Index 
(TWI), noted  in Eq. 1, to model the topographic control on soil moisture: 

ln
tan

sA


 
  

 
, 

where As is the specific catchment area and ß is the slope angle in degrees. Franklin et al. 
[54] have used among other parameters, the TWI to predict spatial pattern of vegetation 
communities. 

For the four study sites, Digital Elevation Models (DEMs) were collected from 
the Advanced Thermal Emission and Reflection Radiometer (ASTER) database [55]. The 
spatial resolution is 15 m in the horizontal plane. Depending on the study site, the vertical 
resolution is either 11 m or 21 m. The local aspect, slope [56], and topographic wetness 
index (TWI) [57] were derived from the downloaded DEM tiles. Note that we did not 
consider elevation as a variable due to the low variation of this parameter over the study 
sites. In addition, soil and air temperatures are known to be important parameters 
influencing vegetation patterns [30]. No accurate temperature records were available for 
the study sites. 
 
2.2.4. Fire history 
The fire history map produced and maintained by the Yukon government provides spatial 
fire extents plus the year of fire occurrence and is suitable for use at landscape level 
scales [58]. Information on site 1 is suitable for studies at a scale of 1:500,000 or smaller 
as the information is derived from Landsat TM-5 imagery, information on site 2 is 
derived from a sketch map with an unspecified scale. No fire information is reported for 
sites 3 and 4. The temporal scale of the coverage goes back to late 1940s; however, as the 
Yukon-wide fire detection program was not fully operational before the 1960s, some fires 
in the 1940s and 1950s may not be recorded or be poorly mapped. Some stands in sites 1 
and 2 were affected by fire in 2004 and 1950, respectively. In this study, only stands with 
a burned surface equal or greater than 75% were considered as burned. 
 
2.3. Classification tree 
Mora et al. [6] established a method using the spatial characteristics of within-stand 
objects (crowns and tree clusters) as input data for classification trees to identify stand 
leading species. The model was developed and applied over the same forest stands used 
in this study, and was calibrated with stand-level tree crown metrics derived from 
panchromatic QuickBird imagery. The first step of the method consisted in using an 
image segmentation procedure applied to the QuickBird image to delineate segments 
(stands) with homogeneous forest conditions, i.e., low within-stand spectral radiance 
variance [59], [60]. Second, individual tree crowns within these forest stands were 
delineated based on the spectral information from the QuickBird imagery (figure 2). The 

(1)
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method is based on a valley-following principle that requires lower and upper threshold 
values indicating whether a pixel should belong to a portion of a crown or the 
surrounding understory [[61]. Third, stand leading species were photo interpreted, and 
then a series of statistics (variance, mean, 25th, 50th, and 75th percentiles) describing 
crown metrics (area, perimeter, roundness) were computed at the stand level based on the 
crown objects. Length is defined as the square root of the object area times the length-
width ratio derived from a bounding box, while roundness is defined as the difference 
between the radii of enclosed and enclosing ellipses of a given object [[62]. Finally, using 
stand random selection for initiation, a series of classification trees were established 
based on the crown metrics calculated at the stand level. The majority class for each stand 
was selected over the iterations of the multiple random selection procedure established to 
remove the bias that would have resulted from the use of single calibration and validation 
datasets. 

To enable comparison between the previous [6] and current study, we reapplied 
the classification trees considering not only the crown metrics at the stand level derived 
from the QuickBird imagery, but also the information derived from Landsat TM imagery, 
topographic parameters, and fire history records of the area generalized at the stand level. 
To avoid using intercorrelated input data while still enabling vegetation characterization, 
we selected a limited number of spectral bands of the Landsat TM imagery. We followed 
the recommendations of Benson and De Gloria [63], and Horler and Ahern [64] with the 
selection of bands 3 (red), 4 (near-infrared), and 5 (mid-infrared). As for each of the 
selected Landsat TM spectral bands, the slope, aspect and TWI values were summarized 
at the stand level via mean values.  
 
<< Figure 2 about here>> 
 
2.4. Dempster-Shafer theory 
 
2.4.1. Theoretical basis of the DST 
First, one defines the frame of discernment Θ, that includes all of the θi states under 
consideration, i.e., the classes of the stratification (Eq. 2). The θi singleton hypotheses are 
meant to be exhaustive and exclusive. 

 1
, ,... ,

i N     

 
Then, a power set 2Θ is derived from Θ. For example, for N=4, the power set 

includes all of the subsets of Θ, and the empty set Ø, as in Eq. 3. The union class of the 
hypotheses θi and θj is noted (θi θj). 

1 2 3 4 1 2 1 3 1 4 2 3 2 4 3 4
{ , , , , , , , , , , }.2                          

 
Mass functions describing the confidence given to each focal element (i.e., each 

element of the power set with a non null mass) for each state of each source will be 
defined to allow Dempster’s combination rule to fuse information sources. For a frame of 
discernment Θ, the mass functions m(.) of each hypothesis of the power set 2Θ will satisfy 
the following requirements, for a given source:  

(3)

(2)
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2

( ) 1,
A

m A


  

m: 2Θ → [0,1], 
m (Ø)=0. 

 
 Then, the combination rule (Eq. 5) combines the sources two by two. For S 
sources to combine, with S >2, the result of the first combination will be combined to 
another source, and so on until all sources are combined. Let two belief masses m1(.) and 
m2(.) characterize two distinct sources, then the combination rule is written as m(Ø) = 0 

and C ε 2Θ \ {Ø}: 

1 2

1 2
1 2

( ) ( )
( ) [ ]( ) .

1 ( ) ( )
A B C

A B

A B
m C C

A B

m mm m m m

 

 

  





 

 
The conflict between the sources, also named k in the literature, is represented by 

the second term of the denominator in Eq. 5. Conflict equals one if the sources are 
completely contradictory; in such cases, fusion is not possible. 
 
2.4.2. Decision rules 
The most common decision rules used in the literature were defined by Shafer [1]. For A 
  Θ, the belief (credibility) and plausibility functions are expressed as follows, 
respectively: 

,2

( ) ( ),
B B A

Bel A m B
 

   

,2

( ) ( ).
B A B

Pl A m B
  

   

 
 The belief of hypothesis A is based upon the sum of the mass products B strictly 
supporting the hypothesis A while the plausibility function considers the mass products B 
intersecting the hypothesis A. As a result the first decision rule can be considered as 
cautious and the second as optimistic [65].  
 
2.5. Mass function establishment 
The design of the mass functions was realized based on data summarized at the stand 
level following the polygon decomposition principle [66]. Six tree species have been 
found as stand leading species within the four study sites. However, two of them (white 
birch and balsam poplar) were discarded from the classification procedure, as their 
frequencies were not sufficiently high. In this study, 31 black spruce, 163 white spruce, 
26 lodgepole pine, and 44 trembling aspen stands were considered. As a result, the frame 
of discernment of this study is defined as follows: 

{ , , , },Black spruce White spruce Lodgepole pine Trembling aspen   
 
QuickBird imagery 
The mass functions for the QuickBird-derived tree crown object stand-level metrics were 
built with the results from the classification tree procedure established in Mora et al. [7] 

(4) 

  (5)

(7) 

(6) 
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and summarized in section 2.3. For each class of Θ and each stand, the mass functions 
resulted in the mean of the output probabilities computed for each stand over the 
iterations of the multiple random selection procedure. Then masses for the union classes 
were calculated based on the following rules:  
  if |Δ m(θi), m(θj)| >0, then m(θi θj)= - |Δ m(θi), m(θj)| +1, 

if Δ m(θi), m(θj) =0, m(θi), m(θj) > 0, then m(θi θj)= m(θi)= m(θj), 
if Δ m(θi), m(θj) =0, m(θi)=m(θj) = 0, then m(θi θj)= 0, 

 
with Δ m(θi), m(θj) being the difference between the mass values of the singleton 
hypotheses forming the union class (θi θj). Eq. 8 was designed so that the smaller |Δ 

m(θi), m(θj)| was, i.e., both singleton hypotheses were increasingly equally probable, the 
greater the mass allocation to (θi θj) was, and conversely (figure 3). Once all mass 
functions were calculated, a normalization to unity (i.e., 1) was performed to comply with 
Eq. 4. Eq. 9 considers the case masses m(θi) and m(θj) are equal and non-null while Eq. 
10 considers the case masses m(θi) and m(θj) are both null. 
 
<< Figure 3 about here>> 
 
Landsat TM imagery 
Mass functions for the Landsat TM imagery were designed considering bands 3, 4, and 5 
only, so that the results were comparable with those from the classification tree. For each 
band, the stand-level mean reflectance values were computed based on the pixels located 
within the boundaries of each stand. The Fuzzy Statistical Expectation Maximization 
(FSEM) method, a supervised classification algorithm proposed by Germain et al. [67], 
was used to estimate the mass functions. The FSEM has the ability to produce union 
classes from the original input singleton classes. This multi-iterative algorithm computes 
posterior probabilities and can be either stopped after a number of iterations have been 
reached or after the class attribution turn-over between iteration n and n-1 gets below a 
given percentage. In this study the percentage was empirically fixed at 1%, i.e., the 
minimal and most conservative threshold value. For each class, two-thirds of the forest 
stands were randomly selected and used as a calibration dataset. Twenty stands were 
selected at random with calibrations of the FSEM then performed. Following selection 
and calibration, for each class and each stand, the mean of the twenty posterior 
probabilities were calculated and used as mass functions for the Landsat TM imagery.  
 
Topographic parameters 
For each topographic parameter, the mean stand value of the source was computed at the 
stand level. Then mass functions for the terrain aspect (figure 4), the slope (figure 5) and 
the TWI, were designed based on literature cited in section 2.2.3. The highest mass value, 
empirically fixed at a value of 0.8, was attributed to the mean slope value found in the 
statistics from Zoladeski [28]. A value of 0.8 was chosen as we considered the maximum 
mass value should not be too high to consider the intertwined effects of the biophysical 
factors influencing the species patterns and the resulting uncertainty and vagueness 
inherent to the studies our work was based on. A value of 0.8 was also chosen as a 
maximum mass value for the other sources. The minimum and maximum values 
correspond to lowest and highest slope values found in the same reference (Table 3). For 

(8) 
 (9) 
(10) 
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the TWI, the mass functions of the black spruce (Eq. 11) and trembling aspen (Eq. 12) 
were designed based on the study from Mackey et al. [67]. The reference provided scatter 
plots of the observed probabilities for the two species as a function of the topographic 
wetness index. Mass functions were bell-shaped on the domain of interest and were 
obtained applying regressions on points derived from the graphs. As no precise 
information was found for lodgepole pine and white spruce, bell-shaped distributions 
were assumed for these species as well. The Gaussian distribution model was chosen to 
represent the functions, with means of 10 and 6 for the white spruce and the lodgepole 
pine, respectively. These mean values were selected relative to those found for the two 
other species and according to soil moisture preferences [28]. A standard deviation of 1 
was chosen to get a standardized-normal curve [69]. Finally, for each of these three 
sources, mass functions for the union classes were based on Eq. 8. 
 
y = 0.36 + 0.47 * cos (0.19 * x - 2.4),    
y = -0.12 + 0.3 * x - 0.003 * x2 + 0.0009 * x3, 
 
with x: the TWI value, and y: the corresponding mass value. 
 
<< Figure 4 about here>> 
<< Figure 5 about here>> 
<< Table 3 about here>> 
 
Fire history map 
Attribution of mass values for each species was based on the nature of the species of the 
adjacent remaining stands. For site 1, partially burned in 2004, 80% of adjacent stands 
had trembling aspen as leading species and 20% had white spruce. For site 2, partially 
burned in 1950, 60% of adjacent stands had white spruce as leading species and 40% had 
black spruce. The mass values for each species were assigned according to the relative 
abundance of the species surrounding each stand as specified in Table 4. We empirically 
fixed the highest mass value at 0.8. On both sites, mass functions for the union classes 
were based on Eq. 8. Stands in sites 3 and 4 and those from sites 1 and 2 with a burned 
area lower than 75%, were assigned a mass value of 0 for this source. 
 
<< Table 4 about here>> 
 
2.6. Source combination tests 
We tested a series of source combinations starting with the fusion of the QuickBird 
source with one other source (Landsat TM imagery, slope, aspect, TWI, or the fire history 
map). Then we applied the DST on every possible three, four, and five-source 
combinations. The six sources were finally combined. The maximum credibility and the 
maximum plausibility were both tested as decision rules after the source combination. To 
assess the performance of the combination, the overall accuracy as well as the class 
accuracies were systematically compared with those obtained using the classification 
tree-based method.  
 
3. Results 

(11) 
(12) 
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3.1. Spectral class separability 
The Landsat TM spectral class separability of the species considered in this study was 
tested to characterize the capacity of the selected Landsat bands to provide discriminant 
information on the species. The transformed divergence method [68] was used knowing 
that a perfect separability equals two (Table 5). Trembling aspen, the representative 
unique deciduous species of the study, has a high level of separability with black spruce 
and lodgepole pine. However, its separability with white spruce is low. White spruce 
stands have a low separability with black spruce stands as well, but have a high 
separability with lodgepole pine stands. Black spruce stands have a high separability with 
lodgepole pine stands. 
 
<< Table 5 about here>> 
 
3.2. Classification tree method 
The method based on classification trees provided an overall accuracy of 67.3%. The 
error matrix displayed in Table 6 shows class accuracies ranging from 40.7% for the 
white spruce stands to 100% for the black spruce stands. Table 7 provides the proportions 
of metrics selected across the iterations. Crown metrics and to a lesser extent Landsat-
based metrics, were the most frequently selected statistics, while the topographical and 
fire history record statistics were scarcely or never selected.  
 
<< Table 6 about here>> 
<< Table 7 about here>> 
 
3.3. Fusion with the DST combination rule 
Tables 8 and 9 present the accuracies obtained when fusing the QuickBird source with 
one other source, considering the maximum credibility and plausibility, respectively. 
Results obtained with the maximum plausibility are presented as an example in Table 9 
only, as the maximum plausibility systematically provided worse overall accuracies than 
the maximum credibility; whatever the combination and the number of sources involved. 
Table 10 provides the accuracies resulting from the fusion of the Landsat TM image and 
one other source. Table 11 summarizes the best results produced over all the possible n-
source combinations with n ≥ 3. The best overall accuracy (70.4%) was obtained with the 
fusion of the QuickBird and the Landsat TM sources. The addition of the aspect to the 
previous combination provided equivalent results. This three-source combination resulted 
in small class-accuracy changes only. Combinations with four or more sources provided 
lower overall accuracies.  
 
<< Table 8 about here>> 
<< Table 9 about here>> 
<< Table 10 about here>> 
<< Table 11 about here>> 
 
4. Discussion 
4.1. Classification trees 
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The classification-tree based method provided an overall accuracy of 67.3% with varying 
class accuracies (Table 6). As for the classification-tree based method applied on a series 
of metrics derived from panchromatic QuickBird imagery only [6], the accuracy with 
which white spruce stands were identified did not reach a satisfactory level (40.7%). As a 
climax species, white spruce is widespread in north-western Canada and often co-
dominates stands with other tree species [71]. In addition, white spruce grows on a wide 
variety of soil conditions [72]. The simultaneity of these ecological traits can be 
responsible for the increased variance of the crown metrics observed for this species [6]. 
The number of white spruce stands used for this analysis was much larger than the 
number of stands used for the other species, thereby broadening the range of 
environmental conditions present in white spruce stands relative to stands with other 
leading species and reflecting the higher tolerance which white spruce has for variability 
in soil moisture regimes compared to black spruce, for example. Overall, sources of 
crown shape alterations can also be due to side shade effect, possible phototropism, 
climatic events such as wind and ice storms, and sudden changes in the tree’s hormonal 
balance [40].  

Table 7 shows that tree crown and Landsat band metrics were the most commonly 
selected inputs for the classification trees. Mean TWI and aspect were rarely selected (< 
2%) and slope and fire history were never selected, suggesting that the non-satellite data 
sources were not sufficiently informative in comparison to the remotely sensed imagery. 
The nature of the non-satellite data sets may play a role, for instance in the case of the fire 
maps, which are binary and which may only be suitable for use at scales of 1:250,000 or 
smaller [58]. Burned area products are of a more generalized nature when compared to 
the other available, higher spatial resolution data sources. Further, burned area depictions 
can also include unburnt islands and differing levels of burn intensity, thereby 
representing a range of conditions not captured by the binary product. Furthermore, as 
shown in the literature review, Landsat imagery has not been used extensively to 
discriminate stand species over boreal environments, but rather to distinguish cover types 
or broad forest classes (e.g., coniferous, deciduous, mixed). The spectral and spatial 
characteristics of Landsat data, combined with the spectral similarities found for species 
(which is further exacerbated by the averaging of reflectance over a larger pixel), does 
not favour the use of Landsat as a stand-alone data source for species classification in 
complex environments. Compared to the study of Mora et al. [6], the addition of more 
input data sources decreased the overall accuracy by 5%. The metrics that were most 
commonly selected over the iterations remained similar to those in Mora et al. [6] with 
the inclusion of mean stand reflectance values from the near- and middle-infrared bands 
(bands 4 and 5) of the Landsat TM imagery. Bands 4 and 5 were selected for 24.6% and 
44.1% of iterations, respectively (Table 7) indicating a utility and notable explanatory 
power in these inputs.  

Comparing these results with those obtained in Mora et al. [6], the addition of 
Landsat TM imagery may have introduced confusion between the classes, supporting the 
possible use of Landsat data as a pre-classification stratification layer rather than as a 
variable in the classifier. The infrequency with which the other ancillary data sources 
were selected for the classification trees suggests that these data may be of insufficient 
quality or spatial resolution for modelling as drivers of species patterns. The mixture of 
spatial resolutions (scales) of the input data sources likely also played a role, with the 
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most detailed variables from the VHSR imagery also providing the most explanatory 
power for species discrimination. The scale of the VSHR data provides the closest match 
to the actual species information of interest, where differentiation is present at the crown 
level and captured through the image spatial structure of crown metrics, rather than 
through more generalized spectral (Landsat imagery) or spatial characteristics (terrain 
metrics).  
 
4.2. Data fusion 
For the fusion process, the maximum credibility decision rule was more efficient to 
identify the leading species than the maximum plausibility (Tables 8 and 9). The trend 
was systematically observed, whatever the source combination. As presented in section 
4.2.2., the maximum credibility was a more cautious rule as it considers information 
strictly supporting a hypothesis.  

Two source combinations (Landsat TM and QuickBird imagery; Landsat TM and 
QuickBird imagery plus aspect) provided the best overall accuracy (70.4%) with similar 
class-accuracies (Tables 8 and 11). These source combinations improved the overall 
accuracy by 3.1% compared to the conventional classification-tree based method (from 
67.3% to 70.4%). For both cases, class accuracies remained unbalanced as the white 
spruce stands remained poorly identified (26.5% and 24%). The mass functions of the 
QuickBird imagery were derived from the study of Mora et al. [6]. Class confusion 
insights from this original study were transferred to the current DST-based model, and 
now partially explain the obtained accuracies. Furthermore, stand leading-species were 
identified from the photo-interpretation of the QuickBird imagery. Consequently, some 
misidentifications may have occurred, broadening the range of crown metrics and 
reflectance values from Landsat TM imagery, respectively.  

The addition of the aspect or the fire record map to the QuickBird imagery 
provided similar results to those obtained when replacing the QuickBird imagery by the 
Landsat TM imagery (Tables 8 and 10). For the Landsat TM imagery, the FSEM was 
able to design mass functions enabling a better consideration of the information of the 
satellite imagery, compared to the classification tree-based model. The “fuzziness” of the 
masses computed by the FSEM in conjunction with the combination rule of the DST 
demonstrated an improved capacity to extract information from the Landsat imagery 
compared to the classification tree algorithm principle that does not follow a probability 
model [8]. The fusion of the slope or the TWI sources to the Landsat TM provided better 
results than those involving the QuickBird imagery. The combinations with four, five, 
and six sources did not improve the accuracies. However, some combinations provided 
accuracies similar to the highest accuracies obtained with two or three sources only 
(Table 11). Such results can be explained by the complementary and non-contradictory 
information provided by the fused sources that resulted in a low conflict rate k (Eq. 5) 
that ranged from 0.15 to 0.35. As for the two and three ancillary source combinations, it 
can be noted that for the best four and five source combinations, Landsat TM, QuickBird, 
and aspect sources were involved in the fusion. It appears that these three sources 
provided complementary information: QuickBird imagery provided structural 
information through the stand-level crown metrics; Landsat TM imagery provided more 
detailed information in the visible and near-infrared spectral range; and aspect provided 
more meaningful and complementary information on species spatial patterns compared to 
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the other ancillary sources. The other sources associated to their mass functions did not 
provide information that could be informatively used by the fusion process. As these 
sources were already not selected by the classification tree, one can predict that the 
manner in which the mass functions were established is not the main driver of the 
observed decreases of the accuracies. Instead, these results reinforce the hypothesis that 
the data available was not appropriate (due to considerations of scale, attribute accuracy, 
among other possible issues) to enable the capture of the local ecological processes 
necessary for an improved classification capacity. Despite the theoretical underpinnings 
of the TWI for modelling the topographic impacts on soil moisture, Mackey et al. [67] 
indicate that this index assumes steady-state conditions and spatially invariant conditions 
for both transmissivity and infiltration, as well as the absence of complex or deep 
subsurface drainage, so that subsurface flows follow surface morphology. The fire record 
map standards from 1997 originally limited the polygon size to 200 ha. Current standards 
allow for polygons as small as 0.2 ha. Some fires in the 1940s and 1950s were not 
recorded or poorly mapped as access to regular aerial mapping was not readily available 
during this historic period. Furthermore, as previously mentioned, burned areas were 
broadly delineated and did not account for islands of unburned forest within the fire 
boundary [58].  

Overall, the fusion did not markedly outperform the results obtained by Mora et 
al. [6]. The authors of the aforementioned study obtained an overall accuracy of 72.5%, 
and with a limited class-accuracy for white spruce stand as well (43.9%). In the current 
study, the fusion of the QuickBird imagery and aspect provided a similar class-accuracy 
(43.2%) for white spruce stands. This combination had a lower overall accuracy (69.4%) 
but provided a markedly lower class-accuracy standard-deviation (23.5 percentage points 
(pp)) compared to the one obtained with the fusion of the QuickBird and Landsat TM 
imagery (31.2 pp). As stated in section 1.3, the influence of aspect can be increased under 
northern latitudes where low solar elevation angles occur. This phenomenon can partially 
explain why this parameter appeared as a complementary source of information to the 
QuickBird imagery. The improvement of the overall accuracy by the DST method 
compared to the classification tree demonstrates the power of the DST for incorporating 
different data sources. It also indicates the limitations imposed by the characteristics of 
the input data (e.g., scale, range of measures, etc.) that may be partially mitigated by the 
design of the mass functions. 
 
4.3. Future work 

Potential avenues could be explored to improve the class accuracies. Training data 
with known consistency and an appropriate scale could be designed with sample plots 
established across the full range of conditions (topography and disturbance history) 
encountered over the study area. The extent of the road network in Canada’s north 
restricts access to forest stands. However, the double sampling technique developed by 
the United States Department of Agriculture - Forest Service [73] could be employed to 
facilitate plot establishment while reducing fieldwork and associated costs, as shown by 
Wulder et al. [74]. In addition, we recommend the use of VHSR imagery acquired with 
similar acquisition parameters (date and off nadir view angle notably) to build a specific 
model as varying conditions can alter the homogeneity of the crown objects and their 
derived metrics. Note that in our study Site 3 had a significantly different satellite 
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azimuth (Table 1). Acquisition of optical imagery with cloud-free conditions in northern 
latitudes is an issue and explains in part why the acquisition parameters of the four 
images varied. 

Research efforts could focus on the improvement of the design of mass functions. 
These functions were empirically established as per other studies using the DST [74], 
[25], [75]. The knowledge-driven establishment of the functions could be updated 
according to new knowledge on species ecology. In addition, other mass design 
frameworks like the discounting framework [1], could be implemented to allow 
alternative mass assignments. It is important to note that mass functions should be 
designed specifically for areas with similar biophysical characteristics and equivalent 
species composition. In our study, the four study sites were in a homogenous region and 
had similar environmental and physical characteristics. Finally, the data and the 
associated mass functions used in this study do not justify the use of other combination 
rules such as those proposed in Smarandache and Dezert [18], as low conflict rates were 
found. Considering the quality of the non-satellite data sources used in this study, we 
recommend that—based upon the methods and rules that we applied—leading stand 
species characterization over boreal forests can be reliably and parsimoniously 
undertaken using only the panchromatic QuickBird imagery, with the classification-tree 
based method similar to that developed by Mora et al. [6].  
 
5. Conclusion 
The highest overall accuracy for leading species identification (70.4%) was obtained 
through fusion of the QuickBird and Landsat TM imagery, improving on the result 
obtained using the classification tree method by 3.1%. The addition of aspect as a third 
ancillary data source led to an equivalent overall accuracy, but with modified individual 
class accuracies for white spruce and trembling aspen. Despite the proven capacities of 
the DST to improve classification accuracy compared to classical methods, the DST in 
this case did not outperform the results obtained with a classification-tree based method 
applied on metrics derived from a single source of information (panchromatic QuickBird 
imagery), as shown in a previous study. However, the current study demonstrated how a 
data fusion process could be implemented to map leading stand species in a boreal 
environment. Furthermore, the study demonstrated the critical aspect of data input quality 
to successfully enable the classification process, and the limitations of the classification 
trees compared to the DST when an equivalent input dataset is used. Finally, our 
discussion highlighted the necessity to capture and relate knowledge of the ecological 
processes taking place in boreal forested environments for improved specification of the 
mass functions. DST can be implemented following the examples provided in 
Smarandache and Dezert [18]. In addition, DST is increasingly available through 
software tools such as MATLAB® and IDRISI®. 
 
6. Outlook 
Forest inventories are often driven by information interpreted from air photos, including 
national inventories. VHSR imagery offers a satellite-based source of information 
analogous to air photographs. Sample based national inventory programs, such as 
Canada’s National Forest Inventory (NFI) is based upon 2 x 2 km photo plots (samples) 
located on a 20 x 20 km national grid. Collection, delineation, interpretation, attribution, 
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update, and management of approximately 20,000 photo plots is required to implement 
the NFI. The use of VHSR imagery offers opportunities for flexibility in data acquisition 
and automation of delineation (through segmentation) and attribution (through image 
processing) activities. 

When compared to the results of Mora et al. [6] the current study produced a 5% 
lower overall accuracy for the classification tree-based method and 2.1% lower for the 
best DST fusion result. These results relate the importance of the quality of the data and 
the necessity to provide complementary input data sources to establish meaningful 
additional information for the classification algorithm. Considering the best fusion 
classification result, the lesson for an operational program requiring detailed stand level 
information is that the more parsimonious panchromatic image processing approach from 
Mora et al. [6] may be applied. 
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Table 1. QuickBird image acquisition parameters. 
 

Plot center 
UTM Zone 9N 
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(m) 

So
la

r 
az

im
ut

h 
(d

eg
re

es
) 

S
ol

ar
 e

le
va

ti
on

 
(d

eg
re

es
) 

S
at

el
li

te
 a

zi
m

u
th

 
(d

eg
re

es
) 

S
at

el
lit

e 
el

ev
at

io
n

 
(d

eg
re

es
) 

O
ff

-n
ad

ir
 v

ie
w

 
an

gl
e 

(d
eg

re
es

) 

In
-t

ra
ck

 v
ie

w
 

an
gl

e 
(d

eg
re

es
) 

C
ro

ss
-t

ra
ck

 v
ie

w
 

an
gl

e 
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Site 1 2007-08-28 625 45116 7133046 176.6 35.7 197.3 77.3 11.6 -11.7 -0.2 
Site 2 2007-08-18 2400 118968 7030079 174.5 39.9 175.8 84.1 5.3 -5.0 1.8 
Site 3 2006-06-12 625 130603 6866945 171.8 51.4 57.2 78.5 10.9 8.1 7.3 
Site 4 2007-06-08 1375 508030 6661737 172.9 52.8 173.1 88.3 1.3 -1.3 0.4 

 

 
Table 2. Landsat TM 5 acquisition parameters. 
 
 
 
 
 
 
 
 
 
 
Table 3. Parameters for the design of the mass functions of the singleton classes for the slope.  
 
 

Species Minimum 
(degrees) 

Mean 
(degrees) 

Maximum 
(degrees) 

Black spruce 0 18 84 
White spruce 0 8 78 
Lodgepole pine 0 10 40 
Trembling aspen 0 23 89 

 
Table 4. Mass values of singleton classes for both fire dates with BS: black spruce, WS: white spruce, 
LP: lodgepole pine and TA: trembling aspen. 
 
 
 

Fire date 
Black 
spruce 

White 
spruce 

Lodgepole 
pine 

Trembling 
aspen 

1950 0.35 0.45 0.1 0.1 
2004 0.1 0.2 0.1 0.6 

 
 
 
 
 

 
Acquisition 

date 
Landsat WRS 

Path / Row 
Solar azimuth 

(degrees) 
Solar elevation 

 (degrees) 

Site 1 2007-07-19 P62R15 162.7 45.7 
Site 2 2006-07-11 P59R17 158.8 49.2 

Site 3 2007-07-19 P62R16 160.8 46.8 
Site 4 2007-08-28 P54R18 161.6 38.3 
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Table 5.  Transformed divergence between classes over the Landsat TM imagery (bands 3, 4, and 5). 
 
 

 Black 
 spruce 

White 
 spruce 

Lodgepole 
 pine 

White spruce 1.00   
Lodgepole pine 1.7 1.5  
Trembling aspen 1.8 0.9 1.9 

 
 
Table 6. Error matrix (%) from the classification tree-based procedure. 
 
 

 Black 
 spruce 

White 
 spruce 

Lodgepole 
 pine 

Trembling 
 aspen 

Black spruce 100 0 0 0 
White spruce 12.3 40.7 36.5 10.5 
Lodgepole pine 12.5 12.5 75 0 
Trembling aspen 13.9 11.6 20.9 53.6 

 
Table 7. Proportion of statistics selection across classification trees (pctle=percentile) 
 
 
 
 
 
 
 
 
 
 
 
 
Table 8. Accuracies (%) of the QuickBird two-class fusion cases with the Maximum credibility 
decision rule. 
 
 

 Black 
spruce 

White 
spruce 

Lodgepole 
pine 

Trembling 
aspen 

Overall 
accuracy 

QuickBird 
Aspect 

100 43.2 64 70.4 69.4 

QuickBird 
Fire date 

100 10.4 0 15.9 31.6 

QuickBird 
Slope 

3.2 77.2 36 0 29.1 

QuickBird 
TWI 

100 18.5 0 65.9 46.1 

QuickBird 
Landsat 

96.7 26.5 88 70.4 70.4 

 
 

Crown  
area 

50th pctle 
 

Crown 
 area 

variance 

Mean 
TM b5 

Crown 
 roundness 
variance 

Mean 
TM 
b4 

Crown 
length 

50th pctle 

Crown 
area 

71.4% 49.3% 44.1% 42.8% 24.6% 15.6% 13% 
Crown 
length 

25th pctle 

Crown 
 roundness 
25th pctle 

Crown 
 roundness 

Crown 
length 

variance 

Mean 
TWI 

Aspect 
Crown 

area 
25th pctle 

6.5% 3.9% 1.3% 1.3% 1.3% 1.3% 1.3% 
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Table 9. Accuracies (%) of the QuickBird two-class fusion cases with the Maximum plausibility 
decision rule. 
 
 

 Black 
spruce 

White 
spruce 

Lodgepole 
pine 

Trembling 
aspen 

Overall 
accuracy 

QuickBird 
Aspect 

0 38.9 16 13.6 17.1 

QuickBird 
Fire date 

61.3 7.4 0 2.3 17.7 

QuickBird 
Slope 

3.2 53 8 0 16 

QuickBird 
TWI 

0 17.3 0 13.6 7.7 

QuickBird 
Landsat 

96.8 22.8 88 70.4 69.5 

 
 
Table 10. Accuracies (%) of the Landsat two-source fusion cases with the Maximum credibility 
decision rule. 
 
 

 Black 
spruce 

White 
spruce 

Lodgepole 
pine 

Trembling 
aspen 

Overall 
accuracy 

Landsat 
Aspect 

90.3 22.8 88 75 69 

Landsat 
Fire date 

100 2.4 0 15.9 29.6 

Landsat 
Slope 

80.6 29 96 65.9 67.9 

Landsat 
TWI 

90.3 19.1 92 72.7 68.5 

Landsat 
QuickBird 

96.8 26.5 88 70.4 70.4 
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Table 11. Accuracies (%) of the best n-source combinations. 
 
 

 Black 
spruce 

White 
 spruce 

Lodgepole 
 pine 

Trembling 
 aspen 

Overall 
 accuracy 

 

3 source combinations 
QuickBird, 
Landsat, Aspect 

96.8 24 88 72.7 70.4 

QuickBird, 
Landsat, Slope 

90.3 29.6 88 65.9 68.4 

QuickBird, 
Landsat, TWI 

96.8 19.7 80 72.7 67.3 

Landsat, 
Slope, TWI 

87.1 19.7 92 72.7 67.9 

Landsat, 
Slope, Aspect 

88 27 88 70.4 68.2 
 

4 source combinations 
Landsat, Aspect 
Slope, Fire date 

90.3 23.4 80 72.7 66.6 

QuickBird, Landsat,  
Slope, Aspect 

90.3 27.8 88 68.2 68.6 

QuickBird, Landsat,  
Slope, TWI 

93.5 21.6 80 70.4 66.4 
 

5 source combinations 
QuickBird, Landsat, 
Slope, Aspect, TWI 

96.8 23.5 72 72.8 66.2 
 

6 source combination 
QuickBird, Landsat, 
Slope, Aspect, TWI, 
Fire 

100 0.6 0 18.2 29.7 
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Fig. 1. Study area, with panchromatic QuickBird imagery overlaid by stand boundaries of Site 4 
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Fig. 2. (a) Stand delineation (white lines) with QuickBird imagery overlaid by ITC objects in forested 1 
segments in background. (b) Tree crown objects delineated with the ITC suite (in black). 2 
 3 

 4 
 5 
 6 
 7 

Fig. 3. Mass function design principle for the union classes of QuickBird imagery, terrain aspect, 8 
slope and TWI sources. 9 
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 18 
Fig. 4. Mass functions for the terrain aspect. 19 
 20 
 21 

 22 
 23 

Fig. 5. Mass functions for the slope. 24 
 25 
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