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Abstract 27 

 British Columbia’s (BC) diverse landscape provides breeding habitat for more than 300 28 

avian species and recent development of the BC Breeding Bird Atlas dataset presents key 29 

information for exploring the landscape conditions which lead to biological richness. We used 30 

the volunteer collected raw breeding bird evidence dataset to analyze the effects of sampling 31 

biases on spatial distribution of observed breeding bird species and implemented regression tree 32 

analysis (Random Forests) to examine the influence of productivity, ambient energy, and habitat 33 

heterogeneity on independently measured breeding bird richness. Results indicated that total 34 

breeding species richness is correlated with total survey effort (α < 0.001). By stratifying species 35 

richness by survey effort, we observed that ambient energy is the top ranked environmental 36 

predictor of breeding bird richness across BC which, when used in combination with a number of 37 

other environmental variables, explains approximately 40% of the variation in richness. Using 38 

our modelled relationships, we predicted breeding bird richness in the areas of BC not presently 39 

surveyed between three and six hours. The productive Boreal Plains concentrated around Ft. St. 40 

John and Dawson Creek, in the southern portion of the Taiga Plains region, the lowlands of the 41 

South and Central Interior, along the Rocky Mountain Trench and the coastal areas of the 42 

Georgia Depression are predicted to have the highest categories of breeding richness (35-57 43 

unique species). Our results support ongoing species diversity gradient research, which identifies 44 

ambient energy as an important factor influencing species diversity distributions in the northern 45 

hemisphere. By linking breeding bird richness to environmental data derived from remotely 46 

sensed data and systematically collected climate data, we demonstrate the potential to monitor 47 

shifts in ambient energy as a surrogate for vertebrate habitat condition affecting population 48 

levels. Analyzing the influence of survey effort on species richness metrics we also highlight the 49 
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need to consider adding attributes to the raw breeding bird dataset to describe observer 50 

experience, such as hours or seasons spent surveying, and provide survey dates to allow greater 51 

flexibility for removing survey bias. These additions can increase the utility of atlas data for 52 

species richness studies useful for conservation planning.  53 

  

Key words: species richness, bird atlas, British Columbia, productivity, ambient energy, habitat 54 

heterogeneity 55 
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1.0 Introduction 56 

 British Columbia’s (BC) diverse landscape provides breeding habitat for more than 300 57 

avian species and the recent development and soon completion of the British Columbia Breeding 58 

Bird Atlas data collection presents information for a number of relevant biodiversity assessment 59 

questions to be addressed (BC Breeding Bird Atlas, 2012). These may include indentifying 60 

where gaps in species observations are, how surveying bias influences estimates of species 61 

richness, and what habitat characteristics influence the distribution of breeding bird species. By 62 

exploring relationships between bird species richness and environmental variables we can better 63 

understand landscape conditions that lead to biological richness and progress toward predicting 64 

the response of species to landscape disturbance and change (Orme et al., 2005). Given that 65 

avian species are uniquely able to select for spatial and temporal changes in environmental 66 

resources birds are considered suitable indicators of habitat condition (Hurlbert and Haskell, 67 

2003) and have been examined as potential surrogates for vertebrate species richness (Blair 68 

1999; Gregory et al., 2003).Therefore, in establishing the ecological processes governing the 69 

spatial distribution of the breeding bird species richness we can provide important information 70 

for the preservation of habitat conditions known to support high levels of biological diversity. 71 

 Key environmental drivers of avian richness at regional to global spatial scales include 72 

landscape productivity (Wright, 1983; Currie, 1991; Blackburn and Gaston, 1996; Rahbek and 73 

Graves, 2001;Hurlbert and Haskell, 2003; Rensburg et al., 2002; Coops et al., 2009a), ambient 74 

energy (Currie, 1991; Lennon et al., 2000; Hawkins et al., 2003a), and habitat heterogeneity 75 

(Būhning-Gaese, 1997; Kerr and Packer, 1997; Jetz and Rahbek, 2002; Rahbek et al., 2007). 76 

Relationships are hypothesized to occur because productivity, directly and indirectly, limits food 77 

and shelter resources (Wright, 1983; Hawkins et al., 2003b; Berry et al., 2007), ambient energy 78 
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satisfies the thermoregulatory needs of species and influences metabolic rates (Currie, 1991; 79 

Brown et al., 2004), and habitat heterogeneity provides niche variety thereby limiting species 80 

competition and supporting a diversity of specialist species (Andrén, 1994; Berg, 1997; Farina, 81 

1997).  82 

 Breeding Bird Atlas data offers a unique opportunity to assess spatial effects of these 83 

ecological processes on species richness over large areas (e.g., Rensburg et al., 2002, Chown et 84 

al., 2003). Species atlases generally rely on a large volunteer base to collect data over substantial 85 

landscape extents. The main advantage of the gridded breeding bird atlas is the organizational 86 

structure allowing for spatially consistent repeat assessments of bird distributions and abundance 87 

(Donald and Fuller, 1998). Assessing the relationship between avian richness and environmental 88 

variables requires that environmental data match the spatial extent of gridded atlases (Donald 89 

and Fuller, 1998). Remotely sensed imagery and geospatial datasets play a critical role in this 90 

aspect by linking avian richness (e.g., Būhning-Gaese, 1997; Atauri and de Lucio, 2001; Hurlbert 91 

and Haskell, 2003; Luoto et al., 2004; Coops et al., 2009a, 2009b) to environmental variables 92 

from regional (e.g., Luoto et al., 2004) to continental extents (e.g., Coops et al., 2009b).  93 

 Studies have used satellite derived measures of landscape greenness (surrogate for 94 

productivity often measured using Normalized Difference Vegetation Index (NDVI) or fraction 95 

of absorbed photosynthetically active radiation (fPAR)) to evaluate the relationship between 96 

avian species richness and productivity (Hurlbert and Haskell, 2003; Hawkins, 2004; Evans et 97 

al., 2006; Coops et al., 2009a, 2009b; St-Louis et al., 2009). Indirectly measured ambient energy 98 

(e.g., evapotranspiration or atmospheric temperature) has been mapped from climate records to 99 

display a notable effect on variation in avian richness at regional (Lennon et al., 2000), 100 

continental (Currie, 1991), and global scales (Hawkins et al., 2003a). Additionally, within grain 101 
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landscape heterogeneity represented as the number of land cover types per hectare (Autari and 102 

Lucio, 2001; Coops et al., 2009b), elevation variability (Ruggiero and Hawkins, 2008), or texture 103 

of NDVI (St-Louis et al., 2009) has been shown to influence the distribution of avian species 104 

richness. However, the importance of habitat heterogeneity on the gradient of species richness 105 

can vary with study extent and grain size (e.g., Būhning-Gaese, 1997). 106 

 Understanding the environmental influences on breeding bird richness over BC can 107 

provide important information for conservation managers and help scientists move towards 108 

monitoring landscape indices as indicators of potential threats (e.g., climate change) to avian 109 

breeding habitat which may in turn affect population levels. Thus, an important step toward 110 

developing robust habitat models that indicate potential environmental disturbances to bird 111 

species is to investigate if the variation in current avian species richness can be predicted with 112 

environmental datasets. Data must be collected in a consistent, repeatable manner, over short 113 

enough time intervals to signify changes in habitat productivity, ambient energy or habitat 114 

configuration.  Time-series analysis of high resolution remotely sensed imagery and landscape 115 

configuration metrics provide an approach using environmental data to monitor habitat 116 

surrogates.  117 

The BC Breeding Bird Atlas presents a novel opportunity to assess the spatial effects of 118 

habitat patterns on avian species richness. The goal of our study is to explore the relative 119 

influence of sampling bias on the observed breeding richness to control survey bias and use the 120 

developed richness indices to identify the dominant landscape-scale processes driving the 121 

distribution of BC’s breeding bird richness. To meet our goal, we explore the association 122 

between survey bias and measures of total breeding richness to create species richness indices 123 

independent of survey effort. Second, we demonstrate how systematically collected Earth 124 
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observation datasets and topographically adjusted climate data can represent fundamental 125 

landscape-scale processes. Third, we apply non-parametric regression tree analysis to investigate 126 

and model relationships between the richness of breeding birds and hypothesized landscape 127 

drivers (productivity, ambient energy and landscape heterogeneity). Fourth, we use the modelled 128 

relationships relatively unaffected by survey bias to predict breeding richness across the province 129 

at uniform survey lengths to provide information for conservation of avian diversity. We 130 

conclude by discussing the contributions of work to regional species diversity studies and 131 

indirect mapping of the status of species richness through landscape-scale surrogates.   132 

2.0 Methods 133 

2.1 Study area 134 

 British Columbia covers over 940,000km2 with the land mass physiography and climate 135 

controlled by the Pacific Ocean to the west, continental air masses in the interior plateaus, and 136 

Rocky Mountains to the east (Austin et al., 2008). The province has a highly diverse ecosystem 137 

structure comprised of barren and snow covered alpine environments, moderately productive 138 

mountainous regions, warm Southern Interior Mountains, moist and productive Taiga and Boreal 139 

plains, productive evergreen coastlines and moderately warm and productive interior (Fitterer et 140 

al., 2012). The complex landscape structure and ecological processes of BC require predictive 141 

breeding bird richness modelling techniques that are able to accommodate non-linear 142 

relationships and interaction effects between environmental variables within regions.  143 
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2.2 Datasets  144 

2.2.1 Breeding bird data  145 

 Breeding bird species data used in our analysis were collected as part of the BC Breeding 146 

Bird Atlas. The BC Breeding Bird Atlas is a five-year volunteer-based project compiling 147 

information on the abundance and distribution of all breeding bird species in 10km by 10km 148 

gridded areas (British Columbia Breeding Bird Atlas, 2011). Breeding evidence information is 149 

collected at different confidence levels ranging from observed during the breeding season (with 150 

no breeding evidence) to confirmed (displaying visible breeding activities) (British Columbia 151 

Breeding Bird Atlas, 2011). For each observation of a species in a 10km by 10km quadrat, the 152 

highest level of breeding confirmation is recorded. These levels indicate the likelihood of 153 

breeding with 20 different descriptions available to the bird observer. Nine of the 20 categories 154 

are reserved for confirmed breeding activities such as nesting, evidence of bird shells, young 155 

present in the nest, and adults carrying food to a nest.  Three out of the 20 categories are reserved 156 

for observed or possible breeding signs such as sightings during the breeding season and 157 

breeding calls. The remaining categories exhibit probable breeding characteristics such as 158 

multiple singing males, couple observed in suitable nesting area, among others (British Columbia 159 

Breeding Bird Atlas, 2008a). Data used in our study were a compilation of species sightings 160 

from 2008-2011. Observer experience ranges from novice to experienced, but no direct attribute 161 

of surveying experience is collected. Data provided includes survey effort per sample, observer 162 

number, survey number, quadrat identification, and taxonomic information. Data collection is 163 

ongoing to 2012 and will result in the collection of new records improving the total survey time 164 

in quadrats throughout the province; however, we expect a similar spatial distribution in effort 165 

where the hours spent surveying are higher in the accessible and populated regions. 166 
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2.2.2 Development of breeding richness indices independent of survey bias 167 

 In order to represent breeding bird species richness independent of surveying effort we 168 

explored survey intensity (number of surveys conducted per grid cell), survey effort (total hours 169 

spent observing) and spatial extent of the surveyed quadrats. We calculated the number of unique 170 

species observed within each 10km by 10km grid cell (total breeding richness 2008-2011) and 171 

calculated total survey effort (number of hours spent surveying between 2008-2011). We 172 

quantified the monotonic association (Spearman’s correlation coefficient) between total breeding 173 

species richness and total survey effort to understand the spatial dependence. We found a strong 174 

positive correlation (rs = .816, α < .001) indicating that currently the spatial variance in total 175 

survey effort may influence the distribution of observed breeding richness.  176 

 To develop a suitable correctional method to control sampling bias we investigated the 177 

skewness and spatial distribution of the Breeding Bird Atlas data up to 2011. Maximum survey 178 

length and total number of surveys per quadrat exhibit positive skewness (3.9 and 3.4, 179 

respectively), with the majority of the province having less than six hours of per survey 180 

observational effort, and less than three surveys, with a large portion of grid cells having one to 181 

two observation visits. The number of surveys per grid cell limited our ability to apply 182 

rarefaction estimates, which require random selection of samples per grid cell (Colwell and 183 

Coddington, 1994). Instead, we calculated species richness indices within survey effort ranges 184 

(i.e., two hour intervals) to provide a relatively uniform sampling distribution because the 185 

relationship between survey effort and observed species richness is asymptotic (Colwell and 186 

Coddington, 1994). 187 

 To maximize spatial extent of breeding species information over the areal extent of BC 188 

we stratified surveying lengths up to six hours of observation effort (the average maximum 189 
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survey length per quadrat) as quadrats sampled with total hours or surveys above six hours are 190 

generally concentrated in southern urban areas which limits spatial modelling application. 191 

Categories of survey effort included one to two hours, three to four hours and five to six hours. 192 

Once stratified into two-hour interval survey lengths the quadrats had relatively few completed 193 

surveys (average 1.6, 1.3 and 1.2 samples respectively); therefore, the individual survey with the 194 

maximum amount of unique species sighted was used to represent breeding bird species richness 195 

within each survey stratification category and 10km x 10km grid cell.   196 

2.2.3 Landscape indices background and modelling 197 

 Productivity both as a permanent and seasonal resource is documented to influence the 198 

spatial distribution of avian species richness (Hurlbert and Haskell, 2004; Hawkins, 2004; Coops 199 

et al., 2009b). For instance, it is understood that resident avian richness is limited by the lowest 200 

production period and migratory species by the seasonal production pulse (Hurlbert and Haskell, 201 

2003; Hawkins, 2004), while the distribution of total avian species richness responds to 202 

cumulative landscape production representing both seasonality and maximum production levels 203 

(Coops et al., 2009b). The relationship between productivity and organisms is understood to 204 

exhibit increased interaction between organisms when productivity is high and consequently 205 

disturbance is low (see Southwood, 1988). Further, highly productivity regions are understood to 206 

provide food (metabolic need), shelter and nesting resources for migratory and resident species, 207 

with dispersive species following seasonal changes in vegetation productivity (Berry et al., 208 

2007). To assess the influence of production on avian richness distribution, remotely derived 209 

landscape indices of productivity, surrogates of growth and seasonality, have been developed 210 

over broad scales for both annual (Berry et al., 2007; Coops et al., 2009a, 2009b) and seasonal 211 

(Hurlbert and Haskell, 2003) time scales. However, annual indices of productivity have been 212 
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hypothesized to obscure landscape relationships leaving one to consider the time scale in which 213 

bird distribution and abundance data were collected (Hurlbert and Haskell, 2003; Hawkins, 214 

2004).  215 

We created productivity indicators from 8-day maximums of Moderate Resolution 216 

Imaging Spectroradiometer measured fraction of absorbed photosynthetically active radiation 217 

(fPAR) by the plant canopy (MCD15A2) spanning February to September, the same temporal 218 

extent as the breeding bird season (British Columbia Breeding Bird Atlas, 2008b). 219 

Photosynthetically active radiation spans the visible electromagnetic spectrum from 400 to 220 

700nm and is absorbed by the Chlorophyll a & b, Carotene, and Xanthophylls pigments in plants 221 

for photosynthesis. Contrastingly, vegetation markedly reduces its absorption of energy between 222 

700 and 1300 nm (red edge to near infrared region). These reflectance properties are measured as 223 

the proportion between the radiation received by the surface and the returned reflectance to the 224 

remote sensor. MODIS fPAR values range from 0%, signifying barren land (i.e., rock or snow 225 

cover), to close to 100% for dense vegetation cover (Coops et al., 2008) and can be used as input 226 

parameters for gross primary productivity models because vegetation growth is related to the rate 227 

at which vegetation absorbs visible energy (Berry et al., 2007). High productivity is inferred 228 

when fPAR remains high over a growing season and vice versa for low productivity. Monthly 229 

maximums of fPAR were created from the 8-day composite datasets to minimize the effect of 230 

cloud cover on the remotely sensed imagery. Subsequent to monthly aggregation, seasonal 231 

(February-September) indices from 2008-2011 were derived. Indices included seasonal 232 

minimum vegetation cover, maximum vegetation cover, cumulative sum, and coefficient of 233 

variation representing vegetation seasonality.  Productivity indices were then average over the 234 

2008-2011 breeding bird dataset collection period and re-sampled to 10km by 10km resolution 235 
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using a neighbourhood average to match the spatial resolution at which the avian breeding 236 

evidence was collected. Water bodies were masked to avoid skewed productivity values.  237 

 Ambient energy, measured in the form of water-energy variables or atmospheric 238 

temperature, is documented to influence the variation in vertebrate species richness (e.g., Currie, 239 

1991, Lennon et al., 2000; Hawkins et al., 2003a) particularly in the terrestrial areas of Northern 240 

Hemisphere where thermoregulatory needs of species must be met (Currie,1991; Hawkins et al. 241 

2003a). The relative importance of ambient energy is displayed at both regional (Lennon et al., 242 

2000) and global extents (Hawkins et al., 2003a). For example, summer air temperature is a 243 

documented predictor of avian species richness through the geographic extent of the United 244 

Kingdom (Lennon et al. 2000) and water-energy variables, such as, potential evapotranspiration 245 

account for a significant variation in species diversity in the Northern Hemisphere (Hawkins et 246 

al. 2003a). Static climate indicators have been shown to influence the gradient of avian species 247 

richness in addition to air temperature and moisture availability, such that at regional scales 248 

average elevation influences avian species richness, with species favouring lower elevations 249 

(Farina, 1997). Elevation range, an indirect measure of climate variation (Ruggiero and Hawkins, 250 

2008), has also been identified to enhance the prediction of avian richness (Davies et al., 2007). 251 

We produced estimates of ambient energy using MODIS 8-day maximum 1km land 252 

surface temperature data (MYA11A2), also aggregated to an approximate monthly maximum. 253 

MODIS land surface temperatures (units Kelvin) were calculated from daily conditions 254 

represented in the thermal infrared bands during clear sky conditions (Wan et al., 2004). Land 255 

surface temperature (LST) is interpreted as the temperature of the canopy top in dense vegetation 256 

covers, or soil surface in barren areas (Wan et al., 2004). Subsequent to monthly aggregation, 257 

seasonal (February-September) indices from 2008-2011 were derived. Indices include annual 258 
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seasonal minimum, maximum and range in seasonal LST (February to September) which were 259 

averaged over the 2008-2011 time period and re-sampled to 10km by 10km regions using a 260 

neighbourhood average.  261 

 In addition, to land surface temperature, topographically adjusted climate record data 262 

were used to represent atmospheric temperature and moisture availability. Using a re-sampled 1 263 

km digital elevation model created from the Canadian Digital Elevation product (available from 264 

www.geobase.ca) we developed indices representing mean annual temperature, mean summer 265 

precipitation, mean annual precipitation, annual climate moisture deficit and annual reference 266 

atmospheric evaporative demand over the province of BC from interpolated climate data using 267 

the ClimateWNA program for 2008 and 2009. Mean annual temperature, mean annual 268 

precipitation, and mean summer precipitation (May to September) are directly calculated from 269 

observed monthly weather station data and interpolated across the province (Wang et al., 2012). 270 

Both mean annual and summer precipitation were included in our models because the mean 271 

summer precipitation did not extend the temporal length of the breeding season for all species in 272 

BC (British Columbia Breeding Bird Atlas, 2008b). Reference atmospheric evaporative demand 273 

(Eref) and climate moisture deficit (CMD) were derived using Hargreaves equations (see Wang et 274 

al., 2012 for equation details). Reference atmospheric evaporative demand is the amount of 275 

moisture lost to atmospheric evaporation and climate moisture deficit is interpreted as a drought 276 

variable, calculated as the summation of the monthly differences between Eref  and precipitation 277 

(Wang et al., 2012). These 1km climate indices were re-sampled from 1km spatial resolution to 278 

10km by 10km using a neighbourhood average. Additionally, to indirectly represent BC’s 279 

climate we re-sampled 25 m Canadian Digital Elevation Product to 10 km by 10km using a 280 
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neighbourhood average and calculated the within pixel range in elevation as a surrogate of 281 

climate variation.  282 

 The strength of habitat heterogeneity as a predictor of the distribution of avian species 283 

richness often depends on the scale of analysis. For example, in the Mediterranean region, 284 

habitat heterogeneity has a stronger relationship with species richness than ambient energy 285 

(Autari and Lucio, 2001). Similarly, regional predictive models of richness in Chihuahuan Desert 286 

of New Mexico were improved by a combination of productivity and habitat heterogeneity 287 

measures (St. Louis et al., 2009). Conversely, at broad spatial scales, Ruggiero and Hawkins 288 

(2008) concluded that the climatic gradients influence species richness and must be controlled 289 

for before the importance of habitat heterogeneity can be realized. Therefore, we postulate that 290 

habitat heterogeneity may be a more influential indicator of avian distributions at regional scales 291 

or in warmer regions where thermoregulatory needs of species are already satisfied (see Kerr and 292 

Packer, 1997).  293 

 To evaluate the influence of habitat heterogeneity on BC’s breeding birds we modelled 294 

niche variety using 25m spatial resolution elevation data provided by the Canadian Digital 295 

Elevation Product and 2009 500m MODIS Terra and Aqua (Version 005, University of 296 

Maryland) land cover (MCD12Q1). Terrain heterogeneity was estimated as the coefficient of 297 

variation in elevation within each 10km by 10km grid cell over BC. The 2009 500m MODIS 298 

Terra and Aqua (Version 005, University of Maryland) land cover (MCD12Q1) was used to 299 

calculate the number of different land cover types (land cover complexity) in each 10km by 300 

10km grid cell and also provided land cover information to calculate the queens case percentage 301 

of like adjacencies of the nearest-neighbour re-sampled 1km land cover pixels, aggregated to a 302 

10km by 10km using a neighbourhood maximum.  303 
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2.3 Random Forest modelling using survey length stratified species richness indices 304 

 Given the correlation between total survey effort and total breeding bird species richness; 305 

maximum species richness per survey and quadrat stratified by one to two hours, three to four 306 

hours, and five to six hours of observational effort were used when characterizing the 307 

relationships between breeding bird species richness and the landscape indices, representing 308 

productivity, ambient energy and landscape heterogeneity. Relationships were modelled using 309 

regression trees created in Random Forests R statistical package (described in Breiman, 2001). 310 

Regression trees repeatedly partition the selected environmental indices using a hierarchical 311 

structure and binary splits based on singular environmental variables that best explain the 312 

variation in our breeding bird species richness indices (De’ath and Fabricius, 2000). The “best” 313 

split is determined by iteratively examining the landscape indices splits and selecting the 314 

environmental variance (split) that maximizes the heterogeneity between the resulting breeding 315 

richness groups (ANOVA) (Prasad et al., 2006). Regression trees provide a flexible and robust 316 

method for ecological studies when the relationships between dependent and independent 317 

variables are non-linear or exhibit interaction effects (De’ath and Fabricius, 2000; Prasad et al., 318 

2006).  319 

 We used the Random Forests algorithm to grow 999 regression trees from bootstrapped 320 

samples of the original data frame for each survey effort stratification (one to two hours, three to 321 

four hours and five to six hours). In addition to the bootstrap sample, the Random Forests 322 

algorithm employs a second randomization step where, at each node within the singular tree 323 

variables are randomly chosen to determine the best binary split to explain the variation in 324 

breeding bird richness (Prasad et al., 2006). Our models randomly selected six environmental 325 
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variables to choose the best split at each node. Trees are aggregated by averaging the singular 326 

tree prediction results to produce the final prediction (Prasad et al., 2006).  327 

 Using an ensemble of trees has been shown to improve prediction capabilities by 328 

reducing the severity of the boundaries of prediction created by singular trees, which can yield a 329 

reduction in prediction variance (Prasad et al., 2006). Additionally, the second randomization 330 

step is utilized to decrease the correlation between trees in the forest and reduces the effects of 331 

redundant environmental features, thus improving model error rate (see Archer and Kimes, 332 

2008). In addition, by allowing variables that might have been obscured by dominant 333 

environmental predictors to be selected we introduce diversity into the trees that can display 334 

interaction effects between variables that may otherwise have been concealed (Strobl et al., 335 

2008). To analyze the residual effect of survey effort on breeding bird species richness we 336 

created two Random Forests models for each stratification; one model including and the other 337 

excluding survey effort. 338 

 To assess which environmental variables influenced the distribution of breeding bird 339 

species richness at the 10km by 10km scale we produced variable importance tables for each 340 

model. The first variable importance is calculated using the out-of-bag data (data not included in 341 

the bootstrap sample). Because when 999 trees are grown the error rate is generalized (Prasad et 342 

al., 2006). The percentage increase in the mean square error is calculated by randomizing each 343 

environmental variable before prediction and comparing the predicted species richness levels to 344 

the out-of-bag species richness levels (Breiman, 2001). The increase is then calculated as the 345 

difference between the average mean square error before and after randomization for that 346 

variable (Prasad et al., 2006; Archer and Kimes, 2008). If the environmental variable does not 347 

provide a significant amount of predictive power, when it is randomized the increase in the mean 348 
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square error value remains low (Archer and Kimes, 2008). The second importance variable 349 

signifies the increase in node purity, which is the average reduction in the sum of the squares 350 

within the split species richness groups achieved by all splits on the specified environmental 351 

variable (Prasad et al., 2006). 352 

2.4 Evaluation of predictive modelling  353 

 Using the modelled relationships derived from the Random Forests we predicted 354 

breeding bird species richness within each observed grid cell at each survey effort stratification 355 

to assess the differences between predicted and observed levels of breeding bird species richness. 356 

We mapped the prediction results of the three to four hour and five to six hour stratification 357 

excluding the survey effort covariate to visually assess spatial patterns of error, and reported the 358 

root mean, minimum and maximum error between observed and predicted breeding bird richness 359 

and test if the residuals are normally distributed. The one to two hours model was excluded from 360 

mapping and model performance evaluation because survey effort remained to have a notable 361 

influence on the distribution of breeding bird richness (see Section 3.1). Therefore, we used the 362 

three to four and five to six hour models excluding survey effort because the breeding richness 363 

stratifications are relatively unaffected by the two hour surveying interval (see  Section 3.1). We 364 

also calculated the coefficients of determination to analyze the model’s predictive power. 365 

2.5 Prediction of independently measured breeding richness  366 

 We applied the three to four hour and five to six hour modelled relationships, excluding 367 

survey effort covariate, to predict breeding bird richness in the areas not presently surveyed 368 

between three to six hours by the BC Breeding Bird Atlas volunteers. To analyze the similarity 369 

between breeding richness predictions we compared the three to four model predictions to the 370 
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five to six hour predictive results and characterize the spatial distributions of the breeding 371 

richness predictions using the environmental variables most often selected to reduce the sum of 372 

the squares between the breeding richness partitions. Additionally, we described the spatial 373 

location of breeding richness groups using the Ministry of Environment’s Ecoprovince 374 

classification of British Columbia (accessed from BC Government Open Data Licence at 375 

www.data.gov.bc.ca on May 2nd, 2012, Figure 1) and highlighted predicted high richness 376 

locations as areas where additional field surveying would be warranted to confirm distributions 377 

at similar or higher levels of survey effort.  378 

2.6 Observation bias 379 

 In our final analysis, we assessed observer bias, which is known to obscure the analysis 380 

of data collected during volunteer avian breeding surveys (e.g., Sauer et al., 1994; Link and 381 

Sauer, 1998; Fitzpatrick et al., 2009). We assessed observational bias on a pixel by pixel basis 382 

determining how species richness changes with survey effort. Where the range in stratified 383 

species richness was large between the stratifications and spatially variable (e.g., southern 384 

Vancouver Island, Southern Interior and Ft. St. John area) we created line graphs with survey 385 

effort intervals (one to two hours, three to four hours, five to six hours) on the x-axis and 386 

maximum species richness (stratified by survey effort) on the y-axis. Deviations outside of a 387 

positive linear or asymptotic relationship between additional survey effort and species richness 388 

are understood as observer bias. The bias can be attributed to a multitude of affects since 389 

breeding richness in each cell is represented by one survey (the maximum observed richness). 390 

Examples of the causes of bias may include observation date within the breeding season, 391 

observer experience and location within quadrat. We overlaid the range in breeding richness with 392 
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our predictive errors in the three to four hour model and five to six hour model to explore if a 393 

connection exists between maximum residuals and observer bias. 394 

3.0 Results  395 

3.1 Influence of survey effort on species richness prediction 396 

 Random Forests variable importance indicators (e.g., Tables 1 and 2) represent the 397 

variables explaining greater than 10% of breeding richness distribution.  The impact of survey 398 

effort is evident in the one to two hour model, as survey effort increased the prediction 399 

inaccuracy (increased the mean square error) by 61.21% when randomized and was the top 400 

ranked node purity variable. Conversely, our three to four hour and five to six hour models were 401 

relatively unaffected by survey effort with the covariate increasing the mean square error when 402 

their values were randomized and used to predict breeding richness by just 7% and 3.71% 403 

respectively. As such, we focussed subsequent analysis on the three to four hour and five to six 404 

hour models excluding the survey effort covariate (Tables 1 and 2). 405 

3.2 Drivers of breeding richness 406 

The three to four hour and five to six hour models are similar in their selection of 407 

environmental variables, though variation in ranking was expected given the different spatial 408 

extents and frequencies of the datasets (n= 817, n = 492, respectively). However, both models 409 

showed that at the spatial resolution (10km by 10km) and extent of our analysis, moisture levels, 410 

temperature, and elevation were consistently selected as important predictors of breeding bird 411 

richness (Tables 1 and 2). Additionally, the variations in land cover types and percentage of like 412 

adjacencies between the dominant land cover types had the lowest ranks for increasing 413 

prediction inaccuracy when their values were randomized and used for prediction. When 414 
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randomized in the three to four-hour model land cover heterogeneity increased prediction 415 

inaccuracy by 3.72% and the percentage of like adjacencies by 5.81%. Similarly, in the five to 416 

six hour model, land cover heterogeneity increased the mean square error of prediction accuracy 417 

by 3.16% and the percentage of like adjacencies by 5.16%. These results indicate that land cover 418 

heterogeneity indices are the least useful predictors of breeding bird richness at our grain of 419 

analysis and study area.  420 

 Our three to four hour model exhibited that climate moisture deficit is top ranked variable 421 

for increasing both mean square error and node purity (Table 1 and 2). Subsequent to climate 422 

moisture deficit, average elevation, mean summer precipitation, average fPAR, mean annual 423 

precipitation, and mean annual temperature are top ranking variables for increasing the mean 424 

square error in breeding richness predictions when randomized, meaning that these six variables 425 

contributed the most to the accurate prediction of breeding richness (Table 1). The node purity 426 

indicates that for all developed trees climate moisture deficit and mean summer precipitation 427 

were selected most often to reduce the sum of squares in the breeding richness partitions (Table 428 

1), demonstrating that moisture and temperature influence the spatial distribution of breeding 429 

richness.  430 

 The spatial extent of our five to six hour observed maximum breeding richness is 431 

relatively small given there are fewer surveys (Figure 2, see observed breeding richness map). 432 

Despite the reduction in the number of quadrats surveyed, the top ranking environmental 433 

variables for predicting breeding richness are similar to our three to four hour model. The top 434 

ranking environmental variables increasing the mean square error when randomized include 435 

average elevation, average seasonal land surface temperature, mean annual precipitation, mean 436 

summer precipitation, mean annual temperature and average fPAR. The two variables that differ 437 
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in the top six ranks for the three to four hour and five to six hour models are climate moisture 438 

deficit and average seasonal land surface temperature. However, these indicators are akin to 439 

displaying the variance between warm and cool areas of BC. Similarly, between the two models, 440 

the node purity results indicate that mean summer precipitation and annual evaporative demand 441 

are most often selected to reduce the sum of squares in the breeding richness partitions (Table 2). 442 

These results are consistent with our three to four hour model using moisture and the interaction 443 

between air temperature and moisture to explain the variation in the distribution of breeding 444 

richness.  445 

3.3 Model performance  446 

 Visualizing the observed (1 to 82 and 1 to 80 species) and predicted (8 to 60 and 11 to 64 447 

species) ranges of species richness for both the three to four hour and five to six hour models 448 

respectively (Figure 2), we conclude that ambient energy variables are explaining a dominant 449 

proportion of the distribution in breeding richness. The calculated coefficients of determination 450 

from the Random Forests models excluding survey effort indicate that environmental variables 451 

explain 43.99% (three to four hour model) and 41.89% (five to six hour model) of the variation 452 

in breeding bird richness.  453 

 Evaluating the residuals, our three to four hour model had a root mean square error of six 454 

species with maximum over-prediction of 16 species and under-prediction of 24 species. Our 455 

five to six hour model performed similarly with a root mean square error of seven species, 456 

maximum over-prediction of 21 species and under-prediction of 22 species. Both models display 457 

normal distributions in their prediction errors (One-Sample Kolmogorov-Smirnov Test, α .90 and 458 

.95 respectively). Despite the range in the residuals, the model predictions have similar spatial 459 

patterns between the observed and predicted breeding bird richness distributions (Figure 2). 460 
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These results provide confidence that the environmental variables are predicting the spatial 461 

distribution of breeding richness.  462 

3.4 Breeding bird richness predictions  463 

 Using our evaluated three to four hour, and five to six hour modelled relationships we 464 

predicted breeding bird species richness in the regions of BC not represented by survey lengths 465 

between 3 to 6 hours. Both stratifications forecast the highest breeding richness (30 to 50 unique 466 

species and 34 to 57 unique species, respectively) to be located in the low-lands of the South and 467 

Central Interior, Boreal Plains concentrated around Ft. St. John and Dawson Creek, in the 468 

southern portion of the Taiga Plains, the low-land coastal areas along the Strait of Georgia, 469 

southern portion of Vancouver Island, and along the valley in the Southern Interior Mountains 470 

(Figure 3). Conversely, the lowest species richness levels are predicted to occur in our highest 471 

elevations in the Northern Boreal Mountains region, coastal mountains and Southern Interior 472 

Mountains (Figure 3). Overall, the highest breeding bird richness levels are in the warmer, low-473 

land areas with higher evaporative demand and moisture deficits (Figure 4). 474 

 The spatial distributions are similar between models because the primary variables used 475 

to split breeding richness into heterogeneous groups are influenced by ambient energy. For 476 

example, both modelled relationships use summer precipitation and the water-energy variables 477 

(represented by climate moisture deficit and reference evaporative demand) for their primary and 478 

secondary most used splitting indices (Table 2). The third and fourth ranked variables for 479 

reducing the sum of the squares within breeding partitions are average elevation and indicators of 480 

temperatures represented by evaporative demand and average seasonal land surface temperature 481 

respectively (Table 2). Similarly, the third and fourth ranking variables for reducing the sum of 482 

squares are mean annual temperature and elevation range (Table 2). From, the modeled 483 
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relationships and the predicted richness levels we can conclude that the distribution of bird 484 

breeding richness is dependent on moisture and temperature with the highest breeding richness 485 

located in the Boreal and Taiga Plains and the South and Central Interior. These regions are 486 

characterized by our indices to have high temperatures, low summer and annual precipitation 487 

levels, low range in elevation and generally lower elevation than the rest of the mountainous 488 

province of BC (Figure 4).  489 

 For the majority of the province the prediction differences are within five unique species 490 

of each other (Figure 3). Generally, the different predictions are along the north and south coast 491 

of BC where the terrain and ecosystems are most complex (Fitterer et al., 2012). Given that the 492 

ecosystem dynamics within the 10km by 10km grain could encompass many different habitat 493 

characteristics such as coastline, rain forests and urban areas we would expect breeding richness 494 

to be harder to consistently measure and model. The most pronounced differences in breeding 495 

richness (11 to 25 unique species) are located along the Georgia Strait, west coast of Vancouver 496 

Island and east coastline of the Queen Charlotte Islands (Figure 3). Two factors may be 497 

influencing these results. First, the three to four hour model exhibits a more even spatial 498 

distribution of samples across Vancouver Island and coast. Second, as the survey effort increases 499 

to the five to six hour stratification of breeding richness also increases (Figure 2). Therefore, 500 

throughout the Coast and Mountains Ecoprovince both survey length and the amount of cells 501 

surveyed contributes to predictive differences. Similarly, the predictive differences in the 502 

southern Taiga Plains could be attributed to lack of surveys and inconsistent observations of 503 

richness (see observed ranges in Figure 2), generally, the three to four hour model has more 504 

surveys to support the breeding richness prediction in the Taiga Plains. Observational timing and 505 

experience as highlighted in (Figure 5) could cause predictive differences in the South and 506 
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Central Interior, particularly the negative differences where the observed data used to create the 507 

modelled relationships are less stable (i.e., breeding richness between stratifications does not 508 

follow a positive relationship with survey effort). Regardless of the differences, the South and 509 

Central Interior are modelled as hot spots of breeding richness and the similarity in spatial 510 

distribution of breeding richness between the two predictions supersedes the differences.  511 

4.0 Discussion 512 

4.1 Effect of sampling bias on species richness indices 513 

 Evaluating raw breeding bird richness and total breeding richness survey effort we 514 

highlight an association between total number of unique species observed and surveying effort in 515 

the 2008-2011 BC Breeding Bird Atlas dataset, meaning the spatial distributions of raw species 516 

richness hot spots may signify observer density and total survey effort rather than breeding 517 

richness. For shorter sampling times (one to two hours) small increases in the amount of time 518 

spent in the cell positively affected the number of species sighted per survey. We observed that 519 

when survey periods are longer, three to four hours or five to six hours breeding richness 520 

distributions are indicative of observation experience, observational timing and bird habitat 521 

selection rather than survey effort variation from cell to cell.  522 

 The important influence of survey effort at intervals shorter than two hours indicates that 523 

BC’s common species are sighted in shorter survey times and surveys generated from longer 524 

time intervals are more appropriate building relationships within environmental indicators. To 525 

improve atlas data for richness modelling it would be useful to implement a minimum 526 

observation period (e.g., longer than three hours). We also support previous research by stressing 527 

that sampling extent is equally important as survey frequency and length when modeling and 528 
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predicting breeding richness to provide confidence in the observed breeding richness (Robertson 529 

et al., 2010).  530 

 Given that species richness indices have become an important information resource for 531 

designing reserve networks to protect the greatest number of species, conducting biological 532 

monitoring through species surrogates and providing information for adaptive species 533 

management where total species richness is unknown (Pearman and Weber, 2007), it is 534 

necessary for researchers to uncover sampling bias before analyzing the spatial distribution of 535 

species richness and linking these distributions to environmental factors to ensure relationships 536 

accurately represent species-habitat interactions. Observational bias can skew the level of species 537 

richness observed per survey (e.g., Figure 5), obscuring the positive trajectory expected between 538 

species richness and survey effort before an asymptote is reached. Within BC Breeding Bird 539 

Atlas data, we have identified observational biases, which may have affected the consistency of 540 

the relationships formed between BC’s breeding bird richness and environmental variables 541 

within our stratified models.   542 

 For example, if we visually compare the highest error classes in our three to four hour 543 

and five to six hour models (Figure 2) with the range in the species richness levels between all 544 

stratifications (Figure 5), we find that the maximum over and under predictions overlay with the 545 

highest ranges in the observed breeding richness. Assessing the breeding richness on a pixel 546 

based assessment of how breeding richness changes with survey effort using examples extracted 547 

from the southern Vancouver Island, Okanagan region and Peace River area (Figure 3.5) it 548 

appears that observational effect could be distorting our ability to accurately predicted species 549 

richness. Therefore, confounding factors such as observation timing, experience and location of 550 

the observer within the 10km by 10km quadrat may influence the breeding richness levels 551 
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because the relationship between maximum breeding richness observed and survey effort does 552 

not follow positive trend. Until more data are collected to control observation bias and enable 553 

more advanced correctional methods, we found that stratifying data by survey effort served to 554 

explore environmental variables associated with species richness. To mitigate observation 555 

uncertainties when using singular surveys for analysis for environmental species modelling it 556 

would be beneficial to include the date and time of observation and judgement on their personal 557 

observational skills (e.g., number of seasons spent surveying) in raw breeding evidence datasets. 558 

The addition of these attributes will allow researchers to stratify by observation levels and 559 

similar observation time periods, potentially reducing observational bias when more surveys are 560 

available.  561 

4.2 Important indicators of breeding bird richness 562 

 Despite the variability in the spatial coverage of our stratified models we found that the 563 

interaction between moisture and temperature modeled as climate moisture deficit and reference 564 

evaporative demand were the most important (primary and secondary most selected splitting 565 

variables) indicators for explaining the variation in the distribution of breeding bird richness 566 

(Table 2). Higher levels of breeding bird richness were found in low-lands, valleys and warmer 567 

areas of BC; areas which have the highest evaporation of moisture (Figure 4). Examples of areas 568 

with the highest level of breeding bird richness include the heart of the Boreal Plains region, 569 

southern Vancouver Island and the South and Central Interior. 570 

 Similar to our primary splits of breeding bird richness levels we found that available 571 

energy continues to play an important role in predicting the richness of breeding bird as 572 

elevation, precipitation, water-energy variables and temperature are within the top ranks for 573 

increasing the inaccuracy of our models when randomized. Additionally, average seasonal fPAR 574 
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represents the importance of productivity on breeding habitat selection and is linked with 575 

available energy, as vegetation is dependent on water and sunlight for growth (Hawkins et al., 576 

2003a). With these findings, we highlight consistent patterns of ambient energy variables in the 577 

top six ranking predicative environmental variables emphasizing the importance of climate 578 

moisture deficit, reference evaporative demand, precipitation, elevation and average seasonal 579 

land surface temperature for explaining breeding richness distributions across BC. We conclude 580 

that for the observed extents ambient energy (or rather water and temperature) control the 581 

distribution of breeding bird richness in BC. Our results are consistent with Currie (1991) study 582 

highlighting that broad-scale patterns of species richness are associated with climate and H-583 

Acevedo and Currie (2003) research concluding that summer bird richness co-varies with annual 584 

temperature and precipitation. The results are also consistent with metabolic theory of ecology 585 

where it is theorized that areas with high productivity and temperatures lead to faster metabolism 586 

and shorter generation times resulting in increased species diversity (Brown et al., 2004).  587 

 Contrary to the theory that niche variety increases species richness (Andrén, 1994; Berg 588 

1997) we observed landscape heterogeneity indices ranked low in predicting breeding bird 589 

richness. Given our spatial extent and resolution, modelled heterogeneity did not increase 590 

performance. However, quite possibly heterogeneity may influence BC’s breeding bird richness 591 

at smaller spatial extents where the energy gradient is uniform, or at different grid cell 592 

resolutions. For example, we were unable to study the influence vegetation structural 593 

complexity, species diversity or flowering properties know to affect the distribution of birds by 594 

providing food, shelter and nesting resources (e.g., Neave et al., 1996) because of the coarse 595 

spatial resolution of the Bird Atlas Data within which we are unable to represent observation 596 

scale landscape details, which also provide interesting insights into the habitat selection of avian 597 
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species. Our study was conducted using a spatial resolution of 10km by 10km and heterogeneity 598 

metrics have been observed to have a weakened relationship with species richness as grid cell 599 

resolutions increase from 4km to 16km (Būhning-Gaese, 1997). Additionally, our results support 600 

Kerr and Packer’s (1997) indicating that in the northern latitudes available energy is a more 601 

important indicator of species richness than habitat heterogeneity, suggesting that breeding 602 

habitats must first meet the thermoregulatory needs of species.   603 

 The spatial distribution of the error terms and residual ranges show that our models 604 

explain a portion of the variation in breeding bird richness over the province. We theorize that 605 

landscape processes operating at a finer scale than the 10km by 10km spatial grain of our study 606 

also influence breeding richness. Substantial variations in the landscape composition and 607 

structure are expected within a 10km by 10km area as BC has a dynamic habitat structure, 608 

exhibiting distinct ecosystem characteristics at smaller spatial resolutions (e.g., Fitterer et al., 609 

2012). Following theory described by the modifiable unit areal problem (MAUP), the variance of 610 

the environmental and landscape characteristics will be relatively high within each cell and low 611 

between cells (Wiens, 1989; Jelinski and Wu 1996). The decrease in modelled landscape 612 

variance may be masking landscape structure and processes occurring within grain resolution 613 

(Wiens, 1989; Jelinski and Wu 1996). Thus, larger grain sizes will affect the emergence of 614 

relationships between species richness and environmental variables, which function at smaller 615 

scales. To improve the ability of scientists to link and validate environmental processes with BC 616 

breeding bird data, it would advantageous for volunteers to record simple habitat descriptions 617 

whenever possible (such as heavily forested, grassland, etc.) with species observations and 618 

record the approximate distance travelled within a gridded location as habitat characteristics can 619 

change within a 10km by 10km area. However, to meet these goals volunteers would need to be 620 
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provided with resources to estimate distance traveled such as a Global Positioning Systems 621 

found in cellular devises (e.g., Wiehe et al., 2008).  622 

4.3 Predictions of breeding bird richness independent of sampling bias 623 

 Our predictions of BC’s breeding bird richness in the cells not currently represented by 624 

three to six hours of survey effort display similar trends between models increasing our 625 

confidence in the extrapolation of our predictions. The similar spatial trends occur despite the 626 

limited range of species richness values surveyed within the three to four and five to six hour 627 

stratifications and dissimilar spatial extent between the two models influencing the relationship 628 

between our environmental indicators and species richness (see Figures 2 and 3). Analyzing the 629 

distribution of our predicted breeding bird richness, we note that high breeding bird richness 630 

levels are located in the warmer, more inhabitable regions of BC presenting a long-standing issue 631 

of provisioning land for species conservation where humans and industry thrive (Freemark, 632 

2006). Our study supports existing research (e.g., Freemark, 2006) indicating BC’s avian 633 

richness peaks in the south, particularly the south central areas of the province and southern 634 

Vancouver Island, where parks and protected lands are limited (Freemark, 2006). Our mapped 635 

predictions of breeding bird richness could be used to highlight potential gaps in the protection 636 

of biological diversity if overlaid with a parks and protected areas map. 637 

 However, extrapolating predictions outside of the spatial range of your model introduces 638 

inaccuracies; therefore, as a caveat we note the breeding richness levels predicted in the Northern 639 

Boreal Mountains, coastal mountains and northern coast were supported by a limited number  of 640 

surveys. While gridded atlases seek to optimize the spatial extent of data collected (Donald and 641 

Fuller, 2010), human access to observation areas still plays a major role in data collection and is 642 

evident in the spatial distribution of the BC Breeding Atlas surveyed grid cells. When additional 643 
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resources are available for data collection, efforts should focus on gathering breeding 644 

information outside the ranges easily accessible by roadways to support our knowledge of the 645 

selection of remote areas as breeding habitat. Similarly, the areas of BC predicted to have high 646 

species richness, such as South and Central Interior regions, Boreal and Taiga Plains, the coastal 647 

areas along the Strait of Georgia, southern portion of Vancouver Island, and valley in the 648 

Southern Interior Mountains, are ideal targets for future field surveying. 649 

 Breeding bird atlas data are a unique data source for studying broad scale environmental 650 

interactions between vertebrates and habitat compositions and structures. For example, atlas data 651 

have been successful used to assess the effects of afforestation of invasive tree species on 652 

grassland avifauna communities in Mpumalanga Province, South Africa (Allan et al., 1997). 653 

Abundance data have been integrated with atlas data to study the large-scale movements of birds 654 

across Australia (Griffioen and Clarke, 2002) and developing important breeding bird areas used 655 

to discuss the creation of species protected areas in North England were identified through north 656 

England atlas data (Brown et al., 1995). Additionally, gridded bird data displays considerable 657 

promise for linking environmental data derived from remotely sensed imagery to vertebrate 658 

diversity (e.g., Coops et al., 2009b). These studies, and our own, provide insights into the 659 

potential information breeding bird atlas data can supply for monitoring threats to vertebrate 660 

habitat and guiding biodiversity conservation planning for the allocation of protected lands or 661 

areas of concern for strategic species abundance and diversity monitoring.   662 

 For example, the emergence of a strong connection between BC’s breeding richness and 663 

available energy (temperature and water indicators) demonstrates the potential to monitor 664 

changes in regional climate as an indicator of habitat condition for supporting biodiversity 665 

(Nagendra, 2001; Duro, 2007; Gillespie et al., 2008). By linking vertebrate richness with 666 
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available energy indicators automatically collected by weather station data and remotely sensed 667 

imagery we highlight a data source appropriate for indicating threats to breeding species 668 

diversity levels once surveying is complete making efficient use of limited conservation 669 

resources given the amount of money, time and organization needed for collecting species 670 

information (Franklin, 1993). However, we should note that the explained relationships between 671 

breeding bird species richness and habitat conditions might also be affected by environmental 672 

conditions, such as climate change in the migration areas and wintering habitats of BC’s 673 

migratory breeding birds, which requires analysis of environmental conditions in more than one 674 

region to quantify and predict.  675 

5.0 Conclusion 676 

 Our research expands upon ecological studies examining the significance of food 677 

resources (productivity), thermoregulatory needs (ambient energy) and niche habitat 678 

(heterogeneity) on vertebrate habitat selection. From our models, we have concluded that 679 

precipitation levels and climate drive the distribution of breeding bird richness across the 680 

province of BC. Our findings support a large body of research that has found water-energy to be 681 

the fundamental driver of species diversity (see Hawkins et al., 2003a) theorized by some to 682 

occur because of the increase in metabolic rates in warmer regions leading to greater speciation 683 

(see Brown et al., 2004 for discussion). 684 

  By presenting suitable indices for modelling environmental factors and by utilizing a 685 

flexible predictive model able to accommodate non-linear relationships, interaction affects and 686 

predictor correlations we present transferable methodology for species richness modelling. We 687 

believe model performance could be improved as more breeding bird data are collected. Notably, 688 

we model and analyze the predictive power of environmental indicators derived from freely 689 
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available data to encourage the extension of our findings to be used as a stepping-stone for 690 

landscape monitoring as a surrogate for vertebrate habitat conditions affecting population levels.  691 

The benefit of making atlas data freely available throughout project time period will 692 

encourage scientists to undertake analysis to uncover potential data bias or quality issues that can 693 

be corrected before data collection is complete to optimize data collection efforts. Fostering a 694 

connection between atlas organizers and data analyzers could enhance the breadth of atlas use for 695 

habitat modelling and strategic biological monitoring in areas of concern and provide observers 696 

with an understanding of the variety of scientific uses atlas data hold. This will require 697 

engagement between data analyzers, who can provide knowledge based research products, and 698 

volunteer data collectors, who can communicate the feasibility of additional data collection. 699 

Ideally a few simple additions to attribute data collection could increase the flexibility in how 700 

survey data can be utilized by scientists. Examples of these attributes include consistently 701 

recording survey time and date, approximate area covered within the quadrat, simple descriptions 702 

of breeding habitat types, and observer experience such as number of seasons spent surveying. 703 

Future field work should target areas of inconsistent breeding richness forecasts (Coast and 704 

Mountains, Taiga Plains regions) and areas not currently surveyed but expected to support high 705 

levels of species richness (Central and South Interior, productive Boreal Plains and valley of 706 

Southern Interior Mountains). To reach these goals, resources are needed for data collection in 707 

by academics of agencies in the inaccessible regions of BC to augment the rich data source 708 

volunteers have contributed. Undoubtedly, the richness of gridded bird data makes it a unique 709 

data sources for scientist to investigate the large-scale relationships between birds and 710 

environmental factors and would not be possible without the generous efforts of the volunteers.  711 
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Table 1 Top six variable performances in predicting breeding bird richness for each model. The 886 

percentage increase in the mean square error is the calculated average prediction error rate if the 887 

covariate of interest is randomized and used to predict breeding richness. Large increases in the 888 

mean square error indicate the variable is important for accurately predicting breeding richness. 889 

Differences between the models variable selections are italicized.  890 

Top Ranked Predictor Performance in our Breeding Bird Richness Models 

3 to 4 hr Model 5 to 6 hr Model 

Percent Increase in Mean Square Error 

Climate moisture deficit 20.57 Average elevation 18.08 

Average elevation 20.11 Average land surface temperature 14.76 

Mean summer precipitation 18.27 Mean annual precipitation 14.36 

Average fPAR 17.50 Mean summer precipitation 13.24 

Mean annual precipitation 16.5 Mean annual temperature 13.17 

Mean annual temperature 15.79 Average fPAR 12.47 
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Table 2 Top six predictor variable performances for reducing the sum of the squares within the breeding 891 

bird richness partitions. Larger node purity values indicate variables selected most often to predict the 892 

distribution in breeding bird richness. Differences between the models variable selections are italicized.  893 

Top Ranked Predictor Performance in our Breeding Bird Richness Models 

3 to 4 hr Model 5 to 6 hr Model 

Increase in Node Purity 

Climate moisture deficit  17080 Mean summer precipitation 10702 

Mean summer precipitation 14605 Evaporative demand 10528 

Evaporative demand 14557 Average elevation 10247 

Average elevation 13252 Average land surface temperature 8738 

Mean annual precipitation 12370 Mean annual precipitation 8953 

Elevation range 11518 Elevation range 8080 
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Figure 1 Ecoprovince Ecosystem Classification of British Columbia, data accessed through the 894 

BC Government Open Data Licence at www.data.gov.bc.ca (last accessed May 2nd, 2012).   895 

 

Figure 2 Random Forests model performance, three to four and five to six hour breeding richness 896 

stratification models. In order from top to bottom the maps display observed, predicted and the 897 

difference between observed and predicted distributions in breeding bird species richness for the 898 

survey stratifications.   899 

 

Figure 3 Maps of predicted distributions (categorized using Jenks Natural Breaks) of breeding 900 

bird richness regions of BC not presently surveyed between 3 to 6 hours. These maps predict 901 

richness based on uniform three to four hour and five to six hour survey effort in each 10km by 902 

10km quadrat across BC. The final map, model difference, is the breeding richness prediction 903 

difference between the five to six hour and three to four hour models. 904 

 

Figure 4 Selection of the top ranked splitting predictors of breeding bird richness. The variables 905 

represented are a climate moisture deficit, reference evaporative demand, average elevation, 906 

mean summer precipitation, average land surface temperature and elevation range.  907 

 

Figure 5 Display of the range in the observed breeding richness over the two-hour intervals and 908 

graphs depicting the relationship between breeding richness and survey effort within the range. 909 

These results, highlight observational bias in the stratified (one to two hour, three to four hour, 910 

five to six hour) maximum observed species richness as we would expect the graphs to display 911 

positive trend as survey effort (hours) increase.  912 
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