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Abstract: The mapping of changes in the distribution of insect-caused forest damage 

remains an important forest monitoring application and challenge. Efficient and accurate 

methods are required for mapping and monitoring changes in insect defoliation to inform 

forest management and reporting activities. In this research, we develop and evaluate a 

LiDAR-driven (Light Detection And Ranging) approach for mapping defoliation caused by 

the Common pine sawfly (Diprion pini L.). Our method requires plot-level training data 

and airborne scanning LiDAR data. The approach is predicated on a forest canopy mask 

created by detecting forest canopy cover using LiDAR. The LiDAR returns that are 

reflected from the canopy (that is, returns > half of maximum plot tree height) are used in 

the prediction of the defoliation. Predictions of defoliation are made at plot-level, which 

enables a direct integration of the method to operational forest management planning while 

also providing additional value-added from inventory-focused LiDAR datasets. In addition 
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to the method development, we evaluated the prediction accuracy and investigated the 

required pulse density for operational LiDAR-based mapping of defoliation. Our method 

proved to be suitable for the mapping of defoliated stands, resulting in an overall mapping 

accuracy of 84.3% and a Cohen’s kappa coefficient of 0.68.  

Keywords: airborne laser scanning; Diprion pini; forest disturbances; forest health 

monitoring; forest management planning; needle loss  

 

1. Introduction 

Evergreen coniferous forests dominate the landscapes in Finland, covering approximately 76% of 

the national land base. As such, forests have importance across economic, environmental, and societal 

domains. Chiefly through settlement and management activities these forests have been altered by 

humans, with most of the natural mature forests having been replaced with younger, even-aged 

managed forests. As a northern nation, climate change and related effects are considered to be among 

the most serious environmental issues threatening the health of forests in Finland. Average annual 

temperatures have increased more in northern latitudes than the global mean rise [1]. Furthermore, it 

has been found that changes in climate and related increased frequency of extreme weather events are 

altering the ecological balance of forests, [2] causing widespread damages by insects pest in managed 

forests [3]. The Mountain pine beetle (Dendroctonus ponderosae Hopkins) (Coleoptera: Scolytidae) in 

Canada provides an additional example, where cold winter temperatures historically served to limit the 

extent of the insect within a larger extent of possible hosts. Changes in climate have resulted in an 

alteration to the temperature regime, resulting in the spread of Mountain Pine Beetles into previously 

un-infested regions [4]. Spatial change in the nature of insect-related forest disturbances have also been 

noted, with disturbance events now observed to cover larger areas than previously experienced 

(e.g., [5]). Similar to the disturbance area and spread into new, previously un-infested, environments of 

bark beetles in North America [4,6], outbreaks of defoliating insects and bark beetles have increased 

rapidly in the past two decades in northern Europe [7–11]. 

Development of modern, cost-effective, mapping and monitoring methods for forest sites affected 

by climate-driven disturbance agents is urgently needed [12,13]. Typically the mapping, and often also 

the monitoring, of defoliation has been based on field sampling [14]. Field sampling is generally seen 

as costly, and in the case of capturing defoliation, it may often produce biased results. Field sampling 

of defoliation can be biased due to an array of spatial and temporal considerations, whereby defoliation 

events may be missed because of issues including location, timing of defoliation in relation to field 

visits, access, and number of plots allocated. Furthermore, as defoliation does not typically result in 

mortality, the impacts of a given event are indicative of longer-term impacts, such as a reduced yield 

expectation over a given period of time [5,15]. Based on particular site conditions, the accrual of fiber 

follows a known trajectory (yield), and the loss of photosynthetic activity through the defoliation 

reduces the expected longer term yield. This long-term loss in yield alters volume predictions from a 

forest management perspective, resulting in a need to revisit harvest scheduling and total fiber volume 

levels present over a given woodshed. Inventory-based estimates of volume are often statistically 
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linked to biomass to produce modeled estimates of carbon that, in turn, can be used to inform on the 

exchange of gases between terrestrial ecosystems and the atmosphere (e.g., [16]). As such, capturing 

factors that perturb the capacity to accumulate fiber, such as defoliation, is increasingly important. The 

Finnish Forest Institute carries out the National Forest Inventory (NFI) [17], through which 

information on forest health is collected and monitored on a strategic level. While useful for some 

purposes, more precise (spatial, temporal, and categorical) information on forest disturbances is 

required to meet the current and growing needs of forest health monitoring.  

Remote sensing is an increasingly established source of data to support mapping and monitoring of 

forested areas, including aspects related to condition, structure, and dynamics [18,19]. The capacity of 

remote sensing to characterize forests has been furthered by the advent of airborne scanning LiDAR 

(Light Detection And Ranging) technology and related information extraction techniques [20]. With 

the capability of direct or derived measurement of three-dimensional (3D) forest structure—including 

canopy height [21], crown dimensions [22], and biomass [23]—LiDAR can also be applied to the 

monitoring of various forest disturbances [7,8,24,25]. In Nordic countries, scanning LiDAR is already 

applied to many practical applications, including the creation of accurate digital terrain models 

(DTMs), urban engineering, and forest management planning [26]. In operational forest management 

planning, a two-stage procedure using LiDAR and field plots, an area-based approach (ABA, [27]), 

has become common and a reference against which other inventory methodologies are compared. The 

foremost advantages of the state-of-the-art LiDAR ABA compared with traditional stand-wise field 

inventory (SWFI) include more precise prediction of forest variables and sample-based estimation with 

the capacity for the calculation of accuracy statistics, and, at least in principle, LiDAR-based inventory 

does not require delineation of stand boundaries. Although current LiDAR data acquisition and 

processing costs are lower than that of traditional SWFI methods in Finland, expansion of the possible 

uses of LiDAR data in a forest management and monitoring context further justifies the expenditure. 

Additional applications using LiDAR data to capitalize upon the unique information content are 

incremental, offering an opportunity to supplement inventory data bases. Forest health status and 

dynamics are an example where an information deficit exists that could also be addressed by LiDAR. 

The capability of scanning LiDAR in mapping of defoliation has been demonstrated for a pine 

sawfly attack in Norway [7]. LiDAR was acquired both before and after the insect attack, and the 

defoliation was derived from the change in penetration rate and Leaf Area Index (LAI). Other studies 

have posited that defoliation may be detected without having repeated ALS acquisitions, and that 

different types of disturbances can be distinguished based on the type of ALS penetration through the 

forest canopy [10]. Kantola et al. [8] tested the classification of defoliated and healthy trees using a 

survey configured for high density LiDAR data acquisition (20 pulses/m
2
) in conjunction with aerial 

images. The classification accuracies ranged between 83.7% and 88.1% (kappa value 0.67–0.76) 

depending on the classification method applied. It should be noted that the trees used in the 

classification were clearly divided into healthy and defoliated trees, thus the results are not applicable 

in an operational setting. However, the study proved that defoliated and healthy trees produce statistically 

separable point clouds and that the application showed potential and was worthy of further study. 

The aim of this study was to develop and evaluate a LiDAR-based method for mapping defoliation 

caused by the Common pine sawfly (Diprion pini L.) (Hymenoptera: Diprionidae). Implementation of 

this method requires plot-level training data regarding defoliation and co-located LiDAR data. Our 
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hypothesis is that in defoliated stands, a greater proportion of LiDAR pulses will penetrate more 

deeply into the forest canopy. We tested this hypothesis for an inventory and management relevant 

two-class classification scheme. The difference in penetration noted was used to inform on defoliation. 

The classes are separated using a threshold. Our predictions were made at the plot-level, which enables 

direct linking the method to the operational forest management planning. In addition to the method 

development, we evaluated the prediction accuracy and investigated the impact of pulse density for the 

LiDAR-based mapping of defoliation. 

2. Materials 

2.1. Study Area  

The field work for this research was carried out over a 34.5 km
2
 area in the Palokangas area, 

Ilomantsi, found in the eastern corner of Finland (62°53′N, 30°54′E, Figure 1). Dry to dryish forest site 

types dominate the region. Forests of the study area are dominated (at 99.5%) by Scots pine (Pinus 

sylvestris L.) (Pinaceae). The majority of the stands are young to middle-aged, having a mean age of 

53 years and a mean diameter of 14.7 cm. The initial outbreak of D. pini initiated on the western coast 

of Finland in 1997, impacted over 500,000 ha in central Finland, and became apparent in 1999 in the 

Palokangas area. Since then, the outbreak range in Palokangas has fluctuated spatially between 10,000 

and 15,000 ha. Both population density and damage intensity have varied on an annual basis in recent 

years. Severe infestation over successive years led to mortality being observed 2006–2008. 

Figure 1. Study area and location of the plots (62°53′N, 30°54′E). Most of the plots are 

located in dry (5) to dryish (4) site types.  
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The field measurements were carried out in May and early June 2009 before the elongation of 

current needles, representing the defoliation status of the fall of 2008. A total of 106 plots (r = 8 m, 

Table 1), growing in mainly pure mature and maturing Scots pine forest stands, were inventoried using 

adaptive cluster sampling (ACS) as a sampling method (see more details in [28]). Following ACS, an 

initial set of units is selected using a probability sampling procedure and additional units from the 

neighborhood are added [28]. The procedure is iterative and is repeated until no additional units satisfy 

the required criteria (in our case, presence of plot-wise defoliation). According to (e.g., [28–30]), ACS 

has advantages over more conventional sampling methods, especially in sampling rare and clustered 

phenomena through focusing of sampling efforts on areas well represented by the variable of interest.  

Table 1. The plot-wise averages and the variation of the mean diameter (Dg), height (Hg), 

basal area (Ba) and volume (Vol) of the field data. 

  Mean Min Max Sd 

Dg (cm) 21.5 8.1 44.9 7.8 

Hg (dm) 170.0 62 265 51.8 

Ba (m2/ha) 14.0 1.0 32.0 7.6 

Vol (m3/ha) 109.9 1.1 285 68.3 

The sample plot centers were positioned with a Trimble Pro XH (Trimble Navigation Ltd., 

Sunnyvale, California, USA), designed to reach 30 cm precision. Differential post processing was 

applied. Individual trees were also located and spatially recorded. The visual assessment of defoliation 

severity was performed simultaneously with tree- and stand-wise measurements, performed by experts 

with similar experience, following established defoliation categorization criteria. The defoliation 

severity of each tree was visually assessed from different directions, according to Eichhorn [31], 

comparing the amount of needles present to an imaginary reference tree with full healthy complement 

of foliage growing on the same site type in with the same canopy cover level. Intervals of 10% were 

used for the categorization of needle loss. The same procedure for needle loss assessment is utilized, 

for example, by the Finnish National Forest Inventory (NFI) [17]. The plot-wise defoliation levels 

were calculated as an average of the needle losses of the trees found in the two dominant strata 

encompassing each plot. The defoliation levels of the plots varied between 0% and 50%, and the tree-

wise defoliation levels varied between 0% and 100%. Overall, the trees and the plots had on average 

10% to 30% needle loss, respectively.  

2.2. LiDAR Data 

The LiDAR data was acquired in October 2008 with a Leica ALS50-II SN058 laser scanner (Leica 

Geosystem AG, Heerbrugg, Switzerland). The flying altitude was 500 m at a speed of 80 knots, with a 

field of view of 30 degrees, pulse rate of 150 kHz, scan rate of 52 Hz, and a ground footprint diameter 

of 0.11 m. The density of the LiDAR data was approximately 20 pulses/m
2
. LiDAR data were 

classified into ground or non-ground points using the standard TerraScan approach, as explained by 

Axelsson [32]. A digital terrain model was created using classified ground points. LiDAR heights 

above the ground (normalized height or canopy height) were calculated by subtracting the ground 

elevation from corresponding non-ground LiDAR measurements.  
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3. Methods 

3.1. General Workflow 

Mapping of the defoliated forest stands was based on a two-stage procedure using LiDAR and field 

plots. LiDAR returns that are reflected from the canopy were used to calculate features that were used 

in the needle loss prediction. Forest canopy cover (FCC) is known to effect the penetration of LiDAR 

pulses in a forested environment and thus, must be considered in the area-based predictions of 

defoliation. In this study, within plot FCC is first determined, with LiDAR features calculated only 

from that particular area (i.e., uses only the LiDAR returns that are reflected from within the forest 

canopy). Other factors hindering reliable defoliation prediction include overlapping branches from 

neighboring trees and understory vegetation. To minimize the effect of these factors, only LiDAR 

returns reflected above mean plot height are used. The mean height estimate is calculated as 50% of 

the maximum LiDAR height. Additionally, in the boreal forest environment of this study, tree crowns 

above this mean height designation typically do not overlap. In addition, with regards to understory 

vegetation or suppressed trees, such as understory spruces, are found below this level (although 

understory is only of slight concern in this study area due to the dominance of Scots pine). Basic steps 

in our method (with references to corresponding sections in this study) are as follows: 

(1) Measure plot-level ground truth about defoliation (Section 2.1) 

(2) Acquire LiDAR (Section 2.2) 

(3) Preprocess LiDAR (Section 2.2) 

(4) Determine operationally appropriate classification schemes for defoliation (Section 3.2) 

(5) Determine FCC from LiDAR (Section 3.3) 

(6) Calculate LiDAR features from canopy returns (Section 3.4) 

(7) Combine LiDAR features and plot-level ground truth (Section 3.4) 

(8) Predict defoliation at the plot-level (Section 3.5) 

(9) Map the area-wide defoliation and validate method at the plot-level (Section 4) 

3.2. Classification Schemes for Defoliation Based on Expert Observations in the Field 

The field plots were classified using two classes based on defoliation level. The threshold value of 

20% of defoliation between healthy and defoliated stands was used. Defoliation above the level of 

20% is understood by practitioners as the level of notable defoliation, at which a long-term reduction 

in yield is anticipated.  

3.3. Determination of the Forest Canopy Cover Using LiDAR 

FCC was mapped following delineation of tree crown surface area using individual tree detection 

(ITD) procedures. Using increasingly standard methods, consistent and reliable mapping is possible 

with operationally viable levels of detection accuracy [33–35]. Readers are recommended to refer to 

the original references for a detailed description of tree delineation in ITD [22,36,37]. Specifically 

using ITD as a means for FCC delineation is only briefly described here. The FCC delineation method 

used was based on the creation of a normalized surface model (nDSM, or in case of a forest, canopy 
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height model, CHM), and then FCC was delineated using watershed segmentation from a smoothed 

nDSM (e.g., [22,36]). The threshold height used to delimit created FCC segments was 50% of the 

maximum LiDAR height of the plot.  

3.4. Extraction of LiDAR Features from Canopy Returns 

After FCC areas were segmented, the co-located LiDAR point clouds were extracted separately for 

each segment. LiDAR features describing height of the trees and density of the crowns were 

calculated. Features included maximum (Hmax), mean (Hmean), and standard deviation (Hstd) of 

LiDAR heights. In addition, proportions of canopy returns below various relative heights were 

calculated (Table 2). In the calculation of LiDAR features, we used “first” and “only” returns. The 

rationale for using only these returns is largely based upon the presence of many uncertainties in those 

returns coming after a pulse starts to penetrate into a tree canopy (i.e., is the pulse penetrated trough a 

tree that is not within the plot, overlapping crowns, and understory vegetation). To ensure a focus on 

the upper canopy and crowns, LiDAR returns with the height above ground being greater than the 

mean height of the plot (50% of Hmax) were used in the calculations. This mid-canopy stratification 

for each plot is unique compared to most other studies utilizing LiDAR in forest mapping. Calculated 

LiDAR metrics were finally linked to the plot-level ground measurements by using the GPS-measured 

plot locations.  

Table 2. Statistics of the extracted Light Detection And Ranging (LiDAR) features.   

Feature Description Mean Min Max Sd 

Hmax Maximum height of LiDAR returns, m 18.19 4.92 25.53 4.03 

Hmean Arithmetic Mean of LiDAR heights, m 12.85 4.26 21.62 3.74 

Hstd Standard deviation of LiDAR heights, m 1.98 0.97 3.82 0.58 

CV Hstd divided by Hmean 0.16 0.09 0.25 0.02 

p60 Proportion of returns below 60% of total height 0.25 0.00 0.55 0.13 

p70 Proportion of returns below 70% of total height 0.54 0.02 0.85 0.19 

p80 Proportion of returns below 80% of total height 0.78 0.27 0.96 0.16 

p90 Proportion of returns below 90% of total height 0.93 0.33 0.99 0.10 

3.5. Prediction of Defoliation Using Random Forest 

A nearest neighbor (NN) approach was used in plot-wise needle loss prediction. Plot-level 

defoliation determined in the field was used as target observation (y value), and features calculated 

from LiDAR canopy returns were used as predictors (x values). Random Forest (RF, [38]) was applied 

in the search for nearest neighbors. The RF method is explained in detail by Crookston and Finley [39] 

as well as Falkowski et al. [40]. Hudak et al. [41] and Latifi et al. [42] showed that the RF method is 

robust and flexible in forest variable prediction compared with other NN methods. In the RF method, 

several regression or classification trees are generated by drawing a replacement of two-thirds of the 

data for training and one-third for testing each tree (i.e., out-of-the-bag samples). A regression tree is a 

sequence of rules that splits the feature space into partitions having values similar to the response 

variable. Measurement of nearness in RF is defined based on observations of the probability of ending 

up in the same terminal node in classification. The output is the percent increase in the 
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misclassification rate as compared to the out-of-bag rate (with all variables intact). A relatively small 

number of target observations (n = 106) forced us to use a small number of nearest neighbors (k) and 

out-of-the bag samples in evaluation. The number of k was chosen to be three, based on previous 

knowledge. In general, stable results are obtained in forest variable predictions with k values between 

two and seven, though bias being smallest with k = 1. A total of 2000 regression trees were fitted in 

each RF run to gain more consistency. Randomness was also taken into account by running the RF 

method 50 times and the final result was the average of these runs. The R statistical computing 

environment [42] and yaImpute library [39] were applied in the RF predictions. The yaImpute library 

is tailored to nearest-neighbor forest attribute estimation and mapping.  

The preliminary predictors were chosen based on previous studies (e.g., [7,8,10,44]), correlations, 

and preliminary modeling results (i.e., the predictors were chosen on the basis of biological plausibility 

as well as statistical significance).  

3.6. Simulation of the Effect of Pulse Density 

The instrument used and applied configuration settings produced a dense coverage of LiDAR data 

(20 pulses/m
2
), which enabled simulations to determine the any effects of a pulse density upon 

mapping of defoliation. As a starting point, the full density of the LiDAR data (20 pulses/m
2
) was used 

to the delineation of FCC and to select LiDAR features for predictions. (Noting that the effect of the 

point density upon ITD and related FCC were not current objectives). After delineation of the FCC and 

feature selection, the data was thinned randomly. Randomness was taken into account by simulating 

the thinning and the prediction process 50 times and using averages of these runs as final results. Point 

densities of 20, 18, 16, 14, 12, 10, 8, 6, 4, 2, 1 and 0.5 pulses/m
2
 were simulated and tested. In Finland, 

LiDAR data with 0.5 pulses/m
2
 is used in operational forest management planning inventory.  

4. Results 

4.1. Interaction between LiDAR and Defoliated Forest Canopy 

A little under a half of all plots available in the study (43.9%) were representative of defoliated 

conditions. The weighted average of diameter, height, basal-area and volume were 18.9 cm, 15.1 m, 

16.6 m
2
/ha, and 121.1 m

3
/ha for healthy plots, and the respective statistics for defoliated plots were 

24.9 cm, 19.1 m, 11.4 m
2
/ha, and 96.8 m

3
/ha. LiDAR Hmean and Hmax mean values were 11.9 m and 

17.3 m in healthy plots and 14.0 m and 19.3 m in defoliated plots. These initial findings based on the 

field data alone reveal that the forest structure differs between these two classes. Thus, classification 

had to be done carefully in order to classify the phenomena of interest (defoliation), and not result in a 

general separation of stand structural types. In order to do so, the classifying features should not 

correlate with tree size. Hmean and Hmax describe tree size whereas proportions of the LiDAR returns 

from the upper canopy (p60, p70, p80 and p90) are relative measures that are not directly correlated 

with tree size. These features are also identified as eligible as suitable classifiers for defoliation. 

The mean values of p60, p70, p80 and p90 varied significantly in Student’s t-test between two 

defoliation classes (p = 0.00). In healthy plots a larger number of LiDAR returns was reflected from 

the upper canopy.  
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4.2. Area-Based Mapping of Defoliation 

In the first phase, we implemented an RF run with all the possible classifiers included. This was 

justifiable as the overall number of classifiers was small (eight classifiers). Based on these RF runs, the 

most important classifiers were proportions of the upper-canopy LiDAR returns, p80 and p90 (Figure 2). 

Needle loss was then predicted using p80 and p90 as classifiers. Defoliated plots were classified with 

accuracy of 84.3% and a Cohen’s kappa coefficient (kappa) of 0.68.  

Figure 2. Scaled Importance in Random Forest run in classification of defoliation.  

 

4.3. Effect of Pulse Density to the Area-Based Mapping of Defoliation 

Features p80 and p90 were used in the analyses of the effect of the LiDAR pulse density for 

mapping the defoliation. Simulated pulse densities varied between 0.5 and 20 pulses/m
2
. Features were 

calculated and the predictions made for 12 different pulse densities (Table 3, Figure 3). The mapping 

accuracy was not overly sensitive to LiDAR pulse density varying from 77.1% to 89.3%. 

Table 3. Mapping accuracy of defoliation with various LiDAR data pulse densities.  

Pulse Density, pulses/m
2
 Classification Accuracy, % Kappa Coefficient 

0.5 82.5 0.64 

1 80.4 0.59 

2 78.1 0.56 

4 89.3 0.78 

6 79.1 0.57 

8 80.9 0.61 

10 78.1 0.55 

12 78.1 0.55 
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Table 3. Cont. 

Pulse Density, pulses/m
2
 Classification Accuracy, % Kappa Coefficient 

14 82.7 0.64 

16 83.1 0.66 

18 77.1 0.53 

20 84.3 0.68 

Figure 3. Effect of pulse density to the accuracy of area-based mapping of defoliation.  

 

5. Discussion 

In the next-generation forest management planning systems, it is anticipated that additional 

information on forest health will be required. Capture of forest health, and specifically defoliation, will 

allow for incorporation into management and planning variables that relate to growth loss and tree 

mortality. Thus, the forest management actions, such as which stands are to be harvested or subject to 

some silvicultural intervention, can be optimized differently than for healthy stands. The findings of 

this study present new information regarding how scanning LiDAR could be used in the mapping of 

defoliated stands. The hypothesis was that in defoliated stands, a larger proportion of the LiDAR 

returns should penetrate more deeply into the canopy. The results of the analyses supported our 

hypothesis. Although several LiDAR features were calculated for use as possible predictors, 

proportional penetration variables in the upper canopy were most informative. When using only two 

variables, mapping accuracy of 84.3% was obtained. Proportional LiDAR penetration variables are 

logical and straightforward, with the simple interpretation: With more intense needle loss, a greater 

proportion of LiDAR returns will be found in the lower canopy layers (when stratified by the half the 

maximum height at that location).  
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LiDAR sensors also collect information of pulse return intensity. LiDAR intensity is a measure of 

the spectral reflectance characteristics of the features that intercepting, and returning, the laser energy. 

In theory, based upon a wavelength of 1064 nm in the near-infrared, LiDAR return intensities should 

be lower in defoliated stands than in respective healthy stands. However, in practical applications, use 

of intensity is problematic because it must be calibrated. We made some classification tests using raw 

intensity information (i.e., we did not use any calibration) in addition to the p90 or p80. In a relatively 

small (in a practical sense) study area, it seemed that this was not causing a problem and intensity 

provided some additional explanatory power. Classification accuracy of 86.9% was obtained. Based on 

that test, it can also be assumed the LiDAR full waveform information could provide additional 

information regarding defoliation. The form of the waveform describes the interaction of the LiDAR 

pulse and forest canopy. Waveform information could be used in next-generation forest management 

planning system to map defoliation, instead of relying on intensity, if the calibration of the intensity 

causes practical problems. However, only a few studies exist in which full waveform LiDAR is used in 

the mapping of forests and the research remains in early stages.  

Another practical problem in the mapping of defoliation relates to the field reference. Subjective 

estimation of the defoliation is a weakness. From the remote sensing point of view, another aspect to 

be aware of is that the defoliation classes are dependent on the site type (i.e., a tree or a stand that is 

20% defoliated has more needles in a rich site than in a poor site type). Thus, mapping of the 

defoliation should always be stratified by site type. Fortunately, this information is often readily 

obtained, as it is also needed for other forest management purposes. We assume that the quality of site 

type information in this sense is not oversensitive. We did not stratify our data based on site type 

because the majority of the plots were located in similar site types. 

We used ITD methods to estimate FCC that can also be considered as a forest canopy mask. FCC can 

be estimated also by simply thresholding the CHM, if that kind of delineation of the FCC, used in this 

study, seems to be computationally too intensive. We assume this should not affect the results significantly. 

Our simulations with lower pulse densities are optimistic for two reasons: (1) We used dense data 

(20 pulses/m
2
) to delineate FCC, which was the basis for later analyses; and (2) this respective data set 

was used to select the optimal features to be used in the mapping of defoliation. However, we assume 

that this is not hampering our main finding, that our mapping method is not overly sensitive to the 

applied LiDAR pulse density. 

The results of this study are, in some ways, comparable with other studies using remotely sensed 

data in needle loss prediction. Ilvesniemi [45] used the same Palokangas study area when investigating 

the usability of aerial photographs classifying plot-level defoliation. The classification accuracies 

varied between 38% (9 classes) and 87.3% (2 classes). Separate testing data was not used. 

Karjalainen et al. [9] used multitemporal ERS-2 and Envisat satellite images and calculated the SAR 

backscattering intensities of 400 m × 400 m grid cells to estimate defoliation. A classification accuracy 

of 67.8% for a test set (two classes) was obtained. Comparing our results to previous studies with other 

remote sensing instruments, scanning LiDAR appears to offer additional information. In area-based 

mapping of defoliation, the variation in FCC was seen as a major problem (i.e., [8,44]). In this study, 

we showed that the effect of FCC variation can be taken into account with a quite straightforward 

method. Area-based mapping methods are, however, more suitable than ITD based in practice. The 

results of the present study provide novel findings for mapping damage by pine sawflies and 
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improving the inventory of disturbances by defoliators. Any new attributes generated, can be easily 

incorporated into the forest inventory database, providing additional information to inform planning 

and decision making. The scanning LiDAR-based approach for monitoring forest health is of especial 

interest as operational forestry is increasingly adapting LiDAR data into operational inventories. A 

capacity to characterize an expanded suite of attributes (such as defoliation) using the same LiDAR 

data—adding value to the inventory without an appreciable increase in costs—is demonstrated by 

this study.  

6. Conclusions 

In this study, an area-based method for the practical mapping of defoliation was developed and 

validated. Following this approach, it was possible to obtain 84.3% mapping accuracy for two 

operationally important defoliation classes by using proportions of canopy returns below 80% and 90% 

relative heights. We also found that the mapping accuracy was not overly sensitive to LiDAR pulse 

density. The method and information outcomes could be linked to operational forest management 

planning practices. 
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