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ABSTRACT 1 
Many areas of forest across northern Canada are challenging to monitor on a regular basis 2 
as a result of their large extent and remoteness. Although no forest inventory data 3 
typically exists for these northern areas, detailed and timely forest information for these 4 
areas is required to support national and international reporting obligations. We 5 
developed and tested a sample-based approach that could be used to estimate forest stand 6 
height in these remote forests using panchromatic Very High Spatial Resolution (VHSR, 7 
< 1 m) optical imagery and light detection and ranging (LIDAR) data. Using a study area 8 
in central British Columbia to test our approach, we compared four different methods for 9 
estimating stand height using stand-level and crown-level metrics generated from the 10 
VHSR imagery. “LIDAR-plots” (voxel-based samples of LIDAR data) are used for 11 
calibration and validation of the VHSR-based stand height estimates, similar to the way 12 
that field plots are used to calibrate photogrammetric estimates of stand height in a 13 
conventional forest inventory or to make empirical attribute estimates from multispectral 14 
digital remotely sensed data. A k-NN method provided the best estimate of mean stand 15 
height (R2 = 0.69; RMSE = 2.3 m, RMSE-%=21) compared to linear regression, random 16 
forests, and regression tree methods. The approach presented herein demonstrates the 17 
potential of VHSR panchromatic imagery and LIDAR to provide robust and 18 
representative estimates of stand height in remote forest areas where conventional forest 19 
inventory approaches are either too costly or are not logistically feasible. Whilst further 20 
evaluation of the methods is required to generalize these results over Canada’s northern 21 
forests, the synergistic use of VHSR and LIDAR data provides an opportunity for 22 
monitoring in areas that heretofore have had no detailed forest inventory information. 23 
 24 
1. Introduction 25 
Efficient forest management policies require robust estimates of stand height, as this 26 
parameter can be of importance for accurate stand volume and biomass derivation 27 
(Boudewyn et al. 2007), and site productivity estimation. The Canadian Forest Service 28 
(CFS) has the mandate to maintain a National Forest Inventory (NFI), providing the 29 
federal government with the capacity to report on Canada’s forests at national and 30 
international levels (Gillis 2001). Canada is a large nation, approaching one billion 31 
hectares in size, 60% of which is dominated by forested ecosystems composed of a 32 
mosaic of land cover types including wetlands, lakes, and variously vegetated areas 33 
(Wulder et al., 2008a). Excluding other cover types, treed and other wooded lands 34 
compose over 40% of the land base in Canada (Natural Resources Canada, 2010).  35 

In Canada, provincial and territorial agencies are vested with stewardship 36 
responsibilities over natural resources and allocate licenses for tenure, enabling industrial 37 
harvesting activities (Wulder, Kurz, and Gillis 2004). Provincial and territorial agencies 38 
also implement strategic inventories to inform jurisdictional level planning, which 39 
typically use air photo-based forest inventories on an approximate 10-year update cycle 40 
(Gillis, Omule, and Brierly 2005). Photo-based inventories are typically implemented 41 
where there is a capacity for, or interest in, industrial harvesting activities. The 42 
jurisdictional inventories are to support strategic decision making, and not required to 43 
provide wall-to-wall coverage or for areas that are not applicable (e.g., non-forest areas, 44 
parks, remote areas). As a result, in southern Canada, where industrial harvesting 45 
activities are more common, extensive inventory datasets are available; conversely, in 46 
northern jurisdictions (e.g., Yukon, Northwest Territories) limited areas of these large 47 
jurisdictions are systematically represented. The NFI is able to augment the air photo 48 
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collection and interpretation undertaken by provincial and territorial agencies to mitigate 49 
data acquisition needs, working in partnership to produce the relevant information 50 
required by the NFI. The NFI is a sample based inventory using 2 x 2 km photo plots 51 
located on a 20 x 20 km grid to produce statistical summaries and reports on Canada’s 52 
forest resources. In northern Canada, aerial photography is often unavailable in a 53 
comprehensive fashion because the industrial extraction of timber resources is limited. As 54 
a result, for the establishment of the NFI, information for northern areas of Canada was 55 
obtained from the Landsat satellite-based Earth Observation for Sustainable Development 56 
of forests (EOSD) project. The circa 2000 EOSD land cover product provides a series of 57 
stand attributes (e.g., cover type, volume and biomass) estimated from Landsat-7 58 
Enhanced Thematic Mapper Plus (ETM+) imagery (Wulder et al. 2008a). As the update 59 
of the NFI photo plots is on-going (Gillis et al. 2005), the use of higher spatial resolution 60 
data sources for the characterization of northern areas is also desired. Very High Spatial 61 
Resolution (VHSR, < 1 m) commercial satellite imagery, and an associated broad suite of 62 
mature image processing approaches, offer significant potential as a data source that can 63 
provide relevant forest attributes for the locations and time periods of interest (Falkowski 64 
et al. 2009).  65 

A detailed review of applications and a framework for implementation of VHSR 66 
commercial imagery for estimating a wide range of forest inventory attributes is provided 67 
by Falkowski et al. (2009). More detailed investigations of the attribution logic can be 68 
found in Mora, Wulder, and White (2010), in which an approach to estimate mean stand 69 
height using a regression tree and a series of stand- and crown-level metrics obtained 70 
from panchromatic VHSR satellite imagery was developed (R2 of 0.53, RMSE = 2.84 m). 71 
In that study, the authors used an independent sample of photo-interpreted mean stand 72 
heights for model calibration and validation, but acknowledged the need to identify more 73 
systematic, cost effective, and timely sources of calibration and validation data, 74 
particularly for areas where it is difficult to acquire aerial photography. Hence, in this 75 
current study, we propose the use of height estimates generated from samples of light 76 
detection and ranging (LIDAR) data as an option for calibration and validation of mean 77 
stand height estimates generated from VHSR imagery.  78 

Airborne LIDAR has proven to be a robust data source for estimating stand height 79 
(Hyyppä et al. 2001), particularly for forest management at local scales (Næsset and 80 
Økland 2002, Suárez et al. 2008). Typically, stand height is estimated using a series of 81 
LIDAR metrics regressed against in-situ height measurements (Næsset 2002, Patenaude 82 
et al. 2004). For example, Holmgren (2004), working in a mixed forest mainly composed 83 
of Norway spruce [Picea abies (L.) Karst.], Scots pine (Pinus sylvestris L.) and birch 84 
(Betula spp.) in Sweden, estimated Lorey’s mean stand height (R2= 0.99; RMSE = 0.59 85 
m; RMSE-%=3) using regression models based on LIDAR data metrics. Næsset and 86 
Oakland (2002) found that LIDAR estimated heights have a similar or better accuracy 87 
when compared to corresponding field-based estimates. Studies have demonstrated the 88 
capacity of LIDAR data to estimate individual species-specific tree heights with an error 89 
rate below 1.0 m when used in a high resolution mode (Persson, Holmgren, and 90 
Soderman 2002). The use of LIDAR data has also provided plot-based estimates of 91 
maximum and mean tree height with an error below 0.5 m (with full canopy closure 92 
conditions) (Næsset 1997, Magnussen and Boudewyn 1998, Næsset and Oakland 2002).  93 

While optical image data, such as Landsat, provides useful information on the 94 
horizontal distribution of forest canopy structure, LIDAR provides information on the 95 
vertical distribution of forest canopy structure. Hudak et al. (2002) explored the synergy 96 
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between Landsat-7 ETM+ images and LIDAR data for estimating forest canopy height 97 
using aspatial (regression) as well as spatial approaches (kriging). The best method for 98 
estimating and mapping canopy height was an integrated model combining spatial and 99 
aspatial approaches, by using an ordinary cokriging of stand height residuals obtained 100 
from an ordinary least square model (R2 = 0.88). Optical data sources with a higher 101 
spatial resolution have been used to estimate stand height (Peuhkurinen et al. 2008, Mora, 102 
Wulder, and White 2010, Chen, Hay, and St-Onge 2011) and could further be integrated 103 
with LIDAR for sample based characterizations of height, where the LIDAR data can aid 104 
in reducing the bias of height estimates. Wulder and Seemann (2003) proposed a sample-105 
based LIDAR protocol to build stand height regression models that can be applied to 106 
support model based attribution over larger areas. Their study, located in the boreal forest 107 
of Saskatchewan, Canada, used a model based on an empirical relationship between 108 
LIDAR data and forest stand information obtained from Landsat-5 Thematic Mapper 109 
(TM) images (R2 = 0.67, RMSE = 3.3 m, 73% of predicted stand heights were within 6 m 110 
of the measured plot heights used for validation).  111 

Based on a subset of inventory attributes (basal area, dominant height, number of 112 
trees per hectare), Eid et al. (2004) demonstrated that a LIDAR-based forest inventory 113 
provided more precise estimates and was less expensive when compared to a photo 114 
interpreted forest inventory. Means et al. (2000) similarly pointed to the potential cost 115 
effectiveness of LIDAR and suggested the use of a multi-stage sampling design for the 116 
collection of inventory attribute information, whereby an appropriate number of ground 117 
measures are collected within the area of LIDAR coverage and are used to build 118 
relationships with LIDAR-derived attributes. These relationships, based on this limited 119 
ground sample, could then be extended across the entire LIDAR sample, and 120 
subsequently, across larger forest areas. Evans, Roberts, and Parker (2006) suggest the 121 
use of LIDAR in a double-sampling approach to forest inventory, enabling "credible 122 
estimates of forest volume to be achieved with smaller numbers of field plots than would 123 
normally be required in a traditional field-only inventory to meet a specific sampling 124 
error requirement". 125 

The main objective of this study is to develop and test a sample-based method for 126 
using LIDAR data to calibrate and validate VHSR-derived forest stand height estimates. 127 
Individual stands (Henley, Wulder, and Falkowski 2009; Wulder et al. 2008b) and tree 128 
crowns (Gougeon 1995) were delineated and then used to test a series of metrics, as 129 
predictors of stand height, computed at both the tree crown and stand level, as per Mora, 130 
Wulder, and White (2010). Four statistical models for estimating mean stand height were 131 
tested and the results compared: linear regression, k-nearest neighbours (k-NN), 132 
regression trees, and random forests. LIDAR-derived heights were first calibrated against 133 
a sample of ground measured heights. Mean stand heights derived from LIDAR data 134 
were then used to calibrate and validate the VHSR height models. 135 
 136 
2. Material and methods 137 
2.1. Study area 138 
The study area is located in central British Columbia, west of the town of Quesnel 139 
(Figure 1). According to the Ecological Stratification Working Group (1995), the area 140 
falls within the Fraser Plateau Ecoregion comprised within the Montane Cordillera 141 
Ecozone. Mean annual temperature of the ecoregion is approximately 3°C (-7.5°C in 142 
winter and 12.5°C in summer), while the elevation ranges from 750 to 1700 m above sea 143 
level. Mean annual precipitation ranges from 250 to 600 mm. Lodgepole pine (Pinus 144 



 5

contorta) and Douglas-fir (Pseudotsuga menziesii) can be found on drier mid-elevation 145 
sites while Engelmann spruce (Picea engelmannii) and alpine fir (Abies lasiocarpa) are 146 
found at subalpine elevations. 147 

Two study sites, each 7000 ha in size, were defined based on the acquired VHSR 148 
images spatially corresponding with the LIDAR survey. The study area is dominated by 149 
lodgepole pine and previous disturbances, including harvesting (see Site 1 inset in Figure 150 
1) and a recent severe infestation of mountain pine beetle (Dendroctonus ponderosae 151 
Hopkins) that has resulted in significant pine mortality within the stands. Timber 152 
activities (natural and controlled regeneration, clear-cuts, selective logging) occur in the 153 
region. 154 
 155 

[Figure1 about here] 156 
 157 
2.2. Data 158 
LIDAR data were acquired in February 2008 by Terra Remote Sensing (Sidney, British 159 
Columbia) using their TRSI Mark II discrete return sensor. The laser data consisted of a 160 
north-south trending transect which was approximately 400 m wide and 65 km long. The 161 
survey configuration was optimized to achieve a ground return density of 0.7 pulses per 162 
m2 (Table 1). Separation of returns into ground and non-ground classes was completed by 163 
the vendor using Terrascan v. 4.006 (Terrasolid, Helsinki, Finland). A 1 m spatial 164 
resolution digital elevation model (DEM) was developed from all LIDAR ground returns 165 
using a linear interpolation approach. 166 

As the LIDAR data were acquired during winter, the forest floor was covered by 167 
snow with an average depth of approximately 0.5 m (σ=0.125 m). The average snow 168 
depth was estimated from a rigorous ground survey at nine forested plots (50 m x 50 m 169 
plots), with snow depth measured at 36 permanent plot locations spaced 10 m apart 170 
within each plot (Varhola et al., 2010). No snow on the branches was observed. The 171 
DEM constructed from the LIDAR data was actually a model of the snowpack surface 172 
rather than a direct estimate of terrain height or morphology (Coops et al. 2009). As a 173 
result, vegetation height metrics calculated using the DEM as a ground reference were 174 
negatively biased (~ 0.5 m). 175 
 176 

[Table 1 about here] 177 
 178 

During the summer of 2007, tree surveys were conducted within the same 179 
permanent ground plots used for the snow measurement survey. Two of the 36 plots were 180 
discarded for the rest of the analysis as they were not within the LIDAR coverage. In 181 
each ground plot two or four circular sub-plots having a total area of 100, 200, 400, or 182 
800 m2 (depending on estimated stem density to capture between 20 and 50 trees per sub-183 
plot) were implemented (Varhola et al. 2010). Trees with diameter at breast height (DBH, 184 
1.37 m) greater than 4 cm were counted and their species and defoliation condition were 185 
tabulated. Within each circular sub-plot, DBH and height of a subsample of up to 20 trees 186 
were measured. Calculated parameters included stems per hectare by species, mean DBH, 187 
basal area, and three indicators of plot height (that is, mean height, mean Lorey height, 188 
and maximum height). Table 3 provides average forest conditions encountered across the 189 
ground plots. The ground plot mean heights were used to calibrate the LIDAR heights 190 
(see section 2.7). Two 10 km by 7 km panchromatic (397 - 905 nm) WorldView-1 191 
images with a 0.5 m spatial resolution were acquired for this project (Table 2). To enable 192 
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the support of a number of research projects, the field data was collected following best 193 
practices, in a rigorous manner, with appropriate metadata to have relevance across a 194 
number of projects. 195 

 196 
 197 

[Table 2 about here] 198 
[Table 3 about here] 199 

 200 
2.3. LIDAR and VHSR image pre-processing 201 
Plot-level LIDAR height-distribution metrics were calculated using FUSION v. 2.90 202 
(McGaughey 2010) for 25 m grid cells. Based on results of previous research 203 
demonstrating the stability of first return data (Lim et al. 2003), vegetation metrics were 204 
processed using only first returns that were greater than 2 m in height. The 2 m height 205 
threshold was used to distinguish vegetation hits from ground hits (Nilsson 1996, Næsset 206 
2004). Calculated vegetation metrics included the 10, 25, 50, 75, 90, 95, and 99 207 
percentiles of the within cell height values (Magnussen and Boudewyn 1998), hereafter 208 
noted as HX with X the value of the percentile (e.g., the 90th percentile of height is noted 209 
as H90). Also calculated for each cell are the mean, maximum, standard deviation, 210 
skewness, kurtosis, and coefficients of variation of vegetation return heights (Næsset and 211 
Økland 2002, Hopkinson et al. 2006), and several canopy density variables, including the 212 
percentage of first returns above the two metre height threshold, and the percentage of 213 
first returns above the mean height (Goodwin, Coops, and Culvenor 2006, Hopkinson 214 
and Chasmer 2009). 215 

Mean stand heights were estimated using a linear regression model (enabling a 216 
calibration between the field plots and LIDAR metrics). Model parameters were selected 217 
based upon the strength of correlation between the various LIDAR metrics and plot-based 218 
height measures. Mean stand height was computed for the delineated stands completely 219 
or partially overlaid by the LIDAR coverage, considering only LIDAR data located 220 
within a 15 m inner-stand buffer. 221 
 To process the WorldView-1 images, we first performed a top-of-atmosphere 222 
(TOA) spectral radiance conversion following the methods outlined by Krause (2008). 223 
The images were then orthorectified using DEMs with a grid resolution of 23 m (Geobase 224 
2000). We assessed the precision of the orthorectification procedure using an independent 225 
geodetic point dataset (N=10) representative of the topography. We obtained RMSEs of 226 
0.64 m and 1.34 m for the image of site 1 and site 2, respectively. 227 
 228 
2.4. Stand delineation and classification 229 
Stands were delineated to define objects of homogeneous forest conditions that can then 230 
be used to build relationships with the LIDAR height-distribution metrics. For this 231 
purpose we used an image segmentation procedure available in Definiens Cognition 232 
Network Technology® (DCNT) (Baatz and Schäpe 2000, Definiens Imaging 2004). Prior 233 
to segmentation a 3 x 3 pixel median filter was applied to the panchromatic images to 234 
avoid over segmentation and reduce convolution of the stand boundaries due to the high 235 
spatial resolution of the WorldView-1 images, based on recommendations of Falkowski 236 
et al. (2009). Following the development of an NFI protocol for segmentation (Henley, 237 
Wulder, and Falkowski 2009), a set of initial segmentation parameters has been proposed 238 
(scale = 1200, colour = 0.3, and compactness = 0.9) with adjustments to the segmentation 239 
parameters undertaken according to the composition of the images (land cover type and 240 
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distribution). The resultant segmentation outcomes were reviewed manually to ensure 241 
satisfactory grey-level segment homogeneity, i.e., homogeneous within-stand conditions 242 
(Wulder et al. 2008b). 243 
 The delineated segments were then classified with the fuzzy classifier from 244 
DCNT software using a basic land-cover stratification so that the forested segments 245 
(hereafter referred to as forest, or forested stands) could be isolated for further analysis, 246 
and to provide land cover information representative of the entire image area. The classes 247 
were selected following NFI and EOSD project standards (Wulder and Nelson 2003) and 248 
included: forest, herb, shrub, bryoid, wetland, exposed land, rock, snow-ice (not present), 249 
and water.   250 
 251 
2.5. Crown delineation 252 
The Individual Tree Crown (ITC) method developed by Gougeon (1995) was applied to 253 
the panchromatic images within all the forested stands. The method is based on a valley-254 
following principle (Culvenor, 2003), which in this case requires a lower and an upper 255 
grey level value threshold to avoid delineation of non-tree features. The specified range 256 
of grey level values determines whether a pixel belongs to a tree crown or the 257 
surrounding shadow or understory. The threshold values were adjusted for each image 258 
according to the vegetation distribution and structure. Finally, segments with a crown 259 
closure less than 10% (N=3) were considered as non-forested (Wulder and Nelson 2003, 260 
Natural Resources Canada 2004) and were excluded from the analysis.  261 
 262 
2.6. Calculation of VHSR image-based stand-level metrics 263 
Parker, Lowman, and Nadkarni (1995) and Asner, Scurlock, and Hicke (2003) indicate 264 
that stand-level estimations based on panchromatic image grey-levels are conditioned by 265 
canopy structural attributes such as tree height, crown closure, and stand type. In this 266 
study, to capture and relate stand level characteristics to stand height, we first calculated a 267 
series of stand-level statistics based on the grey level values of the panchromatic images, 268 
including majority, minority, median, mean, standard deviation, range and variety, i.e., 269 
the number of unique values of all grey level values in the segment. A second series of 270 
stand-level statistics was then calculated based on the ITC output, and include crown 271 
closure, mean crown size, and the H25, H50, H75, H90 of crown size distribution. 272 
 273 
2.7. Height estimation models 274 
Prior to the computation of stand level metrics, crown objects from the ITC method with 275 
abnormal sizes (due to possible clusters of closely located trees or multiple strata of trees, 276 
for example) were discarded using the H5 and H95 as lower and upper thresholds, 277 
respectively, at the stand level. However, as outlier crowns represented either artefacts or 278 
tree clusters that could not be separated, all crown objects were kept to compute crown 279 
closure. A stepwise procedure (backward and forward mode) enabled the selection of the 280 
best stand metrics to establish the stand height models. The Pearson’s correlation analysis 281 
of the predictor variables was computed on the forest stand data set overlaid by the 282 
LIDAR coverage and used to select the least correlated variables among those considered 283 
in this study. 284 

Models to estimate stand height based on VHSR-derived metrics were developed 285 
using the data from the delineated stands intersected with LIDAR measurements. The 286 
data set was randomly split into a calibration (60% of the stands, i.e., 61 stands) and a 287 
validation dataset (40% of the stands, i.e., 36 stands) for all models, i.e., linear regression, 288 
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k-NN, regression tree, and random forest models. The random splitting of the dataset was 289 
also stratified according to the crown closure, as this parameter was found to influence 290 
the calculated metrics. As a result, the entire range of crown closure values was 291 
represented in both the calibration and validation datasets. A series of random selections 292 
was produced to circumvent any potential bias that could result from a single random 293 
selection. The method was implemented so that each forested stand was attributed to the 294 
validation data set at least 30 times. In addition, each random splitting was followed by a 295 
Multi Response Permutation Procedure (Mielke and Berry 2001) to evaluate the degree to 296 
which the calibration and validation data were mutually representative. For each stand, 297 
the estimated stand heights were then averaged over the random selections. The k-NN, 298 
regression tree, and random forest models were built using the metric combinations 299 
identified during the stepwise analysis used to guide the regression modelling. 300 

K-NN models were implemented using the R software (R Development Core 301 
Team 2005) and the package yaImpute (version 1.0-15) (Crookston and Finley 2008). A 302 
series of distance computation methods were tested: Euclidean, Mahalanobis, and an 303 
independent component analysis based method (Crookston and Finley 2008). The 304 
optimal number of neighbours to consider was estimated over the computation of one 305 
thousand random data set divisions into calibration and validation datasets followed by 306 
the modelling of height with values of k ranging from 1 to 30. From these tests, we 307 
selected the optimal value of k. 308 

The linear regression models were established using the R software and the 309 
package stats (version 2.13.1). The regression tree method was established as proposed in 310 
Mora, Wulder, and White (2010), using a 10-fold cross validation procedure followed by 311 
a tree pruning stage based on best practices (McLachlan, Do, and Ambroise 2004). 312 
Regression trees were implemented using the R software and the package tree (version 313 
1.0-28) (Ripley 2009). The random forest method was implemented using the R software 314 
and the package randomForest (version 4.6-2) (Breiman 2001). 315 
 316 
3. Results 317 
3.1. Stand identification and stand metrics 318 
A total of 2245 segments were delineated over the two images, of which 1520 were 319 
subsequently classified as forest stands, including 111 stands intersected by the LIDAR 320 
transect that became the focus on this study. In addition, the analysis of the stand crown 321 
closure values led to the identification and removal of 9 outlier stands. These outliers 322 
represent stands for which the boundaries were not accurately delineated, or included 323 
water features and/or roads. The resulting dataset had 97 forested stands with crown 324 
closure values ranging from 25% to 62% with a mean of 47%. Table 4 summarizes stand 325 
metrics obtained from the grey level values and the delineated crowns. 326 
 327 

 [Table 4 about here] 328 
 329 
3.2. Stand height estimation 330 
First, LIDAR heights were calibrated using ground plot heights and a linear regression 331 
model. Following independent variable data selection, a univariate model using H90 was 332 
the most successful model (R2 =0.91, SE = 2.98 m (SE-%=26)). Among the several 333 
metrics selected, combinations between the median grey level value in the segment 334 
(median_S) with the H25 and the H90 of the crown area distribution (H25_C and H90_C, 335 
respectively) provided the best models (Table 5). The residuals of both linear regression 336 
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models had a normal distribution (p = 0.83 for both). Homoscedasticity was verified for 337 
the 2-metric model (median_S and H90_C; p = 0.03) and was close to be verified for the 338 
3-metric model (median_S, H25_C, and H90_C; p = 0.07) with α = 0.05. A t-test showed 339 
no significant differences between LIDAR and estimated mean stand heights (p >= 0.95) 340 
for both models. Table 6 presents the values of the Pearson’s correlation analysis between 341 
these three metrics. Figure 2a shows the scatter plot of the LIDAR heights and those 342 
estimated by the best 2-metric linear regression model.   343 

 344 
[Table 5 about here] 345 
 [Table 6 about here] 346 

 347 
Regression trees were tested with the two sets of predictor metrics (Table 7) 348 

previously identified. Both tests provided lower coefficients of determination and lower 349 
performance in estimating stand heights compared to the linear regression models. Figure 350 
2b shows the scatter plot between the LIDAR heights and those estimated by the 2-metric 351 
model. 352 
 353 

[Table 7 about here] 354 
 355 

The random forest method was tested for the same metric combinations 356 
previously selected and provided better results than the regression tree method, but did 357 
not outperform the linear regression model. The 3-metric model provided similar results 358 
as those obtained with the 2-metric linear regression model. Table 8 presents the results 359 
obtained for these tests. Figure 2c shows the scatter plot between the LIDAR heights and 360 
those estimated by the 3-metric model. 361 
 362 

[Table 8 about here] 363 
 364 

We determined that the best number of neighbours was 4 for the k-NN method. 365 
The two-metric model provided the best R2 and RMSE when used in conjunction with an 366 
independent component analysis (ICA)-based distance calculation method (Table 9). 367 
However, the number of metrics and the method selected to compute the distances did 368 
not significantly change the performance of the model, providing RMSEs with a limited 369 
range from 2.3 m to 2.6 m. Figure 2d shows the scatter plot of the LIDAR heights versus 370 
those estimated by the 2-metric model. The evaluation of the residuals for the best model 371 
(k-NN) according to the LIDAR stand heights shows little bias overall (Figure 3), with a 372 
positive bias evident for shorter stands and a negative bias for the taller stands. Figure 4 373 
presents the evolution of the residuals of the best model according to the within-stand 374 
LIDAR height variation and reveals no link between these two statistics, indicating that a 375 
correct level of image segmentation was performed.  376 
 377 

[Table 9 about here] 378 
 [Figure 2 about here] 379 
[Figure 3 about here] 380 
[Figure 4 about here] 381 

 382 
We calculated the standard deviation of the stand height estimates across the 383 

random selections for each stand. Figure 5 summarizes the calculations providing the 384 
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minimum, maximum, and mean standard deviation values for stand height in the best 385 
performing version of a given model. 386 
 387 

[Figure 5 about here] 388 
 389 
4. Discussion 390 
Imputation methods typically provide lower performance than regression methods 391 
because they are not designed to minimize least-square errors (Stage and Crookston 392 
2007). However, the single imputation method (k-NN method, k = 4, ICA-based 393 
distance), provided the best model fit statistics in this study (R2 = 0.69, RMSE = 2.3 m, 394 
RMSE-%=21) over the regression methods when considering the median_S and the 395 
H90_C as predictors. The ICA method was developed to compute distances in a projected 396 
space defined by statistically independent components (Hyvarinen and Oja 2000) 397 
assuming non-Gaussian distributions. Therefore, this distance calculation method allows 398 
greater options in the application of the k-NN over heterogeneous datasets, that is, 399 
varying stand parameter distributions. Note that the k-NN method has previously 400 
demonstrated some potential in canopy height modelling when associated with airborne 401 
LIDAR and satellite imagery data in a LIDAR-plot based framework (McInerney et al. 402 
2010). The choice of the distance calculation method among the three that were tested did 403 
not drastically influence the R2 and RMSE values (Table 9). 404 
 Despite a lower R2 (0.59), the 2-metric linear regression model was considered for 405 
comparison rather than the 3-metric model (R2 = 0.64), as some of the mean variance 406 
inflation factor (VIF) values of the latter were higher and the correlation between the H25 407 
and the H90_C was 0.88 (Table 6). The 2-metric linear regression model provided 408 
acceptable stand height accuracy (SE = 2.6 m (SE-%=21)). Both R2 and SE improved 409 
compared to the study from Mora, Wulder, and White (2010) where stand height was 410 
modelled with regression trees applied to similar VHSR-derived metrics, but which were 411 
calibrated and validated with photo interpreted heights. Both random forest and 412 
regression tree models performed weakly relative to the linear regression and k-NN 413 
models, with R2 values equal or lower than 0.59, and RMSEs ranging from 2.7 m for the 414 
best random forest model to more than 4 m for the regression tree models.  415 
 The study of the variation of the stand height estimates showed reasonably low 416 
variations with mean standard deviations (across the stands) for each model below 1 m, 417 
except for the regression tree model (Table 10). The maximum standard deviation was 418 
below 2 m, except for the regression tree model (4.05 m). Regression trees and random 419 
forests operate recursive data partitioning that aims at improving cluster homogeneity 420 
while the k-NN method realizes an imputation process. These three models produce a 421 
mean response that is constrained to the range of sample observations and requires a 422 
representative sample dataset to produce highly effective estimations. The random forests 423 
model provides a mean response that is based on averaging of the results from multiple 424 
trees built internally. Therefore, it would be expected that the random forests model 425 
would provide more consistent results compared to regression trees, as was observed in 426 
this study (Table 10). The capacity of a k-NN method to provide consistent results will 427 
depend notably on the number of neighbours (k) considered (k=4 in this study). In 428 
contrast, linear regression models tend to provide the most consistent estimates of all the 429 
methods examined in this study. This is due to the fact that the linear regression enables a 430 
better fit to the data, with interpolations made between discontinuous observations and 431 
beyond the range of observations. 432 
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 All forest stands considered in the study area were classified as coniferous 433 
according to the provincial forest inventory, with no mixed stands found within the 434 
LIDAR transect. Therefore, it was not necessary to build models distinguishing stand 435 
types. However, as might be expected, some smaller deciduous trees patches were 436 
visually identified over the study region. The LIDAR data were acquired during the 437 
winter of 2008 and the VHSR images during summer and early fall of 2009; therefore, 438 
the LIDAR data were acquired under leaf-off deciduous tree conditions, while the VHSR 439 
images were acquired during leaf-on conditions. Such conditions could have resulted in 440 
marginal discrepancies between the VHSR grey level values, the crown area statistics, 441 
and the LIDAR returns. In addition, pine beetle infestations have been reported over the 442 
study region (Bater et al. 2010; Varhola et al. 2010). The attacks may have biased some 443 
stand metric estimations as the infestation can have an impact on the crown reflective 444 
properties (grey stage) when observed in the panchromatic spectral range of the 445 
WorldView-1 sensor, as well as on the LIDAR returns (Coops et al. 2009). 446 

The best overall model in this study was the single imputation method (k-NN 447 
method, k = 4, ICA-based distance) using median_S and H90_C with an RMSE of 2.3 m. 448 
To provide some context for this result, it is useful to examine the literature; however, 449 
few studies have used LIDAR data to calibrate estimates of mean stand height from 450 
optical remotely sensed data in similar forest environments (e.g., Hudak et al., 2002; 451 
Wulder and Seemann, 2003). Of these, even fewer have reported RMSE errors, which are 452 
necessary for understanding the magnitude of the error associated with a given approach 453 
and data type. Wulder and Seemann (2003) integrated Landsat-5 TM data and LIDAR 454 
samples to estimate mean stand height with an RMSE of 3.3 m. Studies that use VHSR 455 
imagery exclusively have produced results similar to those of Wulder and Seemann 456 
(2003). For example, Peuhkurinen et al. (2008) used a variety of IKONOS spectral 457 
features in a k-most similar neighbor (K-MSN) approach to estimate mean stand height 458 
with an RMSE of 3.1 m. Similarly, Chen, Hay, and St-Onge. (2011) used an object-based 459 
approach with pan-sharpened QuickBird data to estimate mean stand height with an 460 
RMSE of 3.37 m. In an approach similar to that described herein (without LIDAR 461 
calibration), Mora, Wulder, and White (2010) used QuickBird data and a regression tree 462 
approach to estimate mean stand height with an RMSE of 2.84 m. Thus, the methods 463 
developed herein are capable of providing estimates of mean stand height that improve 464 
upon estimates generated without the benefit of lidar calibration. 465 
 Our objective with this work was to describe a VHSR satellite-based method 466 
enabling the estimation of mean stand height, which was established using LIDAR data 467 
calibrated with field data. Similar multi-stage studies were carried out over forested 468 
environments with medium spatial resolution imagery (Landsat) (Duncanson, Niemann, 469 
and Wulder 2010, Li et al. 2011) and high spatial resolution imagery (QuickBird) 470 
(Hilker, Wulder, and Coops 2008), with the Geoscience Laser Altimeter System 471 
instrument (onboard the now defunct ICESat (Ice, Cloud, and land Elevation satellite)), 472 
and airborne LIDAR respectively. The models based on k-NN, linear regressions, and 473 
random forests provided acceptable accuracies compared to, for example, the forest 474 
inventory standards in British Columbia where the quality control of photo interpreted 475 
heights specifies an error range of ± 3 m (Ministry of Forests and Range 2009). However, 476 
all the models used in this study inherit qualities from the regression model built to 477 
compute the stand heights from the LIDAR and ground observations (SE = 2.98 m (SE-478 
%=26)). This gain in accuracy may result from the loss of variability in the fitted height 479 
values. Whatever the method used to build the stand height model, metrics from both the 480 
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stand grey level values and crown metrics were required to get satisfactory results and 481 
model reliability. However, the current study and the previously mentioned literature 482 
provide guidance to facilitate the implementation of the methodology and its partial 483 
automation.  484 

The current study demonstrates the capacity of using LIDAR data to calibrate and 485 
validate stand height estimates generated from VHSR imagery. For a large area, such as 486 
Canada’s northern forests, the cost of collecting wall-to-wall LIDAR or VHSR imagery 487 
is prohibitive; however, the ability to collect samples of both data types and integrate 488 
them in a plot-based framework allows for the robust estimation of stand heights in areas 489 
with no other available information. Hilker et al. (2008) found no statistical difference 490 
between stand heights estimated from a complete wall-to-wall LIDAR coverage and 491 
those estimated from a single 400 m wide LIDAR transect, demonstrating that a sample-492 
based approach is both logistically feasible and financially prudent.   493 

The CFS conducted a LIDAR survey across Canada during the summer of 2010, 494 
resulting in a series of transects totalling over 25,000 km in length, specified for a 495 
minimum swath width of 500 m and a minimum of 3 points per m2, with FUSION 496 
metrics produced as in this study using a 25 x 25 m cell size (Wulder et al., in prep). NFI 497 
photo plots intersecting the LIDAR swaths could be considered as appropriate study sites 498 
to strengthen and validate the LIDAR-plot based methodology established in this study. 499 
We also envisage the application of LIDAR-plot developed models more widely to NFI 500 
photo plot locations using generalized regionally appropriate models (ecozone level) to 501 
preclude the need for LIDAR over all northern NFI photo plot locations. The number of 502 
sample plots covered by both VHSR and LIDAR data should be sufficient enough to 503 
capture the full range of forest conditions (stand type, height and crown size distribution) 504 
occurring in the region, enabling the establishment of a representative and reliable stand 505 
height model. To ensure the calculations of consistent and reliable stand metrics, we 506 
recommend acquiring LIDAR data and VHSR imagery during summer time, and when 507 
possible during the same period of time. In addition, when atmospheric conditions and 508 
image archive allow, VHSR image acquisition parameters (e.g., sun angle, view angle) 509 
should be consistent across the set of images used to build a given model to ensure 510 
consistency of the stand metric calculations (Wulder et al. 2008c).  511 
 512 
5. Conclusion 513 
In this study, we investigated the potential of four statistical methods to model mean 514 
stand height from VHSR panchromatic and tree crown metrics using a multi-stage 515 
LIDAR-plot based method for model calibration and validation. We compared the model 516 
estimated heights to those generated from the airborne LIDAR. The study showed that 517 
the k-NN method was able to produce the best model (R2 = 0.69, RMSE = 2.3 m, RMSE-518 
%=21) as a result of variance explained and residual analysis. Based upon the R2 value 519 
and the low RMSE, operational utility of the approach and outcomes is provided, while 520 
typical cautions for use of empirical equations should be observed. Compared to our 521 
previous study (Mora, Wulder, and White 2010), this current work also demonstrated the 522 
need to combine metrics computed at stand and tree crown levels to obtain the best 523 
results. This work demonstrated a parsimonious method that minimizes ground 524 
measurements to a limited sample required for the calibration of LIDAR heights. In 525 
addition, the study provided insights on the image segmentation procedure defined, 526 
supporting previous research, and providing insights towards operationalization. For 527 
instance, the research demonstrated that the selected segmentation parameters provided 528 
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low within-stand LIDAR height variance. Overall, this study demonstrates the potential 529 
of VHSR panchromatic imagery for estimating stand height over remote areas when 530 
supported by LIDAR-plots to provide calibration (and subsequent validation). The 531 
proposed methodology can be adapted to enable the direct estimation of other stand 532 
attribute estimates such as volume and biomass.  533 
 534 
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Table 1. Summary of LIDAR survey flight and sensor parameters.  
 
 
 

Attribute Value 

Platform Bell 206 Jet Ranger helicopter 

Flying height (m) 800 

Sensor TRSI Mark II 

Number of returns Two, first and last 

Laser wavelength (nm) 1,064 

Pulse repetition frequency (kHz) 50 

Maximum scan angle (degrees) ±15 

Beam divergence angle (mrad) 0.5 

Footprint diameter (m) 0.4 

Swath width (m) 400 

Nominal ground return density (returns/m2) 0.7 

 
 
Table 2. WorldView-1 image acquisition parameters. 
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Site 1 7000 53°03’01’’ 122°56’53’’ 07/25/2009 164.6 55.9 293.8 71.9 16.8 2.9 -16.6 
Site 2 7000 52°36’53’’ 122°55’59’’ 09/23/2009 170.4 36.8 187.0 85.9 3.6 -3.6 0.3 

 

 

Table 3. Average biophysical conditions encountered across the ground plots. 
 
 

 Terrain 
elevation (m) 

dbh 
(cm) 

Basal area 
(m2/ha) 

Mean 
height (m) 

Maximum 
height (m) 

Conifer 
(%) 

Mean 1110 13 31 11 18 99 
Standard 
deviation 

140 6 
 

17 4 7 1 
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Table 4. Mean and standard deviation of image grey level values and tree crowns for segment level 
metrics used as inputs to the models. 
 
 
 
 

Source Data Metric Mean 
Standard 
Deviation 

minority (W.sr−1.m−2.μm-1) 1.38 1.14 

majority  (W.sr−1.m−2.μm-1) 1.45 .38 

median  (W.sr−1.m−2.μm-1) 1.58 .30 

mean  (W.sr−1.m−2.μm-1) 1.64 .27 

standard deviation  (W.sr−1.m−2.μm-1) .43 .08 

range  (W.sr−1.m−2.μm-1) 3.20 .46 

QuickBird 
TOA spectral 

radiance 
values 

variety  (W.sr−1.m−2.μm-1) 2.94 .38 

crown closure (%) 45 9 

mean crown size (m2) 6 1 

H25 of crown size distribution (m2) 3 0.5 

H50 of crown size distribution (m2) 5 0.9 

H75 of crown size distribution (m2) 8 2 

Individual 
ITC-defined 
tree crowns 

H90 of crown size distribution (m2) 12 3 

 
 
Table 5. Results from the best linear regression models with mean VIF: variance inflation factor, and 
SE: standard error. 
 
 
 

 

Metrics 

 

mean 

VIF 

 

R2 

 

SE (m) 

 

median_S
 

1.7 
 

H25_C 
 

4.8 
 

H90_C 
 

6.1 

0.64 2.5 

 

median_S
 

1.2 
 

H90_C 
 

1.2 

0.59 2.7 
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Table 6. Pearson’s correlation table of the best metrics. 
 median_S H25_C H90_C 
median_S / 0.62 0.47 
H25_C  / 0.88 

 
Table 7Error! Reference source not found..  Results from the best regression tree models. 

 

Metrics 

 

R2 

 

RMSE (m) 

median_S 

H25_C 

H90_C 

0.54 4.3 

median_S 

H90_C 
0.55 4.2 

 
Table 8.  Results from the best random forest models. 

 

Metrics 

 

R2 

 

RMSE (m) 

median_S 

H25_C 

H90_C 

0.59 2.7 

median_S 

H90_C 
0.55 2.8 

 

Table 9.  Results for the best K-NN models, with RMSE. 
 

Metrics 

 

Distance 

 

R2 

 

RMSE (m) 

euclidean 0.67 2.4 

mahalanobis 0.63 2.6 

 

median_S, H25_C, 

H90_C ICA-based 0.64 2.5 

euclidean 0.65 2.5 

mahalanobis 0.68 2.4 

 

 

median_S, 

 H90_C 
ICA-based 0.69 2.3 
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Figure 1. Study area located in British Columbia, Canada. The WorldView-1 image locations are also 

noted. 

 

 

 

 



 23

Figure 2. Scatter plots of the LIDAR heights versus best estimated heights from a) linear regression 
b) regression trees c) random forests, and d) KNN models. 
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Figure 3.  Residuals of the best model versus stand LIDAR height. 
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Figure 4. Residuals of the best model versus stand LIDAR height standard deviation. 
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Figure 5. Variations of the standard deviation of the stand height estimates across the iterations for 
each model (minimum, average, and maximum) 
 
 

 


